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BUFFON’S COIN AND NEEDLE PROBLEMS FOR THE SNUB HEXAGONAL
TILING

Salvatore Vassallo

ABSTRACT. In this paper we consider the snub hexagonal tiling of the plane
((34, 6) Archimedean tiling) and compute the probability that a random circle
or a random segment intersects a side of the tiling.

1. INTRODUCTION

A tiling or tessellation in the plane is a collection of disjoint closed sets (the
tiles) that can intersect only on the boundary, which cover the plane. A tiling is
said to be polygonal if the tiles are polygon, a polygonal tiling is said to be edge-
to-edge if two non disjoint tiles have in common or a vertex or a segment that is
an edge for both the polygons. In this case we call any edge of a tile an edge of
the tiling. An edge-to-edge tiling is called regular if it is composed of congruent
copies of a single regular polygon. An Archimedean tessellation (semi-regular
or uniform tessellation) is an edge-to-edge tessellation of the plane made of
more than one type of regular polygon so that the same polygons surround each
vertex. There are eight different Archimedean tilings and we can classify them
giving the types of polygons as they come together at the vertex [10]. The snub
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hexagonal tiling is a tiling such that four triangles and an hexagon come together
(in clockwise order) in any vertex so it can be called a (34, 6) Archimedean tiling
(see Figure 1a). Many authors studied Buffon type problems for different lattices

(a) snub hexagonal tiling
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(b) The fundamental cell T0

FIGURE 1. The tiling R

of figures or tilings and different test bodies: See for example [1–9, 11, 12, 15–
17,22].

In particular the cases of the (33, 42), of the (32, 4, 3, 4), of the (82, 4) and of the
(3, 6, 3, 6) Archimedean tilings (elongated triangular tiling, snub square tiling,
truncated square tiling and trihexagonal tiling) are studied in [18–21], respec-
tively.

We will study Buffon type problems for the snub hexagonal tiling and two
special test bodies: a circle of constant diameter D and a line segment of length
l.

Let E2 be the Euclidean plane and let R be the snub hexagonal tiling of E2

given in figure 1a. We denote by T0 the fundamental tile (or cell) ofR (see figure
1b) and by Tn one of congruent copies of T0 such that:

(i)
⋃
n∈N Tn = E2,

(ii) Int(Ti) ∩ Int(Tj) = ∅,∀i, j ∈ N and i 6= j,
(iii) Tn = γn(T0),∀n ∈ N, where γn are the elements of a discrete subgroup

of the group of motions in E2 that leaves invariant the tiling R.

The body T0 can be expressed as the union of a hexagon of side a and eight
equilateral triangle of the same side a.

Let us denote by K a convex body (which means here a compact convex set)
which we shall call test body. A general problem of Buffon type can be stated as
follows: “Which is the probability pK,R that the random convex body K, or more
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precisely, a random congruent copy of K, meets some of the boundary points of
at least one of the domains Tn? ”

If we denote byM the set of all test bodies K whose centroid is in the interior
of T0 and by N the set of all test bodies K that are completely contained in one
of the 8 triangles or in the hexagon ABCDEF , we have

(1.1) pK,R = 1− µ(N )

µ(M)
,

where µ is the Lebesgue measure in the plane E2.

2. THE TEST BODY IS A CIRCLE

Let us suppose that the test body K is a circle of diameter D. Easy geometrical
considerations will lead us to distinguish between the cases D < a√

3
(the diam-

eter of the circle inscribed in the triangle) , a√
3
≤ D < a

√
3 (the diameter of the

circle inscribed in the hexagon) and D ≥ a
√
3. It is obvious that if D ≥ a

√
3 the

circle always meets the boundary of one of the bodies Tn, so we have to study
the other two cases.

Proposition 2.1. The probability that the circle K of diameter D intersects the
tiling R is given by

(2.1) pK,R =


D[10

√
3a−13D]
7a2

, if D < a√
3
,

4a2+2
√
3aD−D2

7a2
, if a√

3
≤ D < a

√
3.

Proof. We compute the measures µ(M) e µ(N ) with help of the elementary
kinematic measure dK = dx ∧ dy ∧ dφ of E2 (see [13], [14]) where x and y are
the coordinates of the center of K (or the components of a translation), and φ

is the angle of rotation. We have

µ(M) =

∫ π

0

dφ

∫∫
(x,y)∈T0

dxdy = π · area(T0) =
7

2
πa2
√
3.

LetN1 be the set of circles of diameter D that are contained in the triangle ABH
and N2 be the set of circles of diameter D that are contained in the hexagon
ABCDEF . From ((1.1)) we obtain

(2.2) pK,R = 1− 8µ(N1) + µ(N2)
7
2
πa2
√
3

.

From figure 2a it is easy to see that µ(N1) is π times the area of the triangle
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FIGURE 2. The case K = circle

A’B’H’ whose sides are parallel to the sides of the triangle ABH at distance D/2
from them (A′ is the center of a disk interior to the triangle ABH and tangent to
the sides AB and AH and so on). Since the side of the triangle is a − D

√
3 we

have:

µ(N1) =
π
√
3

4

(
a−
√
3D
)2
.

In the same way we obtain that

µ(N2) =
3π
√
3
(
a− D√

3

)2
2

.

Then we have for the case D < a√
3
,

pK,R =
D
[
10
√
3a− 13D

]
7a2

.

Let a√
3
≤ D < a

√
3 (see figure 2b). If the center of the circle K is in the

triangle ABH, the circle always intersects one of the side of the triangle so that

µ(N1) = 0.

If the center of the circle is in the hexagon ABCDEF, the circle does not intersect
the side of the hexagon if its center is in the hexagon A′′B′′C ′′D′′E ′′F ′′; since the
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side of this hexagon is a− D√
3

we have

µ(N2) =
3π
√
3

2

(
a− D√

3

)2

,

and so in this case

pK,R =
4a2 + 2

√
3aD −D2

7a2
.

�

The graphic of the probability pK,R is

D/a

pK,R

√
3/3

17
21

Let us observe that pK,R ≥ 1
2

for D > 10
√
3−
√
118

26
a ≈ 0.24837a i.e. also for

“small” circles.

3. THE TEST BODY IS A LINE SEGMENT

Let us consider now the case K is a line segment of length l. Also in this case
easy geometrical considerations give us four cases: l < a

√
3

2
(the minimal width

of the triangle), a
√
3

2
≤ l < a (the diameter of the triangle) , a ≤ l < a

√
3 (the

minimal width of the hexagon), a
√
3 ≤ l ≤ 2a (the diameter of the hexagon),

and l ≥ 2a. In the last case the segment always intersects the boundary of one
of the bodies Tn, so we have to study the other cases. We have
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Proposition 3.1. The probability that the line segment K of length l intersects the
tiling R is given by

(3.1) pK,R =



l

21πa2

[
60a
√
3−

(
15
√
3 + 7π

)
l
]

if l < a
√
3

2

1

21πa2

[
60
√
3al − l2

(
15
√
3 + 7π

)
− 36
√
3a
√
4l2 − 3a2

+24
(
3a2 + 2l2

)
arccos

(
a
√
3

2l

)] if a
√
3

2
≤ l < a

1

7πa2

[
3
√
3a
√
4l2 − 3a2+

+ 2
(
3a2 + 2l2

)
arcsin

(
a
√
3

2l

)
+ π

(
2a2 − l2

)]
if a ≤ l < a

√
3

1

21πa2

[
9a2
(
2
√
3 + 5π

)
+ l2

(
3
√
3 + 2π

)
− 30
√
3a
√
l2 − 3a2

−6
(
12a2 + l2

)
arcsin

(
a
√
3

l

)] if a
√
3 ≤ l < 2a

Proof. In the following we can always suppose, by symmetry, that the line seg-
ment K forms an angle φ ≤ π

6
with the direction of the side DF .

(i) Let us consider the case l < a
√
3

2
. We compute first the measure µ (N1) of

the set N1 of all line segments of length l contained in the triangle ABH.
For a fixed angle φ ∈ [0, π

6
[ we denote by (see figure 3a):

- B′ the midpoint (in ABH) of the line segment of length l with one
endpoint in B that makes an angle φ with AB;

- A′ the midpoint of the line segment of length l with endpoints on
AB and AH that makes an angle φ with AB;

- H ′ the midpoint of the line segment of length l with endpoints on
AH and BH that makes an angle φ with the direction of AB.

We compute

area(A′B′H ′) =

√
3

4

[
a− 2l√

3
sin

(
2

3
π − φ

)]2
,
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FIGURE 3. The case K = line segment

and, by symmetry, we obtain

µ (N1) = 6

∫ π/6

0

area(A′B′H ′)dφ =

∫ π/6

0

√
3

4

[
a− 2l√

3
sin

(
2

3
π − φ

)]2
dφ

=
3
√
3πa2 − 36al +

(
9 + 2

√
3π
)
l2

12
.(3.2)

In the same way, if φ ∈
[
0, π

6

]
, we obtain that K is contained in the

hexagon ABCDEF if its centroid is in the hexagon A′′B′′C ′′D′′E ′′F ′′

whose sides have length A′′B′′ = a− 2l√
3
sin
(
π
3
− φ
)
, B′′C ′′ = a− 2l√

3
sinφ,

and C ′′D′′ = a (see figure 3c). Then

area(A′′B′′C ′′D′′E ′′F ′′) =
3

2
a2
√
3−l

[
2 a sin

(π
3
+ φ
)
− 2

3
l
√
3 sinφ cos

(π
6
+ φ
)]

,

and so have

µ (N2) = 6

∫ π/6

0

area(A′′B′′C ′′D′′E ′′F ′′)dφ = −6al + 3

2
l2 +

3

2

√
3a2π − 1

6

√
3l2π,
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and then

µ(N ) =
7

2

√
3πa2 − 30al +

(
15

2
+

7

6

√
3π

)
l2.

Hence we have if l < a
√
3

2
,

(3.3) pK,R =
l
[
60a
√
3−

(
15
√
3 + 7π

)
l
]

21πa2
.

(ii) Let now a
√
3

2
≤ l < a. With reference to figure 3b it is easy to see

that the line segment can be contained in the triangle ABH only if the
angle φ ∈ [0, π/6[ between the line segment and the side AB satisfies
0 ≤ φ < π

6
− arccos

√
3a
2l

.
So the measure of the line segments completely contained in the tri-

angle ABH is, by symmetry,

µ (N1) = 6

∫ π
6
−arccos

√
3a
2l

0

√
3

4

[
a− 2l√

3
sin

(
2

3
π − φ

)]2
dφ =

=
1

12

[
9l2 − 36al + π

√
3
(
3a2 + 2l2

)
+ 27a

√
4l2 − 3a2−(3.4)

−6
√
3
(
3a2 + 2l2

)
arccos

(
a
√
3

2l

)]
.

The measure of the line segment completely contained in the hexagon
ABCDEF is the same as in the case above:

µ (N2) = −6al +
3

2
l2 +

3

2

√
3a2π − 1

6

√
3l2π.

Hence we have if a
√
3

2
≤ l < a,

pK,R =
1

21πa2

[
60
√
3al − l2

(
15
√
3 + 7π

)
− 36
√
3a
√
4l2 − 3a2+

+24
(
3a2 + 2l2

)
arccos

(
a
√
3

2l

)]
.

(iii) Let now a ≤ l < a
√
3. It is easy to see that in this case, if the centroid of

the line segment is in the triangle ABH, the line segment always meets
one of the side of the triangle and so µ(N1) = 0.

The segment K does not intersect the sides of the hexagon if its
centroid is in the hexagon A′′B′′C ′′D′′E ′′F ′′ when the angle φ satisfies
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π
3
− arcsin

(
a
√
3

2l

)
≤ φ < π

6
and if its centroid is in the parallelogram

A′′C ′′D′′F ′′ when the angle φ is in
[
0, π

3
− arcsin

(
a
√
3

2l

)]
(see Figure 3c

and Figure 3d).
The area of the hexagon A′′B′′C ′′D′′E ′′F ′′ is the same as above; since

the sides of the parallelogram A′′C ′′D′′F ′′ have lengths C ′′D′′ = 2a −
2l sin(π3−φ)√

3
and A′′C ′′ = 2a− 2l[sin(π3−φ)+sinφ]√

3
and the angle of the parallel-

ogram is π
3

we obtain

area(A′′C ′′D′′F ′′) = 2 a2
√
3− 2

√
3al cosφ+

1

2

√
3l2 cos2 φ− 1

6

√
3l2 sin2 φ.

The measure of the line segments completely contained in the hexagon
ABCDEF is given by:

µ (N ) = µ (N2) =

= 6

[∫ π
3
−arcsin

(
a
√
3

2l

)
0

area(A′′C ′′D′′F ′′)dφ

+

∫ π/6

π
3
−arcsin

(
a
√

3
2l

) area(A′′B′′C ′′D′′E ′′F ′′)dφ
]
=

=

√
3π

2

(
l2 + 5a2

)
− 9

2
a
√
4l2 − 3a2 −

√
3
(
3a2 + 2l2

)
arcsin

(
a
√
3

2l

)
.

Hence we have if a ≤ l < a
√
3

(3.5)

pK,R =
1

7πa2

[
π
(
2a2 − l2

)
+ 3
√
3a
√
4l2 − 3a2 + 2

(
3a2 + 2l2

)
arcsin

(
a
√
3

2l

)]

(iv) Finally if a
√
3 ≤ l < 2a the segment K does not intersectR if and only if

its centroid is in the parallelogram A′′C ′′D′′F ′′ and the angle φ satisfies
0 ≤ φ ≤ arcsin

(
a
√
3
l

)
− π

3
. Since the area of the parallelogram is the
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same as above we have:

µ (N ) = µ (N2) = 6

[∫ arcsin
(
a
√
3
l

)
−π

3

0

area(A′′C ′′D′′F ′′)dφ

]
=

=
√
3
(
l2 + 12a2

)
arcsin

(
a
√
3

l

)
+ 15a

√
l2 − 3a2 − a2

(
4
√
3π + 9

)
− l2

6

(
9 + 2

√
3π
)
.

and so:

pK,R =
1

21πa2

[
9a2
(
2
√
3 + 5π

)
+ l2

(
3
√
3 + 2π

)
− 30
√
3a
√
l2 − 3a2

−6
(
12a2 + l2

)
arcsin

(
a
√
3

l

)]
.

�

This is the probability distribution of pK,R

l/a

pK,R

√
3/2

120−15
√

3−7π
28π

≈ 0.81883

1

9
√

3+13π
21π

≈ 0.85533

√
3

9
√

32π
7π

≈ 0.99457

Let us observe that pK,R ≥ 1
2

for l ≥ 60
√
3−
√

10800−630
√
3π−294π2

30
√
3+14π

a ≈ 0.3863a i.e.
also for “small” needles.
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