

Advances in Mathematics: Scientific Journal **10** (2021), no.4, 2255–2267 ISSN: 1857-8365 (printed); 1857-8438 (electronic) https://doi.org/10.37418/amsj.10.4.39

THE FOURIER-JACOBI WAVELET CONVOLUTION PRODUCT

C. P. Pandey¹, Pranami Phukan, and Mopi Ado

ABSTRACT. The convolution product associated with the Fourier-Jacobi wavelet transformation is investigated. Certain norm inequalities for the convolution product are established.

1. INTRODUCTION

May authors studied the Fourier-Jacobi convolution for the following form of the Fourier-Jacobi transformation of a function $f \in L^1(\mu)$ and $L^1(\mu) = \{f : \int_0^\infty | f(x) | d\mu(x) < \infty\}$. Namely,

(1.1)
$$(j_{\mu}f)(x) = \hat{f}(x) = \int_0^{\infty} f(t)\varphi_{\lambda}(t)d\mu(t),$$

where

$$d\mu(t) = \frac{\Delta(t)}{(2\pi)^{\frac{1}{2}}} dt,$$
$$\varphi_{\lambda}(t) = (e^{t} - e^{-t})^{i\lambda - \rho} F\left(\frac{\beta - \alpha + 1 - i\lambda}{2}, \frac{\rho - i\lambda}{2}; 1 - i\lambda; -\frac{1}{(sht)^{2}}\right)$$

we say that $f \in L^1(\mu), 1 \le p < \infty$, if

$$||f||_p = \left(\int_0^\infty |f|^p d\mu\right)^{\frac{1}{p}} < \infty.$$

¹corresponding author

²⁰²⁰ Mathematics Subject Classification. 65T60.

Key words and phrases. Fourier-Jacobi wavelet transform, Fourier-Jacobi convolution, Convolution product.

Submitted: 02.04.2021; Accepted: 21.04.2021; Published: 30.04.2021.

If $f\in L^1(\mu)$ and $(j_\mu f)\in L^1(\mu)$ then the inverse Fourier-Jacobi transform is given by

(1.2)
$$f(x) = \left(j_{\mu}^{-1}\left[\hat{f}\right]\right)(x) = \int_{0}^{\infty} \hat{f}(x)\varphi_{\lambda}(t)d\nu(\lambda),$$

where $f\in L^1(\mu), g\in L^1(\mu)$ then the Fourier-Jacobi convolution is defined by

(1.3)
$$(f * g)(x) = \int_0^\infty \int_0^\infty f(z)g(y)K(x, y, z)d\mu(z)d\mu(y) (f * g)(x) = \int_0^\infty (\tau_x f)(y)g(y)d\mu(y),$$

where the Fourier-Jacobi translation τ_x is given by

(1.4)
$$(\tau_x f)(y) = f(x,y) = \int_0^\infty f(z) K(x,y,z) d\mu(z), 0 < x, y < \infty$$
$$K(x,y,z) = \int_0^\infty \varphi_\lambda(x) \varphi_\lambda(y) \varphi_\lambda(z) d\nu(\lambda)$$
$$= \frac{2^{\frac{1}{2} - 2\rho} \Gamma(\alpha + 1) (chxchychz)^{\alpha - \beta - 1}}{\Gamma(\alpha + \frac{1}{2}) (shxshyshz)^{2\alpha}} \times F\left(\alpha + \beta, \alpha - \beta; \alpha + \frac{1}{2}; \frac{1 - B}{2}\right),$$

with

$$B = \frac{(chx)^2 + (chy)^2 + (chz)^2 - 1}{2chxchychz}, |x - y| < z < x_1 + x_2.$$

Here we note that K(x, y, z) is symmetric in x, y, z. Applying (1.2) and (1.4), we get

$$\int_0^\infty \varphi_\lambda(z) K(x, y, z) d\mu(z) = \varphi_\lambda(x) \varphi_\lambda(y).$$

Setting t = 0, we get

$$\int_0^\infty K(x, y, z) d\mu(z) = 1.$$

Therefore in view of (1.4)

(1.5)
$$\|\hat{f}(x,y)\|_1 \le \|f\|_1.$$

Now, using (1.4) awe can write (1.3) in the following form

Some important properties of Fourier-Jacobi convolution that are relevant are:

1. If $f, g \in L^1(\mu)$ then from [1]

(1.6)
$$||f * g||_1 \le ||f||_1 ||g||_1.$$

2. With the same assumptions

(1.7)
$$j_{\mu}(f * g)(x) = (j_{\mu}f)(x)(j_{\mu}g)(x)$$

3. Let $f \in L^1(\mu)$ and $g \in L^p(\mu)$, $p \ge 1$. Then (f * g) exists, is continuous and from [1], we get the inequality

(1.8)
$$||f * g||_p \le ||f||_1 ||g||_p.$$

4. Let $f \in L^p(\mu)$ and $g \in L^q(\mu), \frac{1}{p} + \frac{1}{q} = 1$. Then (f * g) exists, is continuous and from [1], we have

(1.9)
$$||f * g||_{\infty} \le ||f||_{p} ||g||_{q}$$

5. Let $f \in L^p(\mu)$ and $g \in L^q(\mu), \frac{1}{r} = \frac{1}{p} + \frac{1}{q} - 1$. Then (f * g) exists, is continuous and from [1], we get the inequality

$$(1.10) ||f * g||_r \le ||f||_p ||g||_q.$$

6. Let $f \in L^p(\mu), g \in L^q(\mu)$ and $h \in L^r(\mu)$. Then the weighted norm inequality

$$\left|\int_{0}^{\infty} f(x)(g * h)(x)d\mu(x)\right| \le \|f\|_{p} \|g\|_{q} \|h\|_{r}$$

$$\frac{1}{2} + \frac{1}{2} = 2.$$

holds for $\frac{1}{p} + \frac{1}{q} + \frac{1}{r} = 2$.

As indicated above, the proof of property 1 to 1 are well known. Hence we next give the proof of 1.

Using Holder's inequality, we get

$$\int_0^\infty f(x)(g*h)(x)d\mu(x) \leq ||f||_p ||g*h||_s, \frac{1}{p} + \frac{1}{s} = 1.$$

Therefore using (1.9) we have

$$\left|\int_{0}^{\infty} f(x)(g*h)(x)d\mu(x)\right| \leq \|f\|_{p}\|g\|_{q}\|h\|_{s}, \frac{1}{s} = \frac{1}{q} + \frac{1}{r} - 1.$$

From paper, j_{μ} is isometric on $L^{2}(\mu)$, $(j_{\mu}^{-1}j_{\mu}f) = f$, then Parsevals formula of the Fourier-Jacobi transformation for $f, g \in L^{2}(\mu)$ given by

$$(f * g)^{\wedge}(x) = \hat{f}(x)\hat{g}(x)$$

$$\Rightarrow \int_0^{\infty} f(x)(g)(x)d\mu(x) = \int_0^{\infty} (j_{\mu}f)(y)(j_{\mu}g)(y)d\mu(y).$$

Furthermore, the relation also holds for $f, g \in L^1(\mu)$, from [7].

For $\psi \in L^1(\mu)$, using translation τ given in equation (1.4) and dilation $D_a f(x, y) = f(ax, ay)$,

(1.11)
$$\psi\left(\frac{t}{a},\frac{b}{a}\right) = D_{\frac{1}{a}}\tau_b\psi(t) = \int_0^\infty \psi(z)K\left(\frac{t}{a},\frac{b}{a},z\right)d\mu(z).$$

Then the continuous Fourier-Jacobi wavelet transform [5] of a function $f \in L^1(\mu)$ with respect to wavelet $\psi \in L^1(\mu)$ is defined by

(1.12)
$$(J_{\psi}f)(b,a) = \int_0^{\infty} f(t)\overline{\psi}_{b,a}(t)d\mu(t)$$
$$= \int_0^{\infty} f(t)\overline{\psi}\left(\frac{t}{a},\frac{b}{a}\right)d\mu(t), a > 0.$$

By simple modification of (1.12), we get

$$(J_{\psi}f)(b,a) = (f * \psi)\left(\frac{b}{a}\right), a > 0.$$

From (1.3) and (1.4) the continuous Fourier-Jacobi wavelet transform of a function $f \in L^1(\mu)$ can be written in the form

$$(J_{\psi}f)(b,a) = (f * \psi) \left(\frac{b}{a}\right)$$

$$\Rightarrow j_{\mu} \left[(J_{\psi}f)(b,a) \right] = j_{\mu} \left[(f * \psi) \left(\frac{b}{a}\right) \right]$$

$$\Rightarrow j_{\mu} \left[(J_{\psi}f)(b,a) \right] = (j_{\mu}f) \left(\frac{b}{a}\right) (j_{\mu}\psi) \left(\frac{b}{a}\right)$$

$$\Rightarrow \left[(J_{\psi}f)(b,a) \right] = j_{\mu}^{-1} \left[(j_{\mu}f) \left(\frac{b}{a}\right) (j_{\mu}\psi) \left(\frac{b}{a}\right) \right]$$

(1.13)
$$\Rightarrow \left[(J_{\psi}f)(b,a) \right] = \int_{0}^{\infty} \varphi_{\lambda}(b) (j_{\mu}f)(a,\lambda) (j_{\mu}\psi) (\lambda) d\nu(\lambda) d\nu(\lambda) d\mu(\lambda) d\mu(\lambda$$

Now we state that the Parseval formula of the Fourier-Jacobi wavelet transform from [5],

(1.14)
$$\int_0^\infty (J_{\psi}f)(b,a)\overline{(J_{\psi}g)(b,a)}\frac{d\mu(a)d\mu(b)}{a} = C_{\psi}\langle f,g\rangle,$$

for $f \in L^2(\mu)$ and $g \in L^2(\mu)$.

Now, we also state from [6] which is useful for our approximation results.

Theorem 1.1. Suppose that

1. $M_n(x) \ge 0, 0 < x < \infty$. 2. $\int_0^\infty M_n(x) d\mu(x) = 1, n = 0, 1, 2, 3, \dots$

3. $\lim_{n\to\infty} \int_{\delta}^{\infty} M_n(x) d\mu(x) = 0$, for each $\delta > 0$.

4.
$$\phi(x) \in L^{\infty}(\mu)$$
.

5. ϕ is continuous at $x_0, x_0 \in [x - \delta, x + \delta]$ and $\delta > 0$.

Then $\lim_{n\to\infty} (\phi * M_n) (x_0) = \phi(x_0).$

Corollary 1.1. With the same assumptions on $M_n(x)$, if $f(x) \in L^{\infty}(\mu)$ then $\lim_{n\to\infty} \|f * M_n - f\|_1 = 0.$

In this paper, Motivated from [4] we defined convolution product for Bessel wavelet transform and study some of its properties.

2. The Bessel Wavelet Convolution Product

In this section, using properties (1.5), (??) and (1.11), we formally define the convolution product for Fourier-Jacobi wavelet transform by the relation

(2.1)
$$J_{\psi}(f \otimes g)(b, a) = (J_{\psi}f)(b, a) (J_{\psi}g)(b, a).$$

And investigate its boundedness and approximation properties. This in turn implies that the product of two Fourier-Jacobi wavelet transform could be wavelet transform under certain conditions.

Theorem 2.1. Let $f, g, \psi \in L^1(\mu)$ and $j_{\mu}(\psi)(\omega) \neq 0$. Then the Fourier-Jacobi avelet convolution can be written in the form

$$(f \otimes g)(z) = \int_0^\infty (\tau_{z,a} f)(y) g(y) d\mu(y),$$

where

$$(\tau_{z,a}f)(y) = \int_0^\infty f(x) K_a(x, y, z) d\mu(x),$$

(2.2)

$$K_{a}(x,y,z) = \int_{0}^{\infty} \int_{0}^{\infty} \varphi_{x}(t)\varphi_{y}(\xi) \left(j_{\mu}\psi\right) \left(at\right) \left(j_{\mu}\psi\right) \left(a\xi\right)L_{a}(t,\xi,z)d\mu(\xi)d\mu(t),$$
$$L_{a}(t,\xi,z) = \int_{0}^{\infty} \varphi_{\lambda}(t)\varphi_{\lambda}(\xi)Q_{a}(\lambda,z)d\nu(\lambda),$$

and

(2.3)
$$Q_a(\lambda, z) = \int_0^\infty \frac{\varphi_\lambda(\omega)\varphi_\lambda(z)}{(j_\mu\psi)(a\omega)}d\nu(\omega).$$

Proof. From (1.13) we have

(2.4)
$$j_{\mu}\left[\left(J_{\psi}f\right)\left(b,a\right)\right]\left(\omega\right) = \left(j_{\mu}f\right)\left(\lambda\right)\left(j_{\mu}\psi\right)\left(a\lambda\right)$$

Using (2.1) and (2.4), we get

$$j_{\mu} \left[J_{\psi} \left(f \otimes g \right) (b, a) \right] (\omega) = j_{\mu} \left[(J_{\psi} f) (b, a) \left(J_{\psi} g \right) (b, a) \right] (\omega)$$

= $j_{\mu} \left[j_{\mu}^{-1} \left((j_{\mu} f) (\cdot) (j_{\mu} \psi) (a, \cdot) \right) j_{\mu}^{-1} \left((j_{\mu} g) (\cdot) (j_{\mu} \psi) (a, \cdot) \right) \right] (\omega).$

By property (1.7) of the Fourier-Jacobi convolution, we have

$$j_{\mu}\left[J_{\psi}\left(f\otimes g\right)\left(b,a\right)\right]\left(\omega\right) = \left[\left(j_{\mu}\psi\right)\left(a,\cdot\right)\left(j_{\mu}f\right)\left(a\right)*\left(j_{\mu}\psi\right)\left(a,\cdot\right)\left(j_{\mu}g\right)\left(\cdot\right)\right]\left(\omega\right).$$

Therefore by (2.4), we get

(2.5)
$$(j_{\mu}\psi)(a\omega)j_{\mu}(f\otimes g)(\omega) = [(j_{\mu}\psi)(a,\cdot)(j_{\mu}f)(a)*(j_{\mu}\psi)(a,\cdot)(j_{\mu}g)(\cdot)](\omega).$$

This gives the relation between the Fourier-Jacobi wavelet transform convolution and Fourier-Jacobi transformation convolution.

Let us set

$$F_{a} = (j_{\mu}\psi) (a, \cdot) (j_{\mu}f) (\cdot).$$

$$G_{a} = (j_{\mu}\psi) (a, \cdot) (j_{\mu}g) (\cdot).$$

Then by (1.3) and (1.4), we get

$$(2.6) \qquad (j_{\mu}\psi) (a\omega)j_{\mu} (f \otimes g) (\omega) \\ = \int_{0}^{\infty} (\tau_{\omega}G_{a}) (\eta)d\mu(\eta) \\ = \int_{0}^{\infty} F_{a}(\eta) \left\{ \int_{0}^{\infty} K(\omega,\eta,\xi)G_{a}(\xi)d\mu(\xi) \right\} d\mu(\eta) \\ = \int_{0}^{\infty} \int_{0}^{\infty} F_{a}(\eta)G_{a}(\xi)K(\omega,\eta,\xi)d\mu(\xi)d\mu(\eta) \\ = \int_{0}^{\infty} \int_{0}^{\infty} F_{a}(\eta)G_{a}(\xi) \left(\int_{0}^{\infty} \varphi_{\lambda}(\omega)\varphi_{\lambda}(\eta)\varphi_{\lambda}(\xi)d\nu(\lambda) \right) d\mu(\xi)d\mu(\eta) \\ = \int_{0}^{\infty} \left(\int_{0}^{\infty} F_{a}(\eta)\varphi_{\lambda}(\eta)d\mu(\eta) \right) \left(\int_{0}^{\infty} G_{a}(\xi)\varphi_{\lambda}(\xi)d\mu(\xi) \right) \varphi_{\lambda}(\omega)d\nu(\lambda) \\ = \int_{0}^{\infty} (j_{\mu}F_{a}) (\lambda) (j_{\mu}G_{a}) (\lambda)\varphi_{\lambda}(\omega)d\nu(\lambda).$$

Therefore by the inversion formula of the Fourier-Jacobi wavelet transform (1.2), we have

$$\begin{split} j_{\mu}\left(f\otimes g\right)\left(z\right) &= \frac{1}{\left(j_{\mu}\psi\right)\left(a\omega\right)} \int_{0}^{\infty} \left(j_{\mu}F_{a}\right)\left(\lambda\right)\left(j_{\mu}G_{a}\right)\left(\lambda\right)\varphi_{\lambda}(\omega)d\nu(\lambda) \\ \Rightarrow \left(f\otimes g\right)\left(z\right) &= j_{\mu}^{-1} \left[\frac{\varphi_{\lambda}(z)}{\left(j_{\mu}\psi\right)\left(a\omega\right)} \int_{0}^{\infty} \left(j_{\mu}F_{a}\right)\left(\lambda\right)\left(j_{\mu}G_{a}\right)\left(\lambda\right)\varphi_{\lambda}(\omega)d\nu(\lambda)\right] \\ &= \int_{0}^{\infty} \left(j_{\mu}F_{a}\right)\left(\lambda\right)\left(j_{\mu}G_{a}\right)\left(\lambda\right)\left(\int_{0}^{\infty} \frac{\varphi_{\lambda}(z)\varphi_{\lambda}(\omega)}{\left(j_{\mu}\psi\right)\left(a\omega\right)}d\nu(\omega)\right)d\nu(\lambda) \\ &= \int_{0}^{\infty} \left(j_{\mu}F_{a}\right)\left(\lambda\right)\left(j_{\mu}G_{a}\right)\left(\lambda\right)Q_{a}(\lambda,z)d\nu(\lambda), \end{split}$$

where $Q_a(\lambda, z)$ is given by (2.3).

Then by the definition of the Fourier-Jacobi transformation (1.1)

$$(f \otimes g)(z)$$

$$= \int_{0}^{\infty} \int_{0}^{\infty} \varphi_{\lambda}(t) (j_{\mu}\psi) (at) (j_{\mu}f)(t) d\mu(t)$$

$$\left(\int_{0}^{\infty} \varphi_{\lambda}(\xi) (j_{\mu}\psi) (a\xi) (j_{\mu}g)(\xi) d\mu(\xi)\right) Q_{a}(\lambda, z) d\nu(\lambda)$$

$$= \int_{0}^{\infty} \int_{0}^{\infty} (j_{\mu}\psi) (at) (j_{\mu}\psi) (a\xi) (j_{\mu}f)(t) (j_{\mu}g)(\xi)$$

$$\left(\int_{0}^{\infty} \varphi_{\lambda}(t)\varphi_{\lambda}(\xi)Q_{a}(\lambda, z) d\nu(\lambda)\right) d\mu(\xi) d\mu(t)$$

$$= \int_{0}^{\infty} \int_{0}^{\infty} (j_{\mu}\psi) (at) (j_{\mu}\psi) (a\xi) (j_{\mu}f)(t) (j_{\mu}g) (\xi) L_{a}(t, \xi, z) d\mu(\xi) d\mu(t).$$

Therefore,

$$(f \otimes g)(z)$$

$$= \int_{0}^{\infty} \int_{0}^{\infty} (j_{\mu}\psi) (at) (j_{\mu}\psi) (a\xi) \left(\int_{0}^{\infty} \varphi_{x}(t)f(x)d\mu(x) \int_{0}^{\infty} \varphi_{y}(\xi)g(y)d\mu(y) \right)$$

$$L_{a}(t,\xi,z)d\mu(\xi)d\mu(t)$$

$$= \int_{0}^{\infty} \int_{0}^{\infty} f(x)g(y) \left(\int_{0}^{\infty} \int_{0}^{\infty} \varphi_{x}(t)\varphi_{y}(\xi) (j_{\mu}\psi) (at) \right)$$

$$(j_{\mu}\psi) (a\xi)L_{a}(t,\xi,z)d\mu(\xi)d\mu(t) d\mu(x)d\mu(y)$$

$$= \int_{0}^{\infty} \int_{0}^{\infty} f(x)g(y)K_{a}(x,y,z)d\mu(x)d\mu(y),$$

where

$$K_a(x,y,z) = \int_0^\infty \int_0^\infty \varphi_x(t)\varphi_y(\xi) \left(j_\mu\psi\right)(at) \left(j_\mu\psi\right)(a\xi)L_a(t,\xi,z)d\mu(\xi)d\mu(t).$$

If we define the generalized translation by

$$F_a(z,y) = (\tau_{z,a}f)(y) = \int_0^\infty f(x)K_a(x,y,z)d\mu(x),$$

then

$$(f \otimes g)(z) = \int_0^\infty (\tau_{z,a} f)(y) g(y) d\mu(y).$$

Theorem 2.2. Assume that $\inf_{\omega} | (j_{\mu}\psi) (a\omega) | = B_{\psi}(a) > 0$. Then $| K_{a}(x, y, z) | \leq \frac{a^{-2}}{B_{\psi}(a)} [||\psi||_{1,\mu}]^{2}$.

Proof. From (2.2) we have

$$\begin{split} &K_{a}(x,y,z) \\ = \int_{0}^{\infty} \int_{0}^{\infty} \varphi_{x}(t)\varphi_{y}(\xi) \left(j_{\mu}\psi\right) \left(at\right) \left(j_{\mu}\psi\right) \left(a\xi\right) L_{a}(t,\xi,z)d\mu(\xi)d\mu(t) \\ &= \int_{0}^{\infty} \int_{0}^{\infty} \varphi_{x}(t)\varphi_{y}(\xi) \left(j_{\mu}\psi\right) \left(at\right) \left(j_{\mu}\psi\right) \left(a\xi\right) \\ & \left(\int_{0}^{\infty} \varphi_{\lambda}(t)\varphi_{\lambda}(\xi)Q_{a}(\lambda,z)d\nu(\lambda)\right) d\mu(\xi)d\mu(t) \\ &= \int_{0}^{\infty} \left(\int_{0}^{\infty} \varphi_{x}(t)\varphi_{\lambda}(t) \left(j_{\mu}\psi\right) \left(at\right)d\mu(t)\right) \\ & \left(\int_{0}^{\infty} \varphi_{y}(\xi)\varphi_{\lambda}(\xi) \left(j_{\mu}\psi\right) \left(a\xi\right)d\mu(\xi)\right) Q_{a}(\lambda,z)d\nu(\lambda) \\ &= \int_{0}^{\infty} j_{\mu} \left[\varphi_{x}(t) \left(j_{\mu}\psi\right) \left(at\right)\right] \left(\lambda\right)j_{\mu} \left[\varphi_{y}(\xi) \left(j_{\mu}\psi\right) \left(a\xi\right)\right] \left(\lambda\right)Q_{a}(\lambda,z)d\nu(\lambda) \\ &= \int_{0}^{\infty} j_{\mu} \left[\varphi_{x}(t) \left(j_{\mu}\psi\right) \left(at\right) * \varphi_{y}(\xi) \left(j_{\mu}\psi\right) \left(a\xi\right)\right] \left(\lambda\right)\int_{0}^{\infty} \frac{\varphi_{\lambda}(\omega)\varphi_{\lambda}(z)}{\left(j_{\mu}\psi\right) \left(a\omega\right)}d\nu(\omega)d\nu(\lambda) \\ &= \int_{0}^{\infty} \left[\varphi_{x}(\cdot) \left(j_{\mu}\psi\right) \left(a\cdot\right) * \varphi_{y}(\cdot) \left(j_{\mu}\psi\right) \left(a\cdot\right)\right] \left(\lambda\right)\varphi_{\lambda}(\omega) \left[\left(j_{\mu}\psi\right) \left(a\omega\right)\right]^{-1} d\nu(\omega). \end{split}$$

Now, set $F_a(t) = \varphi_\lambda(t)(j_\mu\psi)(at)$ and assume that $\inf_\omega |(j_\mu\psi)(a\omega)| = B_\psi(a) > 0$. Since $|j_\mu(z)| \le 1$, we have

$$|K_a(x,y,z)| \leq \frac{1}{B_{\psi}(a)} \int_0^{\infty} |(F_a * F_a)| d\mu(\omega).$$

Using (1.6), we have

$$| K_{a}(x, y, z) | \leq \frac{a^{-2}}{B_{\psi}(a)} [||\psi||_{1,\mu}]^{2}$$

$$\leq \frac{1}{B_{\psi}(a)} \left[\int_{0}^{\infty} |\varphi_{\lambda}(x)(j_{\mu}\psi)(a\lambda)d\mu(\lambda)| \right]^{2}$$

$$\leq \frac{1}{B_{\psi}(a)} \left[\int_{0}^{\infty} |\psi(a\lambda))d\mu(\lambda)| \right]^{2}$$

$$\leq \frac{1}{B_{\psi}(a)} [||\psi_{a}||_{1,\mu}]^{2}$$

$$\leq \frac{a^{-2}}{B_{\psi}(a)} [||\psi||_{1,\mu}]^{2}.$$

In order to obtain Plancharal formula for the Fourier-Jacobi wavelet transform, we define the space

$$W^{2}(I \times I) = \left\{ f(b,a) : \|f\|_{W^{2}} = \left(\int_{0}^{\infty} \int_{0}^{\infty} |f(b,a)|^{2} \frac{d\mu(a)d\mu(b)}{a^{2}} \right)^{2} < \infty \right\}.$$

Theorem 2.3. Let $f \in L^2(\mu)$ and let $g \in L^2(\mu)$. Then $\|(j_{\psi}f)(b,a)\|_{\omega^2} = \sqrt{C_{\psi}}\|f\|_{2,\mu}.$

Proof. Putting f = g in (1.14), we prove the above theorem.

Theorem 2.4. Let $f, g \in L^2(\mu)$ and let $\psi \in L^2(\mu)$ be a Bessel wavelet which satisfies $C_{\psi} = \int_0^{\infty} |(j_{\psi}f)(b,a)|^2 \frac{d\mu(a)}{a} > 0$. Then $\|f \otimes g\|_{2,\mu} \leq \|f\|_{2,\mu} \|g\|_{2,\mu} \|\psi\|_{2,\mu}$.

Proof. Using theorem 2.3 and (2.1),

(2.7)

$$\begin{aligned}
\sqrt{C_{\psi}} \| f \otimes g \|_{2,\mu} &= \| J_{\psi} \left(f \otimes g \right) \|_{W^{2}} \\
&= \| J_{\psi} f(b,a) J_{\psi} g(b,a) \|_{W^{2}} \\
&= \left(\int_{0}^{\infty} \int_{0}^{\infty} | J_{\psi} f(b,a) J_{\psi} g(b,a) |^{2} \frac{d\mu(a) d\mu(b)}{a^{2}} \right)^{\frac{1}{2}}.
\end{aligned}$$

From (1.13) and (2.3), we have

(2.8)
$$|J_{\psi}g(b,a)| \leq |(g(a\cdot) * \psi(\cdot))(\frac{b}{a})| \leq ||g||_{2,\mu} ||\psi||_{2,\mu}$$

Applying (2.7) in (2.8), we have

$$\sqrt{C_{\psi}} \| f \otimes g \|_{2,\mu} \le \| g \|_{2,\mu} \| \psi \|_{2,\mu} \left(\int_0^\infty \int_0^\infty | J_{\psi} f(b,a) J_{\psi} g(b,a) |^2 \frac{d\mu(a)d\mu(b)}{a^2} \right)^{\frac{1}{2}}$$

From 2.3, we obtain

$$\sqrt{C_{\psi}} \| f \otimes g \|_{2,\mu} \le \| g \|_{2,\mu} \| \psi \|_{2,\mu} \sqrt{C_{\psi}} \| f \|_{2,\mu}$$

Hence

$$||f \otimes g||_{2,\mu} \le ||g||_{2,\mu} ||\psi||_{2,\mu} ||f||_{2,\mu}$$

3. WEIGHTED SOBOLEV SPACE

In this section we study certain properties of the Fourier-Jacobi wavelet convolution on a Weighted Sobolev space defined below:

Definition 3.1. The Zemanian space $H(\sigma)$, is the set of all infinitely differentiable functions ϕ on $(-\infty, \infty)$ such that

$$\begin{split} \gamma_{m,k}^{\sigma}(\phi) &= \sup_{x \in (0,\infty)} | x^m \left(x^{-1} \frac{d}{dx} \right)^k x^{-\sigma^2} \phi(x) | < \infty, \\ \text{for all } m, k \in N_0. \text{ Then } f \in H'(\sigma) \text{ is defined by the following way:} \\ \langle f, \phi \rangle &= \int_0^\infty f(x) \phi(x) dx, \phi \in H(\sigma), \end{split}$$

Definition 3.2. Let $k(\omega)$ be an arbitrary weight function. Then a function $\Phi \in [H(\sigma)]'$ is said to belong to the weighted sobolev space $G_k^p(\sigma)$ for $1 \le p < \infty$, if it satisfies

(3.1)
$$\|\Phi\|_{p,\sigma,\mu,k} = \left(\int_{-\infty}^{\infty} |k(\omega)(H(\phi))(\omega)|^p d\mu(w)\right)^{\frac{1}{p}},$$

where a > 0 and $\Phi \in L^p(\sigma)$.

In what follows we shall assume that $k(\omega) = |(j_{\mu}\psi)(a\omega)|$ for fixed a > 0.

Theorem 3.1. Let $f \in G_k^1(\sigma)$ and $g \in G_k^1(\sigma)$, $p \ge 1$. Then $\|f \otimes g\|_{p,\sigma,\mu,k} = (\|f\|_{1,\sigma,\mu,k} \|g\|_{p,\sigma,\mu,k})$.

Proof. In view of (3.1) we have

$$\|f \otimes g\|_{p,\sigma,\mu,k} = \left(\int_{-\infty}^{\infty} |k(\omega)j_{\mu}(f \otimes g)(\omega)|^{p} d\mu(\omega)\right)^{\frac{1}{p}}$$

By (1.8) and (1.11) we have

$$\begin{split} \|f \otimes g\|_{p,\sigma,\mu,k} &\leq \|F_a(\omega)\|_{1,\sigma,\mu,k} \|G_a(\omega)\|_{p,\sigma,\mu,k} \\ &\leq \|(j_\mu\psi)(a\omega)(j_\mu f)(\omega)\|_{1,\sigma,\mu,k} \|(j_\mu\psi)(a\omega)(j_\mu g)(\omega)\|_{p,\sigma,\mu,k}. \end{split}$$

From Definition 3.2, we have

$$\|f \otimes g\|_{p,\sigma,\mu,k} = \|f\|_{1,\sigma,\mu,k} \|g\|_{p,\sigma,\mu,k}.$$

Theorem 3.2. Let $f \in G_k^p(\sigma)$ and $g \in G_k^q(\sigma)$, with $1 \le p, q < \infty$ and $\frac{1}{r} = \frac{1}{p} + \frac{1}{q} - 1$. Then

(3.2)
$$||f \otimes g||_{r,\sigma,\mu,k} = ||f||_{p,\sigma,\mu,k} ||g||_{q,\sigma,\mu,k}.$$

Proof. Using (1.10) and (3.1) we get (3.2).

Approximation properties of the Fourier-Jacobi wavelet convolution are given next.

Theorem 3.3. Let $\psi_{n,a}(\omega) = \psi_n(a\omega), n = 0, 1, 2, \dots$ be the sequence of basic wavelet functions such that

1.
$$\psi_{n,a}(\omega) \ge 0, 0 < \omega < \infty.$$

2. $\int_0^\infty \psi_{n,a}(\omega) d\mu(\omega) = 1.$
3. $\lim_{n\to\infty} \int_{\varepsilon}^\infty \psi_{n,a}(\omega) d\mu(\omega) = 0$, for each $\varepsilon > 0.$
4. $(j_\mu \psi_{n,a}) (\omega) \in L^1_\mu(I).$
5. $j^{-1}_\mu [(j_\mu \psi_{n,a}) (\omega)] = \psi_{n,a}(\omega).$

Then

$$\lim_{n \to \infty} \|f(b) - (J_{\psi_n} f)(b, a)\|_{1,\mu} = 0.$$

Proof. Refer in [6].

Theorem 3.4. Let $k_n(\omega) = (j_\mu \psi) (a\omega) (j_\mu g_n) (\omega)$ for fixed $a > 0, n \in N$, and $\phi(\omega) = (j_\mu \psi) (a\omega) (j_\mu f) (\omega)$ satisfy:

1.
$$k_n(\omega) \ge 0, 0 < \omega < \infty$$
.
2. $\int_{-\infty}^{\infty} k_n(\omega) d\mu(\omega) = 1, \omega = 0, 1, 2, 3, \dots$.
3. $\lim_{n\to\infty} \int_{\delta}^{\infty} k_n(\omega) d\mu(\omega) = 0$, for each $\delta > 0$.
4. $\phi(\omega) \in L^{\infty}(\mu)$.
5. ϕ is continuous at ω_0 and $(j_{\mu}\psi) (a\omega_0) \ne 0$ for $\omega_0 \in [\omega - \delta, \omega + \delta], \delta > 0$.

Then

2266

$$\lim_{n\to\infty} j_{\mu} \left(f \otimes g_n \right) \left(\omega_0 \right) = \left(j_{\mu} f \right) \left(\omega_0 \right).$$

Proof. In view of relation (2.5) we have

$$(j_{\mu}\psi)(a\omega)j_{\mu}(f\otimes g_n)(\omega) = (\phi * k_n)(\omega).$$

Now, using Theorem 1.1, we have

$$\lim_{n \to \infty} (j_{\mu}\psi) (a\omega_{0})j_{\mu} (f \otimes g_{n}) (\omega_{0}) = \lim_{n \to \infty} (\phi * k_{n}) (\omega_{0})$$
$$= \phi(\omega_{0})$$
$$= (j_{\mu}\psi) (a\omega_{0}) (j_{\mu}f) (\omega_{0}).$$

This implies that

$$\lim_{n\to\infty} j_{\mu} \left(f \otimes g_n \right) \left(\omega_0 \right) = \left(j_{\mu} f \right) \left(\omega_0 \right).$$

Theorem 3.5. Let $f, \psi \in L^2(\mu)$ and $k_n(\omega)$ be the same as Theorem 3.4, which satisfies all the properties of Theorem 3.3. Then

 $\lim_{n\to\infty} \| (j_{\mu}\psi) (a\omega_0) (j_{\mu}f) (\omega_0) - (j_{\mu}\psi) (a\omega_0) j_{\mu} (f\otimes g_n) (\omega_0) \|_{1,\mu} = 0.$

Proof. Using (2.5), we have

$$\lim_{n \to \infty} \| (j_{\mu}\psi) (a\omega_{0}) (j_{\mu}f) (\omega_{0}) - (j_{\mu}\psi) (a\omega_{0})j_{\mu} (f \otimes g_{n}) (\omega_{0}) \|_{1,\mu}$$

$$= \lim_{n \to \infty} \| (j_{\mu}\psi) (a\omega_{0}) (j_{\mu}f) (\omega_{0}) - [(j_{\mu}\psi) (a \cdot) (j_{\mu}f) (\cdot) \\
+ (j_{\mu}\psi) (a \cdot) (j_{\mu}g_{n}) (\cdot)] (\omega_{0}) \|_{1,\mu}$$

$$= \lim_{n \to \infty} \| \psi(\omega_{0}) - (\psi * k_{n}) (\omega_{0}) \|_{1,\mu}.$$

Since $f, \psi_a \in L^2(\mu), \psi(\omega) = (j_\mu f) (j_\mu \psi_a) = j_\mu (f * \psi_a) \in L^1(\mu)$. Therefore using the tools of [6], we have

$$\lim_{n\to\infty} \| (j_{\mu}\psi) (a\omega_0) (j_{\mu}f) (\omega_0) - (j_{\mu}\psi) (a\omega_0) j_{\mu} (f\otimes g_n) (\omega_0) \|_{1,\mu} = 0.$$

References

- [1] N. BEN SALEM, A. DACHRAOUI: Sobolev Type Spaces Associated with Jacobi Differential Operators, Integral Transforms and Special Functions, 9(3) (2000), 163-184.
- [2] M. FLENSTED-JENSEN, T. KOORNEINDER: *The convolution structure for Jacobi function expansions*, Ark. Math, **11** (1973), 245-262.
- [3] C. P. PANDEY, PRANAMI PHUKAN: *Inversion Formula for Fourier Jacobi Wavelet Transform*, International Journal of Scientific and Technology Research **8** (2019), 3344-3329.
- [4] R. S. PATHAK: The Wavelet Transform, Atlantis Press/Word Scientific, 2009.
- [5] R. S. PATHAK, M. M. DIXIT: Continuous and Discrete Bessel Wavelet Transforms, J. Comput. Appl. Math., 160(1-2) (2003), 241-250.
- [6] R. L. VAN DE WATERING: Variation diminishing Fourier-Jacobi Transforms, SIAM J. Math. Anel. 6 (1975), 774-783.
- [7] A. H. ZEMANIAN: *Generalized integral Transformations*, Interscience Publishers, New York, 1968.

DEPARTMENT OF MATHEMATICS

North Eastern Regional Institute of Science and Technology Nirjuli, Papumpare, Arunachal Pradesh, 791109 India.

Email address: drcppandey@gmail.com

DEPARTMENT OF MATHEMATICS

NORTH EASTERN REGIONAL INSTITUTE OF SCIENCE AND TECHNOLOGY NIRJULI, PAPUMPARE, ARUNACHAL PRADESH, 791109 INDIA. *Email address*: pranamiphukan940gmail.com

DEPARTMENT OF MATHEMATICS NORTH EASTERN REGIONAL INSTITUTE OF SCIENCE AND TECHNOLOGY NIRJULI, PAPUMPARE, ARUNACHAL PRADESH, 791109 INDIA. *Email address*: mopiado007@gmail.com