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STABILITY OF NONLINEAR FRACTIONAL DIFFERENTIAL EQUATIONS IN
THE FRAME OF ATANGANA-BALEANU OPERATOR

A. George Maria Selvam1 and S. Britto Jacob

ABSTRACT. Theory of fractional calculus with singular and non-singular ker-
nels is pioneering and has garnered significant interest recently. Fair amount
of literature on the qualitative properties of fractional differential and integral
equations involving different types of operators is available. This manuscript
aims to analyze the stability of a class of nonlinear fractional differential equa-
tion in terms of Atangana-Baleanu-Caputo operator. Sufficient conditions for
the existence and uniqueness of solutions are obtained by employing classical
fixed point theorems and Banach contraction principle. Also adequate con-
ditions for Hyers-Ulam stability are established. To substantiate our analytic
results, an example is provided with numerical simulation.

1. INTRODUCTION

The concept of fractional derivative emerged in 1695 in a dialogue between
G.A. de L’Hopital and G.W. Leibniz. In the field of applied sciences as well as
in pure mathematics, theory and applications of Fractional Calculus (FC) ex-
perienced an exponential growth in the past three decades. To describe the
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phenomena involving long time memory effects and nonlocality, FC is an ex-
cellent tool. An extensive amount of research articles, monographs, and books
on FC have been published [1–5]. Nowadays, one can identify the progress of
FC in both theoretical front and application areas such as physics, engineering,
biology, medicine, economy and finance [2].

There are different types of Fractional Derivatives (FD) such as Riemann-
Liouville FD [6], the generalized FD [7], the conformable FD [8], the non
conformable FD [9], the Caputo-Fabrizio FD [10], the Caputo FD [11], the
Hadamard and Hilfer FD [12], the Atangana-Baleanu FD [13] and others. In
2015 [14], Caputo and Fabrizio proposed a new FD which does not contain
any singular kernel. Also in 2016 [15], Atangana-Baleanu established another
form of FD, where they considered Mittag-Leffler function as a kernel. They
introduced the Atangana-Baleanu Derivative(ABD) based on the approaches of
Caputo and Riemann-Liouville, where the complexity of the differentiation is
associated with the generalized Mittag-Leffler function. The new fractional de-
rivative contains additional encouraging properties in comparison to the former
derivatives. For instance, they have shown that it can represent substance het-
erogeneities and configurations with different scales, which clearly cannot be
overseen with the prominent local theories and also the known fractional deriv-
ative [16].

Nowadays, ample research on analysis of Fractional Order Differential Equa-
tion (FODE) using ABD is seen in literature. Jarad et.al [17] analyzed the ODE
with ABD. Fractional integro-differential equations with numerical results using
ABD is studied by Ravichandran et.al [18]. Koca [19] with ABD analyzed the
coupled fractional differential equations numerically. Yadav et.al [20] discussed
about the ABD and their applications numerically by employing approximation
methods.

The qualitative properties of the solutions of differential equations with frac-
tional order differential operators appear to be very important. Various types
of stability analysis of FODE using different types of derivatives have been ana-
lyzed by many researchers. The main objective of this manuscript is to establish
results for the solutions of a new class of FODE to be Hyers-Ulam stable with
Atangana-Baleanu derivative. The analysis is based on fixed points theorems.
The structure of this manuscript is as follows: Section 2, recalls basic definitions
and introduces the hypothesis, proposition and theorems which are necessary
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to establish the main results. In section 3, the existence and uniqueness of the
solution of FODE is derived. Hyers-Ulam stability of the FODE is discussed in
section 4. In section 5, suitable example is provided with numerical illustration
and conclusion is presented in section 6.

2. PREREQUISITES

This section presents the basic definitions and theorems which are needed to
obtain the main results.

Definition 2.1. [18] Let L = [ω, T ], L′ = (ω, T ) ⊂ R and G(x, y) be the Banach
space of all continuous functions from L to R with the norm

(2.1) ‖p‖∞ = sup {|p(ω)| : ω ∈ L} .

Definition 2.2. [18] The AB derivative in Riemann-Liouville sense is

(2.2)
(ABR
0 Dβp

)
(ω) =

Υ(β)

1− β
d

dt

(∫ t

0

p(s)Eβ

[
−β (ω − s)β

1− β

]
ds

)
.

Here β ∈ [0, 1], p′ ∈ G′(x, y) and y > x.

Definition 2.3. [18] The AB derivative in Caputo sense is

(2.3)
(ABC
0 Dβp

)
(ω) =

Υ(β)

1− β

∫ t

0

p′(s)Eβ

[
−β (ω − s)β

1− β

]
ds.

Here β ∈ [0, 1], p′ ∈ G′(x, y) and y > x. The corresponding fractional integral is(AB
0 Iβp

)
(ω) =

1− β
Υ(β)

p(ω) +
β

Υ(β)

(
0I
βp
)

(ω),

where
(
0I
βp
)

(ω) =
1

Γ(β)

∫ t
0
(ω − s)β−1ω(s)ds

Theorem 2.1. Arzela Fixed Point Theorem. Let Ω be a compact Hausdorff metric
space. Then Λ ⊂ K(Ω) is said to be relatively compact whenever Λ is equicontinu-
ous and bounded uniformly.

Theorem 2.2. Krasnoselskii Fixed Point Theorem. Let N be a bounded closed
convex subset on a real Banach space X, and let R1 and R2 be two operators on N.
If R1 is contraction and R2 is completely continuous. Then either

(a) There is a p ∈ N such that R1p+R2p = p; or

(b) The set ε =

{
P ∈ X : ρR1

(
y

ρ

)
+ ρR2(y)

}
is unbounded for ρ ∈ (0, 1).
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In this present article, we analyze the following nonlinear fractional differen-
tial equation with Atangana-Baleanu-Caputo operator

Dβ[p(ω)− S(ω, p(ω))] = g(ω, p(ω))

p(0) = p0, 0 < β < 1.
(2.4)

Let p(0) = p0 and p ∈ Ω[0, 1] is a solution of (2.4), then there exists, g ∈
[Ω[0, 1]× L× L,L] , where p ∈ [0, 1] and

p(ω) = p0 − S(0, p(0)) + S(ω, p(ω)) +ABC Iβg(ω, p(ω))

is satisfied.
Let us introduce the following hypothesis which are needed to establish the

existence results.

(F1) If p ∈ Ω[0, 1], then there exist an continuous function g ∈ [Ω[0, 1]× L× L,L]

with constants ξ1, ξ2 and ξ such that

‖g(ω, y1)− g(ω, y2)‖ ≤ ξ1(‖y1 − y2‖), ∀y1, y2 ∈ Y,

ξ2 = maxω∈L ‖g(ω, 0)‖ and ξ = max {ξ1, ξ2} . Here Y = Ω[L,X] is contin-
uous with respect to L on the Banach spaces X.

(F2) There is a continuous function S ∈ (Ω[0, 1]× L× L,L) with constants
%1, %2 and % such that

‖S(ω, y1)− S(ω, y2)‖ ≤ %1(‖y1 − y2‖), ∀y1, y2 ∈ Y,

%2 = maxω∈L ‖S(ω, 0)‖ and % = max {%1, %2} .
(F3) For each η, let Bη ∈ {p ∈ Y : ‖p‖ ≤ η} ⊆ Y, hence Bη is closed and

bounded. Also it is a convex subset in (Ω[0, 1], E), where η ≥ (1− 2P )−1

[‖p0‖+ P ] and consider P = max {%, ξ} and P <
1

2
.

(F4) Suppose that e, f ∈ % ∗ (L,R+) such that
(i) |g(ω, y)| ≤ e [ζ(‖y‖)] for each (ω, y) ∈ L× E;

(ii) |k(ω, y)| ≤ f [ζ(‖y‖)] for each (ω, y) ∈ L× E.
Here ζ : [0,∞]→ (0,∞) is non-decreasing and continuous function and
E is measurable function.

(F5) Suppose that ξ∗ > 0 such that

(1− %− %∗)ξ∗
[(φ+ %∗) + (%e+ %f ∗) (ζξ∗)]

> 1.
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Proposition 2.1. For 0 ≤ β ≤ 1,(ABIβ (ABCDβp
))

(ω) = p(ω)− p(0)Eβ(ρωβ)− β

1− β
p(0)Eβ,β+1(ρω

β)

= p(ω)− p(0).

Definition 2.4. If p(0) = p0 and p ∈ Ω[0, 1] is said to be a solution of (2.4), then
there exists g ∈ (Ω[0, 1]× L× L,L) , where g ∈ [0, 1] and

(2.5) p(ω) = p0 − S(0, p(0)) + S(ω, p(ω)) +AB Iβg(ω, p(ω))

is satisfied.

3. MAIN RESULTS

This section presents the existence and uniqueness results of (2.4).

Theorem 3.1. If p(ω) ∈ Ω[0, 1] such that
(
ABC
0 Dβ

)
[p(ω)− S(ω, p(ω))] ∈ Ω[0, 1].

Assume that F1 − F5 are satisfied. If S(0, p(0)) = g(0, p(0)) = 0 and

(
1− β
Υ(β)

+

β

Υ(β)Γ(β)

)
≤ 1, then (2.4) has a unique positive solution.

Proof. Let us prove that p(ω) satisfied (2.4) iff p(ω) satisfies (2.5)

p(ω) = p0 − S(0, p(0)) + S(ω, p(ω)) +AB
0 Iβg(ω, p(ω)).

Suppose p(ω) satisfy (2.4), then by using AB-Integral of (2.5), we have(AB
0 Iβ

(ABC
0 Dβ

)
[p(ω)− S(ω, p(ω))]

)
=AB

0 Iβg(ω, p(ω)).

Now, using proposition (2.1), we obtain

(3.1) p(ω)− S(ω, p(ω))− [p(0)− S(0, p(0))] =AB
0 Iβg(ω, p(ω)).

Since, p(0) = p0 and g(0, p(0)) = 0, (2.5) satisfied. Now, if p(ω) satisfy (2.5), then
taking g(0, p(0)) = 0, it is clear that p(0) = p0. In Riemann-Liouville sense to
apply the ABD in (2.5), we obtain(ABR

0 Dβp
)

(ω) = p0
(ABR
0 Dβ1

)
(ω) +

(ABR
0 Dβ

)
[S(ω, p(ω))− S(0, p(0))](ABR

0 Dβ1
)

(ω) +
(ABR
0 Dβ

(AB
0 Iβ

))
g(ω, p(ω)),
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which implies(ABR
0 Dβ

)
[p(ω)− S(ω, p(ω))] = [p0 − S(0, p(0))]

Υ(β)

1− β
Eβ

(
−β

1− β
ωβ
)

+g(ω, p(ω)).

Hence we obtain the result, by using Theorem 1 in [14].
Define the operator

R p(ω) = p0 − S(0, p(0)) + S(ω, p(ω)) +AB
0 Iβg[ω, p(ω)].

From F3, ‖p‖ < η and by proposition 2.1, we have

‖R p(ω)‖ ≤ ‖p0‖+ % ‖p‖+
1− β
Υ(β)

ξ1 ‖p‖+
1β

Υ(β)

[
ξ1(‖p‖)

(
0I
β
)

(ω)
]

≤ ‖p0‖+ P ‖p‖+ P

(
1− β
Υ(β)

+
1β

Υ(β)Γ(β)

)
‖p‖

≤ η(1− 2P ) + 2Pη

≤ η

‖Rp(ω)‖ ≤ η

Now to prove uniqueness:

‖Rp1(ω)−Rp2(ω)‖

≤
∥∥p0 + S(ω, p1(ω))− S(0, p1(0)) + AB

0 Iβg(ω, p1(ω))
∥∥

−
∥∥p0 + S(ω, p2(ω))− S(0, p2(0)) + AB

0 Iβg(ω, p2(ω))
∥∥

≤ % (‖p1 − p2‖) +
1− β
Υ(β)

[ξ ‖p1 − p2‖] +
1β

Υ(β)
[ξ ‖p1 − p2‖]

(
0I
β1
)

(ω)

≤ P ‖p1 − p2‖+ P

[
1− β
Υ(β)

+
1β

Υ(β)Γ(β)

]
‖p1 − p2‖

≤ 2P ‖p1 − p2‖

≤ ‖p1 − p2‖ .

Since P <
1

2
, we have ‖Rp1 −Rp2‖ ≤ l ‖p1 − p2‖ , where 0 < l < 1. Hence Rp(ω)

has an unique solution. �

Next, let us discuss the equation (2.4), with another fixed point theorem.

Theorem 3.2. Assume that F1−F5 are satisfied and q(ω2−ω1) = ξ ‖p(ω2)− p(ω1)‖ .
Hence (2.4), has a minimum of one solution.
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Proof. Let R1 and R2 defined on Bη0 , where η0 be an positive constant and p ∈
Bη0 as follows

(R1p)(ω) = p0 − S(0, p(0)) + S(ω, p(ω))

(R2p)(ω) = AB
0 Iβg(ω, p(ω)).

(3.2)

Clearly, p is a mild solution of (2.4), if the operators p = R1p+R2p has a solution
p ∈ Bη0 . Therefore, from the existence of (2.4) we define the constant η0, such
that R1, R2 has a fixed point on Bη0 .

The result is established in the following four Claims.

Claim - I: ‖R1p+R2p‖ ≤ η0 whenever p ∈ Bη0 .

For every p ∈ Bη0 , we have

‖(R1p)(ω) + (R2p)(ω)‖ ≤ ‖p0‖+ % ‖p‖+
1− β
Υ(β)

ξ1 ‖p‖+
1β

Υ(β)
(ξ1 ‖p‖)

(
0I
β
)

(ω)

≤ ‖p0‖+ P ‖p‖+ P

(
1− β
Υ(β)

+
1β

Υ(β)Γ(β)

)
‖p‖

≤ η(1− 2P ) + 2Pη

≤ η0.

Hence ‖R1p+R2p‖ ≤ η0, for every pair of p ∈ Bη0 .

Claim - II: R1 is contraction on Bη0 .

If for any p, p1 ∈ Bη0 , according to (3.2) and F3, we have

‖(R1p)(ω)− (R1p1)(ω)‖ ≤ ‖p(0)− p1(0)‖+ % ‖p− p1‖

≤ % ‖p− p1‖ ,

which implies that ‖R1p−R1p1‖ ≤ P. Since P <
1

2
. R1 is a contraction on Bη0 .

Claim - III: R2 is the operator which is completely continuous.
Let us show that R2 is continuous on Bη0 . For any pn, p ⊆ Bη0 , n = 1, 2, . . . , with
limn→∞ ‖pn − p‖ = 0. We get limn→∞ pn(ω) = p(ω), for ω ∈ [0, 1]. Thus by F1,

lim
n→∞

g(ω, pn(ω)) = g(ω, p(ω)) for ω ∈ [0, 1].

Hence

Supω∈[0,1] ‖g(ω, pn(ω))− g(ω, p(ω))‖ → 0 as n→∞.
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On other hand, for ω ∈ [0, 1],

‖(R2pn)(ω)− (R2p)(ω)‖

≤ 1− β
Υ(β)

Supω∈[0,1] ‖g(ω, pn(ω))− g(ω, p(ω))‖

− β

Υ(β)Γ(β)
Supω∈[0,1] ‖g(ω, pn(ω))− g(ω, p(ω))‖

≤
(

1− β
Υ(β)

− β

Υ(β)Γ(β)

)
Supω∈[0,1] ‖g(ω, pn(ω))− g(ω, p(ω))‖

Hence ‖R2pn −R2p‖ → 0 as n→∞, i.e., R2 is continuous on Bη0 .

Let us establish that R2p, p ∈ Bη0 is uniformly bounded, equicontinuous and
relatively compact ∀ω ∈ [0, 1]. For any p ∈ Bη0 , we have ‖R2p‖ ≤ η0, which
means that (R2p)(ω), p ∈ Bη0 is uniformly bounded.

Now, verify that (R2p)(ω), p ∈ Bη0 is a equicontinuous. For any p ∈ Bη0 and
0 ≤ ω1 ≤ ω2 ≤ ω, we get

‖(R2p)(ω2)− (R2p)(ω1)‖ ≤
1− β
Υ(β)

q(ω2 − ω1) +
β

Υ(β)
q(ω2 − ω1)

(ω2 − ω1)
β

βΓ(β)

≤
[

1− β
Υ(β)

− (ω2 − ω1)
β

Υ(β)Γ(β)

]
q(ω2 − ω1),

‖(R2p)(ω2)− (R2p)(ω1)‖ → 0 as ω2 → ω1, which implies that R2 is equicontin-
uous on Bη0 . ⇒ R2 is uniformly bounded and equicontinuous. Therefore by
theorem (2.2), R2 is relatively compact subset of X. Hence R is completely con-
tinuous.

Claim - IV:
The final step is to prove the existence of the operator R1 + R2. It is enough to
establish that the set

ε =

{
y ∈ p : y = ρA

(
y

ρ

)
+ ρB(y)

}
is bounded. Let ρ = (0, 1) and p = ρ(R1 +R2). Then for each ω ∈ L : [0, 1]

p(ω) = ρR1

(
p

ρ

)
+ ρR2(p)(ω).



STABILITY OF FODE WITH ABC DERIVATIVE 2327

From hypothesis F1 − F5, we have

‖p(ω)‖ ≤ ρ ‖p0‖ − ρ
∥∥∥∥S (0,

p(0)

ρ

)∥∥∥∥+ ρ

∥∥∥∥S (ω, p(ω)

ρ

)∥∥∥∥+ ρ
∥∥AB
0 Iβg(ω, p(ω))

∥∥
≤ ‖φ‖+ % (‖p‖+ eζ ‖p‖) +

(
β

Υ(β)
+

1β

Υ(β)Γ(β)

)
[ξ ‖p‖+ ζ ‖p‖]

+

(
β

Υ(β)
+

1β

Υ(β)Γ(β)

)
ξ

Put µ(ω) = max {|p(s)| : 0 ≤ s ≤ ω} , ω ∈ L : [0, 1]. Then ‖p‖ ≤ σ(ω)∀ω ∈ L :

[0, 1], and we have

σ(ω) ≤ ‖φ‖+ %σ(s) + %∗σ(s) + %∗ + %eζ(σ(s)) + %∗fζ(σ(s))

σ(ω) ≤ ‖φ‖+ %∗ + (%+ %∗)σ(s) + %eζ(σ(s)) + %∗fζ(σ(s))

(1− %− %∗)σ(ω) ≤ ‖φ‖+ %∗ + (%e+ %∗f) (ζ(σ(s))) .

If ‖p‖∞ = Sup ‖p(ω)‖ : 0 ≤ ω ≤ 1, then the above inequality becomes

(1− %− %∗) ‖p‖∞ ≤ ‖φ‖+ %∗ + (%e+ %∗f) (ζ(σ(s))) .

Hence
(1− %− %∗) ‖p‖∞

(‖φ‖) + %∗ + (%e+ %∗f) (ζ(σ(s)))
≤ 1.

From F5, there is an ξ∗ such that ‖p‖∞ 6= ξ∗.

Let

F = {p ∈ Ω ([0, a] : E) : ‖p‖∞ ≤ ξ∗} .

In F, there is no p ∈ ∂p, such that p = ρR(p), here ρ ∈ (0, 1). Hence R has a fixed
point p in F , which proves that p is a solution of (2.4). �

4. STABILITY ANALYSIS

Definition 4.1. The ABC fractional differential equation (2.4) is said to be Hyers-
Ulam stable if there exist constant ε > 0 satisfying: for every δ > 0,

p(ω) =
1− β
Υ(β)

[
S(ω, p(ω)) +

∫ s

0

g(ω, p(ω))dω

]
+

β

Υ(β)Γ(β)

∫ s

0

(ω − s)β−1
[
S(ω, p(ω)) +

∫ t

0

g(q, p(q))dq

]
ds,
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there exists p1(ω) satisfying

p1(ω) =
1− β
Υ(β)

[
S(ω, p1(ω)) +

∫ s

0

g(ω, p1(ω))dω

]
+

β

Υ(β)Γ(β)

∫ s

0

(ω − s)β−1
[
S(ω, p1(ω)) +

∫ t

0

g(q, p1(q))dq

]
ds,

(4.1)

such that |p(ω)− p1(ω)| ≤ δε, where p(0) = 0.

Theorem 4.1. Considering the hypothesis F2, the fractional order differential equa-
tion (2.4), in the sense of ABC is Hyers-Ulam Stable.

Proof. From theorem (3.1), equation (2.4) has unique solution p(ω). Let there
exists another solution p1(ω) of (2.4) satisfying the condition (4.1). Then we
have

p1(ω) =
1− β
Υ(β)

[
S(ω, p1(ω)) +

∫ s

0

g(ω, p1(ω))dω

]
+

[
β

Υ(β)Γ(β)

∫ s

0

(ω − s)β−1
[
S(ω, p1(ω)) +

∫ t

0

g(q, p1(q))dq

]
ds

](4.2)

Now

|p(ω)− p1(ω)|

=

∣∣∣∣1− βΥ(β)

[
S(ω, p(ω)) +

∫ s

0

g(ω, p(ω))dω

]∣∣∣∣
+

∣∣∣∣ β

Υ(β)Γ(β)

∫ s

0

(ω − s)β−1
[
S(ω, p(ω)) +

∫ t

0

g(q, p(q))dq

]
ds

∣∣∣∣
−
∣∣∣∣1− βΥ(β)

[
S(ω, p1(ω)) +

∫ s

0

g(ω, p1(ω))dω

]∣∣∣∣
−
∣∣∣∣ β

Υ(β)Γ(β)

∫ s

0

(ω − s)β−1
[
S(ω, p1(ω)) +

∫ t

0

g(q, p1(q))dq

]
ds

∣∣∣∣
≤ 1− β

Υ(β)

[
|S(ω, p(ω))− S(ω, p1(ω))|+

∫ s

0

|g(ω, p(ω))− g(ω, p1(ω))| dω
]

+
β

Υ(β)Γ(β)

[∫ s

0

(ω − s)β−1 (|S(ω, p(ω))− S(ω, p1(ω))|) ds
]

+
β

Υ(β)Γ(β)

[∫ s

0

(ω − s)β−1
(∫ t

0

|g(q, p(q))− g(q, p1(q))| dq
)
ds

]
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≤ 1− β
Υ(β)

[
% ‖y1 − y2‖+

∫ s

0

ξ ‖y1 − y2‖ dt
]

+
β

Υ(β)Γ(β)

[∫ s

0

(ω − s)β−1% ‖y1 − y2‖+

∫ t

0

ξ ‖y1 − y2‖ dq
]
ds

≤ 1− β
Υ(β)

[%+ ξ(y − x)] ‖y1 − y2‖

+
β(yβ − xβ)

Υ(β)Γ(β)
[%+ ξ(y − x)] ‖y1 − y2‖ .

This implies that

(4.3) |p(ω)− p1(ω)| ≤ δε,

for δ =

(
1− β
Υ(β)

+
β(yβ − xβ)

Υ(β)Γ(β)

)
[%+ ξ(y − x)], h ε = ‖y1 − y2‖ .

From (4.3), we conclude that the fractional differential equation in the sense
of Atangana-Baleanu-Caputo operator is Hyers- Ulam stable. �

5. EXAMPLE

Example 1. Let us consider the following fractional differential equation

(5.1) Dβ

[
p(τ)− 1

4
e2τ
]

=
1

4
sin(τ, p(τ)),where p(0) = 0, τ ∈ [0, 1],Υ(β) = 1.

Comparing with Theorem 4.1, we have K = e2τ and g(τ, p(τ)) = sin(τ, p(τ)), then
the solution of (5.1) is

pn(τ) = 1 +
1

4
Kn(τ, p(τ)) +

1− β
4

gn(τ, p(τ)) +
β

4Γ(β)

∫ t

a

(τ − s)β−1gn(τ, p(τ))ds.

Solving the given equation (5.1), we have

δ ≤ 1 where δ =
(1− β)

4
(s).

For the values s = 0.1 to s = 1 and β = 0.5 to 0.9, the corresponding values of δ are
tabulated in table 1 and plotted in figure 1. The following curve is increasing and
stable in s ∈ (0, 1]. Also from the table, we observe that the values are periodically
decreasing and are less than 1. Hence the given fractional differential equation
(5.1), is Hyers-Ulam Stable.
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s β = 0.5 β = 0.6 β = 0.7 β = 0.8 β = 0.9

δ δ δ δ δ

0.1 0.0125 0.0100 0.0075 0.0050 0.0025
0.2 0.0250 0.0200 0.0150 0.0100 0.0050
0.3 0.0375 0.0300 0.0225 0.0150 0.0075
0.4 0.0500 0.0400 0.0300 0.0200 0.0100
0.5 0.0625 0.0500 0.0375 0.0250 0.0125
0.6 0.0750 0.0600 0.0450 0.0300 0.0150
0.7 0.0875 0.0700 0.0525 0.0350 0.0175
0.8 0.1000 0.0800 0.0600 0.0400 0.0200
0.9 0.1125 0.0900 0.0675 0.0450 0.0225
1.0 0.1250 0.1000 0.0750 0.0500 0.0250

FIGURE 1. Numerical simulation of Example 1, for different val-
ues of β
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FIGURE 2. Surface plot for Example 1

6. CONCLUSION

It is well known that most of the real world phenomena can be described
with FODE. This article, discussed the stability of nonlinear FODE in the frame
of ABD. Basic definitions and lemma’s and hypothesis are presented in section 2.
Necessary and sufficient conditions which ensures the existence and uniqueness
of the solutions are derived in section 3. Section 4, established the Hyers-Ulam
Stability of the fractional differential equation in the terms of Atangana-Baleanu
derivative operator. Example is given in section 5, to validate our analytical
results. Important analytic tools used in this work are AB derivative operator,
Fixed point theorems and Banach contraction principle.
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