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QUALITATIVE ASPECTS OF THE FRACTIONAL AIR-BORNE DISEASES
MODEL WITH MITTAGE-LEFFLER KERNEL

H.H.G. Hashem1 and Hour M. H. Alsehail

ABSTRACT. Mathematical models are used to describe transmission and propa-
gation of diseases which have gained momentum over the last hundred years.
Formulated mathematical models are currently applied to understand the epi-
demiology of various diseases including viral diseases viz Influenza, SARS,
measles, etc.

In this paper, we shall introduce the fractional air-borne diseases model with
Mittage-Leffler kernel and prove some qualitative properties of the fractional
the air-borne diseases model with Mittage-Leffler kernel and Ulam-Hyers sta-
bility.

1. INTRODUCTION

Recently, Atangana-Baleanu fractional derivative has got much attention of
the researchers due to its non- locality and non-singularity. This operator con-
tains an accurate kernel that describes the better dynamics of systems with a
memory effect.
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In this paper, we investigate the fractional-order air-borne diseases model
(ABDM) under Mittag–Leffler derivative. The existence of a unique solution has
been discussed by a direct application of Banach Contraction mapping Theo-
rem. We established the Hyres-Ulam stability of the proposed model under the
Mittage–Leffler derivative.

To describe the behaviour of the disease and to enhanced the methods of
treatment, various mathematical models have been used. Since 1994. In formu-
lating a simple mathematical model, Mayer and others used ODEs [8] to explain
the response of the immune system when pathogens attack the body.

Now, we introduce the definition of the fractional operator with nonlocal ker-
nel (see [2], [4] and the references therein).

Definition 1.1. Let f ∈ H1(a, b), b > a, α ∈ [0, 1]. Then, the definition of the new
fractional derivative is given as:

(1.1) ABCDα
t f(t) =

B(α)

1− α

∫ t

b

f ′(x)Eα

[
− α(t− x)α

1− α

]
dx,

where B(α) denotes a normalization function satisfying B(0) = B(1) = 1.

The above definition will be helpful to discuss real world problems and it also
will have a great advantage when using the Laplace transform to solve some
physical problem with initial condition. However, when α is 0 we do not recover
the original function except when at the origin the function vanishes. To avoid
this issue, we propose the following definition.

Definition 1.2. Let f ∈ H1(a, b), b > a, α ∈ [0, 1]. Then, the definition of the new
fractional derivative is given as:

(1.2) ABRDα
t f(t) =

B(α)

1− α
d

dt

∫ t

b

f(x)Eα

[
− α(t− x)α

1− α

]
dx.

Equations (1.1) and (1.2) have a non-local kernel. Also in equation (1.1)
when the function is constant we get zero.

Definition 1.3. The fractional integral associate to the new fractional derivative
with non-local kernel is defined as:

ABIαt f(t) =
1− α
B(α)

f(t) +
α

B(α)Γ(α)

∫ t

a

f(y)(t− y)α−1dy.
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When α is zero we recover the initial function and if also α is 1, we obtain the
ordinary integral.

2. THE AIR-BORNE DISEASES MODEL

An airborne transmission is disease transmission through small particulates
that can be transmitted through the air over time and distance [11]. The rel-
evant pathogens may be viruses, bacteria, or fungi, and they may be spread
through breathing, talking, coughing, sneezing, raising of dust, spraying of
liquids, flushing toilets, or any activities which generate aerosol, particles or
droplets.

In the air-borne diseases model the individuals were classified as: Susceptible
(S) – those who did not have any immunity to the disease; Exposed (E) or latent
– those exposed to the virus and incubating it prior to the development of symp-
toms; "Infectives" (I) – symptomatic and infectious; Asymptomatic (A) – those
testing positive in serological tests/blood tests for the disease, but had no symp-
toms (were assumed to be partially infectious); and recovered population (R).
Following assumptions are made where S, E, I, A, R, denote the numbers of
individuals in the Susceptible, Latent (or exposed), Infective, Asymptomatic and
Recovered compartments respectively, with the total population size at all times
given by N = S(t) + E(t) + I(t) + A(t) +R(t), as:

(i) Total population at the initial stage was susceptible with no members
having immunity through vaccination or any previous exposure. One
infective was introduced.

(ii) There is no transmission from individuals at the Latent (Exposed) state.
(iii) A fraction p of the latent (E) individuals proceed to Infective (sympto-

matic) I compartment at the rate k. The remaining fraction (1− p) goes
to the asymptomatic compartment A at the same rate k.

(iv) The study population is considered constant and no consideration has
been made for the addition or removal of individuals.

(v) Asymptomatic individuals have a reduced capacity to transmit the dis-
ease. Let q be the factor that decides reduction in transmissibility of the
asymptomatic individuals (0 < q < 1) (Poddar et al., 2010 [9], Shil et
al., 2011 [10]).
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FIGURE 1. The schematic diagram of the SEIAR type transmission
model. S, E, I, A and R denote Susceptible, Exposed (latent), In-
fective, Asymptomatic and Recovered /removed categories of the
population, respectively [10].

(vi) Assuming homogeneous mixing within the population, the average mem-
ber of the population made contact sufficient to transmit infection to βN
others per unit time, where β is the transmission rate.

(vii) A fraction α of the infective individuals and a fraction η of the asymp-
tomatic individuals moved to recovered class per unit time.

(viii) No restrictions on human behaviour (such as quarantine, wearing of
masks) or interventions (as preventive medicine) are imposed.

Susceptible - Exposed - Infective Asymptomatic-Recovered or SEIAR model can
be modified as:

dS

dt
= −βS(t)(I + qA(t)),

dE

dt
= βS(t)(I(t) + qA(t))− kE(t),(2.1)

dI

dt
= pkE(t)− αI(t),

dA

dt
= (1− p)kE(t)− ηA(t),

dR

dt
= αI(t) + ηA(t),

dC

dt
= αI(t),

Here, C denotes the cumulative number of infectives. Also, all variables are
positive at all times ( 0 < t <∞ ).
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The number of susceptible individuals S(t) decreases as the number of inci-
dences (i.e., Infectives I(t)) increase. The epidemic peaks then declines as more
and more individuals recover and stop transmitting the disease. Considering ev-
eryone initially to be susceptible (i.e., at t = 0, S(t) = N), a newly introduced
infected individual can infect on the average R0 individuals. This is the basic
reproduction number, R0. In other words, R0 describes the average number
of secondary infections generated by one infectious individual when introduced
into a fully susceptible population. The severity of the epidemic and rates of
increase depend on the value of the basic reproduction number. If R0 > 1, then
the epidemic will continue. If R0 < 1, then the epidemic will die out. R0

can be calculated form the growth rate of the epidemic (r) obtained from the
cumulative incidences data in the initial growth phase of the outbreak.

Each individual who received the causative agent (pathogen) exist in the Ex-
posed or Latent state (E) during which he/she is incubating the virus or bacteria
but they does not transmit the infection to anyone.

If k be the rate of transition from the Exposed state to the Infectious state,
then duration of the mean exposed period or latent phase is 1/k.

3. FORMULATION OF THE MODEL WITH MITTAGE- LEFFLER KERNEL

Now, consider the new fractional system with Mittage- Leffler kernel.

ABCDγ
t S(t) = −βS(t)(I + qA(t)),

ABCDγ
tE(t) = βS(t)(I(t) + qA(t))− kE(t),(3.1)

ABCDγ
t I(t) = pkE(t)− αI(t),

ABCDγ
tA(t) = (1− p)kE(t)− ηA(t),

ABCDγ
tR(t) = αI(t) + ηA(t),

ABCDγ
t C(t) = αI(t),

The description of the parameters as given above and

S(0) = S0, E(0) = E0, I(0) = I0, A(0) = A0, C(0) = C0, R(0) = R0.
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For

u1(t, S, E, I, A,R,C) = −βS(t)(I + qA(t)),

u2(t, S, E, I, A,R,C) = βS(t)(I(t) + qA(t))− kE(t),(3.2)

u3(t, S, E, I, A,R,C) = pkE(t)− αI(t),

u4(t, S, E, I, A,R,C) = (1− p)kE(t)− ηA(t),

u5(t, S, E, I, A,R,C) = αI(t) + ηA(t),

u6(t, S, E, I, A,R,C) = αI(t).

Then system (3.2) may be rewritten in the form:

ABCDγ
t S(t) = u1(t, S, E, I, A,R,C),

ABCDγ
tE(t) = u2(t, S, E, I, A,R,C),

ABCDγ
t I(t) = u3(t, S, E, I, A,R,C),

ABCDγ
tA(t) = u4(t, S, E, I, A,R,C),

ABCDγ
tR(t) = u5(t, S, E, I, A,R,C),

ABCDγ
t C(t) = u6(t, S, E, I, A,R,C),

ABCDγ
tM(t) = F (t,M(t)), γ ∈ (0, 1).

Taking

M = (S,E, I, A,R,C)T and M0 = (S0, E0, I0, A0, R0, C0)T .

Therefore, system (3.3) can reduced to

F (t,M(t)) = (u1, u2, u3, u4, u5, u6)T

ABCDγ
tM(t) = F (t,M(t)),(3.3)

M(0) = M0 ≥ 0.

Applying Atangana-Baleanu Caputo integral to (3.3) and using initial condi-
tions, we obtain the equivalent form of (3.3) as

M(t) = M0 +
(1− γ)

B(γ)
F (t,M(t)) +

γ

Γ(γ)

1

B(γ)

∫ t

0

(t− θ)γ−1F (θ,M(θ))dθ.

Now define a Banach space Ω = C(J,R6
+), J = [0, b] with the following norm

‖M‖ = sup
t∈J

M(t) : M ∈ Ω.
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Suppose that for each M ∈ Ω and t ∈ J , the function F (t,M(t)) satisfies the
following

(i): F : J × R6
+ is continuous functions and there exists a constant L > 0

such that

|F (t,M1(t))− F (t,M2(t))| ≤ L|M1 −M2|, ∀ (t,M1), (t,M2) ∈ J × Ω.

Now, define the operator A such that

AM(t) = M0 +
(1− γ)

B(γ)
F (t,M(t)) +

γ

B(γ)

1

Γ(γ)

∫ t

0

(t− θ)γ−1F (θ,M(θ))dθ.

4. SOLVABILITY OF THE MODEL WITH MITTAGE- LEFFLER KERNEL

At this stage, our target is to prove the existence of unique solution for (3.3).
This existence result will be based on the contraction mapping principle.

Theorem 4.1. Let assumption (i) be satisfied. If L(1−γ)
B(γ)

+ γ
B(γ)

Lbγ

Γ(γ+1)
< 1, then

there exists a unique solution for the equation (3.3).
Proof. Define the operator A by:

AM(t) = M0 +
(1− γ)

B(γ)
F (t,M(t)) +

γ

B(γ)

1

Γ(γ)

∫ t

0

(t− θ)γ−1F (θ,M(θ))dθ, t ∈ J.

In view of assumptions (i), then A : C(J,R6
+)→ C(J,R6

+) is continuous operator.
Now let M and , M̃ ∈ C(J,R6

+), then

| AM(t)− AM̃(t) |

=

∣∣∣∣(1− γ)

B(γ)
F (t,M(t))− (1− γ)

B(γ)
F (t, M̃(t))

+
γ

B(γ)

1

Γ(γ)

∫ t

0

(t− θ)γ−1F (θ,M(θ))dθ

− γ

B(γ)

1

Γ(γ)

∫ t

0

(t− θ)γ−1F (θ, M̃(θ))dθ

∣∣∣∣
≤

∣∣∣∣(1− γ)

B(γ)
F (t,M(t))− (1− γ)

B(γ)
F (t, M̃(t))

∣∣∣∣
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+

∣∣∣∣ γ

B(γ)

1

Γ(γ)

∫ t

0

(t− θ)γ−1F (θ,M(θ))dθ

− γ

B(γ)

1

Γ(γ)

∫ t

0

(t− θ)γ−1F (θ, M̃(θ))dθ

∣∣∣∣
≤ (1− γ)

B(γ)

∣∣∣∣F (t,M(t))− F (t, M̃(t))

∣∣∣∣
+

γ

Bγ)

1

Γ(γ)

∣∣∣∣ ∫ t

0

(t− θ)γ−1F (θ,M(θ))dθ −
∫ t

0

(t− θ)γ−1F (θ, M̃(θ))dθ

∣∣∣∣
≤ L(1− γ)

B(γ)

∣∣∣∣M(t)− M̃(t)

∣∣∣∣
+

γ

B(γ)

1

Γ(γ)

∫ t

0

(t− θ)γ−1|F (θ,M(θ))− F (θ, M̃(θ))|dθ

≤ L(1− γ)

B(γ)
|M(t)− M̃(t)|

+
γ

B(γ)

L

Γ(γ)

∫ t

0

(t− θ)γ−1|M(θ)− M̃(θ)|dθ

≤ L(1− γ)

B(γ)
|M(t)− M̃(t)|

+
γ

B(γ)

L

Γ(γ)

∫ t

0

(t− θ)γ−1 sup
θ∈J
|M(θ)− M̃(θ)|dθ

≤ L(1− γ)

B(γ)
||M − M̃ ||

+
γ

B(γ)

L

Γ(γ)

∫ t

0

(t− θ)γ−1||M − M̃ ||dθ

≤ L(1− γ)

B(γ)
||M − M̃ ||

+ ||M − M̃ || γ

B(γ)

L

Γ(γ)

∫ t

0

(t− θ)γ−1dθ

≤ L(1− γ)

B(γ)
||M − M̃ ||

+ ||M − M̃ || γ

B(γ)

L

Γ(γ)

(t− θ)γ

γ

∣∣∣∣t
t=0

≤ L(1− γ)

B(γ)
||M − M̃ ||
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+ ||M − M̃ || γ

B(γ)

L

Γ(γ + 1)
tγ

≤ L(1− γ)

B(γ)
||M − M̃ ||

+ ||M − M̃ || γ

B(γ)

Lbγ

Γ(γ + 1)

||AM − AM̃ || 6
L(1− γ)

B(γ)
||M − M̃ ||

+ ||M(t)− M̃(t)|| γ

B(γ)

Lbγ

Γ(γ + 1)

6

[
L(1− γ)

B(γ)
+

γ

B(γ)

Lbγ

Γ(γ + 1)

]
||M − M̃ ||.

Since L(1−γ)
B(γ)

+ γ
B(γ)

Lbγ

Γ(γ+1)
< 1. Then A is a contraction. It follows that A has

a unique fixed point which is a solution of the initial value problem (3.3) in
C(J,R6

+). �

5. STABILITY OF THE MODEL WITH MITTAGE- LEFFLER KERNEL

5.1. Ulam-Hyers Stability.

Definition 5.1. The equation (3.3) is Ulam-Hyers stable if there exists a real num-
ber c > 0 such that for each ε > 0 and for each solution M ∈ C(J,R6

+) of the
inequality

(5.1) |ABC Dγ
tM(t)− F (t,M(t)) |6 ε, t ∈ J,

there exists a solution Y ∈ C(J,R6
+) of the system (3.3) such that Y (0) = M(0) =

M0 with

|M(t)− Y (t)| 6 εc, t ∈ J.

Definition 5.2. The equation (3.3) is generalized Ulam-Hyers stable if there ex-
ists ψ ∈ C(R+,R+), ψ(0) = 0, such that for each solution M ∈ C(J,R6

+) of the
inequality (5.1), there exists a solution Y ∈ C(J,R6

+) of system (3.3) such that
Y (0) = M(0) = M0 with

|M(t)− Y (t)| ∈ ψ(ε)ε, t ∈ J.
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Theorem 5.1. Let assumptions of Theorem 4.1 be satisfied. Then the fractional
order differential equation (3.3) is Ulam-Hyers stable.

Proof. Let M ∈ C(J,R6
+) be a solution of the inequality (5.1), Let Y ∈ C(J,R6

+)

be the unique solution of the initial value problem (3.3). This Cauchy problem
(3.3) is equivalent to

Y (t) = Y0 +
(1− γ)

B(γ)
F (t, Y (t)) +

γ

B(γ)

1

Γ(γ)

∫ t

0

(t− θ)γ−1F (θ, Y (θ))dθ, t ∈ J.

Operating AB fractional integral to both sides of (5.1), we get

|M(t) − M0 −
(1− γ)

B(γ)
F (t,M(t))− γ

B(γ)

1

Γ(γ)

∫ t

0

(t− θ)γ−1F (θ,M(θ))dθ |

6
(1− γ)

B(γ)
ε+

γ

B(γ)

1

Γ(γ)

∫ t

0

(t− θ)γ−1εdθ

6
ε(1− γ)

B(γ)
+

εγ

B(γ)

1

Γ(γ)

∫ t

0

(t− θ)γ−1dθ

6
ε(1− γ)

B(γ)
+

εγ bγ

B(γ)Γ(γ + 1)
.

Also, we have

|M(t)− Y (t)|

=

∣∣∣∣M(t)− Y0 −
(1− γ)

B(γ)
F (t, Y (t))− γ

B(γ)

1

Γ(γ)

∫ t

0

(t− θ)γ−1F (θ, Y (θ))dθ

∣∣∣∣
=

∣∣∣∣M(t)− Y0 −
(1− γ)

B(γ)
F (t, Y (t))− γ

B(γ)

1

Γ(γ)

∫ t

0

(t− θ)γ−1F (θ, Y (θ))dθ

+
(1− γ)

B(γ)
F (t,M(t)) +

γ

B(γ)

1

Γ(γ)

∫ t

0

(t− θ)γ−1F (θ,M(θ))dθ

− (1− γ)

B(γ)
F (t,M(t))− γ

B(γ)

1

Γ(γ)

∫ t

0

(t− θ)γ−1F (θ,M(θ))dθ

∣∣∣∣
≤

∣∣∣∣M(t)−M0 −
(1− γ)

B(γ)
F (t,M(t))− γ

B(γ)

1

Γ(γ)

∫ t

0

(t− θ)γ−1F (θ,M(θ))dθ

∣∣∣∣
+

(1− γ)

B(γ)

∣∣∣∣F (t, Y (t))− F (t,M(t))

∣∣∣∣
+

γ

B(γ)

1

Γ(γ)

∫ t

0

(t− θ)γ−1

∣∣∣∣F (θ, Y (θ))− F (θ,M(θ))

∣∣∣∣dθ
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6
ε(1− γ)

B(γ)
+

εγ bγ

B(γ)Γ(γ + 1)
+
L(1− γ)

B(γ)

∣∣∣∣Y (t)−M(t)

∣∣∣∣
+

Lγ

B(γ)

1

Γ(γ)

∫ t

0

(t− θ)γ−1

∣∣∣∣Y (θ)−M(θ)

∣∣∣∣dθ
6

ε(1− γ)

B(γ)
+

εγ bγ

B(γ)Γ(γ + 1)
+
L(1− γ)

B(γ)

∣∣∣∣Y (t)−M(t)

∣∣∣∣
+

Lγ

B(γ)

1

Γ(γ)

∫ t

0

(t− θ)γ−1 sup

∣∣∣∣Y (θ)−M(θ)

∣∣∣∣dθ
6

ε(1− γ)

B(γ)
+

εγ bγ

B(γ)Γ(γ + 1)
+
L(1− γ)

B(γ)

∣∣∣∣Y (t)−M(t)

∣∣∣∣
+

Lγ

B(γ)

||Y −M ||
Γ(γ)

∫ t

0

(t− θ)γ−1dθ

6
ε(1− γ)

B(γ)
+

εγ bγ

B(γ)Γ(γ + 1)
+
L(1− γ)

B(γ)
||Y −M ||

+
Lγ bγ

B(γ)

||Y −M ||
Γ(γ + 1)

||Y −M || ≤ ε(1− γ)

B(γ)
+

εγ bγ

B(γ)Γ(γ + 1)

+
L(1− γ)

B(γ)
||Y −M ||

+
Lγ bγ

B(γ)

||Y −M ||
Γ(γ + 1)

.

Then [
1 − L(1− γ)

B(γ)
− Lγ bγ

B(γ) Γ(γ + 1)

]
||Y −M ||

≤ ε(1− γ)

B(γ)
+

εγ bγ

B(γ)Γ(γ + 1)

||Y −M || ≤
[
1− L(1− γ)

B(γ)
− Lγ bγ

B(γ)Γ(γ + 1)

]−1
(1− γ)

B(γ)
+

γ bγ

B(γ)Γ(γ + 1)
ε = c ε,

thus the Cauchy value problem (3.3) is Ulam-Heyers stable, which completes
the proof. �

By putting ψ(ε) = c ε, ψ(0) = 0 yields that the equation (3.3) is generalized
Ulam-Heyers stable.



2346 H.H.G. Hashem and H.M.H. Alsehail

5.2. Ulam-Hyers-Rassias Stability.

Definition 5.3. The equation (3.3) is Ulam-Hyers-Rassias stable with respect to
ϕ ∈ C(J,R+) if there exists a real number c > 0 such that for each ε > 0 and for
each solution M ∈ C(J,R6

+) of the inequality

(5.2) |ABC Dγ
tM(t)− F (t,M(t)) |6 ε ϕ(t), t ∈ J,

there exists a solution Y ∈ C(J,R6
+) of the system (3.3) such that Y (0) = M(0) =

M0 with

|M(t)− Y (t)| 6 εcϕ(t), t ∈ J.

Theorem 5.2. Let assumptions of Theorem 4.1 be satisfied, there exists an in-
creasing function ϕ ∈ C(J,R+) and there exists λϕ > 0 such that for any t ∈ J, we
have

ABIγt ϕ(t) 6 λϕϕ(t),

then the equation (3.3) is Ulam-Heyers-Rassias stable.

Proof. Let M ∈ C(J,R6
+) be a solution of the inequality (5.2) Let Y ∈ C(J,R6

+)

be the unique solution of the initial value problem (3.3). This Cauchy problem
(3.3) is equivalent to

Y (t) = Y0 +
(1− γ)

B(γ)
F (t, Y (t)) +

γ

B(γ)

1

Γ(γ)

∫ t

0

(t− θ)γ−1F (θ, Y (θ))dθ, t ∈ J.

Operating AB fractional integral to both sides of (5.2), we get

|M(t) − M0 −
(1− γ)

B(γ)
F (t,M(t))− γ

B(γ)

1

Γ(γ)

∫ t

0

(t− θ)γ−1F (θ,M(θ))dθ |

6 ε ABIαt ϕ(t) ≤ ελϕϕ(t).
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Also, we have

|M(t)− Y (t)|

=

∣∣∣∣M(t)− Y0 −
(1− γ)

B(γ)
F (t, Y (t))− γ

B(γ)

1

Γ(γ)

∫ t

0

(t− θ)γ−1F (θ, Y (θ))dθ

∣∣∣∣
=

∣∣∣∣M(t)− Y0 −
(1− γ)

B(γ)
F (t, Y (t))− γ

B(γ)

1

Γ(γ)

∫ t

0

(t− θ)γ−1F (θ, Y (θ))dθ

+
(1− γ)

B(γ)
F (t,M(t)) +

γ

B(γ)

1

Γ(γ)

∫ t

0

(t− θ)γ−1F (θ,M(θ))dθ

− (1− γ)

B(γ)
F (t,M(t))− γ

B(γ)

1

Γ(γ)

∫ t

0

(t− θ)γ−1F (θ,M(θ))dθ

∣∣∣∣
≤

∣∣∣∣M(t)−M0 −
(1− γ)

B(γ)
F (t,M(t))

− γ

B(γ)

1

Γ(γ)

∫ t

0

(t− θ)γ−1F (θ,M(θ))dθ

∣∣∣∣
+

(1− γ)

B(γ)

∣∣∣∣F (t, Y (t))− F (t,M(t))

∣∣∣∣
+

γ

B(γ)

1

Γ(γ)

∫ t

0

(t− θ)γ−1

∣∣∣∣F (θ, Y (θ))− F (θ,M(θ))

∣∣∣∣dθ
6 ελϕϕ(t) +

L(1− γ)

B(γ)

∣∣∣∣Y (t)−M(t)

∣∣∣∣
+

Lγ

B(γ)

1

Γ(γ)

∫ t

0

(t− θ)γ−1

∣∣∣∣Y (θ)−M(θ)

∣∣∣∣dθ
6 ελϕϕ(t) +

L(1− γ)

B(γ)
sup

∣∣∣∣Y (t)−M(t)

∣∣∣∣
+

Lγ

B(γ)

1

Γ(γ)

∫ t

0

(t− θ)γ−1 sup

∣∣∣∣Y (θ)−M(θ)

∣∣∣∣dθ
6 ελϕϕ(t) +

L(1− γ)

B(γ)
||Y −M ||

+
Lγ

B(γ)

||Y −M ||
Γ(γ)

∫ t

0

(t− θ)γ−1dθ

6 ελϕϕ(t) +
L(1− γ)

B(γ)
||Y −M ||

+
Lγ bγ

B(γ)

||Y −M ||
Γ(γ + 1)
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||Y −M || ≤ ελϕϕ(t) +
L(1− γ)

B(γ)
||Y −M ||

+
Lγ bγ

B(γ)

||Y −M ||
Γ(γ + 1)

.

Then [
1 − L(1− γ)

B(γ)
− Lγ bγ

B(γ) Γ(γ + 1)

]
||Y −M ||

≤ ελϕϕ(t)

||Y −M || ≤
[
1− L(1− γ)

B(γ)
− Lγ bγ

B(γ)Γ(γ + 1)

]−1

ελϕϕ(t) = c εϕ(t),

thus the Cauchy problem (3.3) is Ulam-Heyers-Rassias stable, which completes
the proof. �
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