
ADV  MATH
SCI  JOURNAL

Advances in Mathematics: Scientific Journal 10 (2021), no.5, 2361–2380
ISSN: 1857-8365 (printed); 1857-8438 (electronic)
https://doi.org/10.37418/amsj.10.5.6

MODELLING OF OIL PRICE VOLATILITY USING ARIMA-GARCH MODELS

Farida Merabet1, Halim Zeghdoudi, Rakia Ahmed Yahia, and Ilhem Saba

ABSTRACT. In this paper, the behavior of the oil price series named OIL is ex-
amined. The non-stationarity on average and variance, with the non-normality
of the OIL series distribution, indicate the volatility of the series. The study is
based on a combination of the Box-Jenkins methodology with the GARCH pro-
cesses (Engle and Bollerslev). The first part models the lnOIL series in which, by
applying the first difference the series becomes DlnOIL. Then the Box-Jenkins
methodology is applied. The choice of the model was made on basis of min-
imization of criterion -Akaike (AIC), Shwarz (SIC)- and maximization of log
likelihood (LL). Of the four models identified, ARMA (3.1) is retained. Ac-
cording to the statistical indicators of the ARMA model (3,1), the nature of the
residuals and other tests, it is shown that the series of squares of the residuals
follows a conditionally heteroscedastic ARCH model. The second part is de-
voted to a symmetrical and asymmetrical GARCH modelling. The model used
for predicting volatility is the EGARCH model (1,2). The data available relates
to 3652 daily values of the change in OIL, from 01/01/2019 to 12/31/2019.
The forecast is made for the first three months of 2020; the result concludes
that the predicted values and the current values are very close, and that the
model ARIMA (3,1,1) + EGARCH (1,2) is the best forecast model.
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1. INTRODUCTION

For more than a century, petroleum has been the most important source of
energy on which all of western civilization has built its development. It is the
most consumed source of energy in the world. That is why oil plays a huge
role in the global economy. In fact, during the last twenty years, the world
oil market has undergone major changes, moving from a simple physical oil
trading market to a sophisticated market (financial market). Therefore, the
international hydrocarbon market is considered to be one of the most important
commodity markets globally.

Oil consumption is driven by the needs of emerging countries, in particular
in the transport and petrochemicals sector. Petroleum reserves are mainly held
by the OPEC countries, which are the world’s largest producers. Despite the
fact that it sometimes goes through long periods of stability, the hydrocarbons
market remains volatile due to the violence of the shocks and counter shocks
that pass through it. The peculiarity of the spectacular reversals in oil prices lies
in the extent of the variations compared to the initial prices.

The price of crude oil fell from $ 9 per barrel in December 1998 to $ 145 in
July 2008. It then fell to $ 32 in December 2008, before rising again in 2009
and reaching the end of the year a level of 90 dollars. This conjunction of an
upward trend and high volatility is likely to continue in the coming years. Of
course, experience has shown how difficult it is to predict the evolution of the
price of oil.

Hedging strategies are based on the correct estimation of price volatility.
Therefore, it is necessary to adequately model the volatility of oil prices. Uni-
variate GARCH-type processes allow an acceptable estimate of price volatil-
ity because they accurately describe the aggregation characteristics of volatil-
ity and asymmetry. Several models have been suggested for capturing special
features of financial data, and most of these models have the property that
the conditional variance depends on the past. The frequently applied mod-
els to estimate exchange rate volatility are the autoregressive conditional het-
eroscedastic (ARCH) improved by R.F. Engle [12]; and generalized autoregres-
sive conditional heteroscedastic (GARCH), developed independently by Boller-
slev [7], Taylor [30], Yoon and Lee [34], Hamadu and Adeleke [16]. Ng and



MODELLING OF OIL PRICE VOLATILITY USING ARIMA-GARCH MODELS 2363

McAleer [26] used simple GARCH (1,1) and TARCH(1,1) models for testing es-
timation and forecasting the volatility of daily returns in S&P 500 Composite
Index and the Nikkei 225 Index. They concluded that TARCH (1,1) was the best
performing model with S&P 500 data, whereas the GARCH(1,1) model was bet-
ter in some cases with Nikkei 225. Ramzan and al. [28] modelled exchange
rate dynamics in Pakistan, using the GARCH family models, on the monthly
data from July 1981 to May 2010. The study results showed that GARCH (1,
2) was better than EGARCH (1, 2) model. However, the GARCH(1, 2) model
was used to remove the persistence in volatility while EGARCH (1, 2) success-
fully overcame the leverage effect in the exchange rate returns. Moreover they
concluded that the GARCH family of models captures the volatility and lever-
age effect in the exchange rate returns, giving fairly good forecasting perfor-
mance for the model. Abdalla, S.Z.S. [1] considered the (GARCH) approach in
modelling exchange rate volatility, in a panel of nineteen of the Arab countries.
Using daily observations over the period of 1st January 2000 to 19th Novem-
ber 2011, he applied both symmetric and asymmetric models that capture most
common stylized facts about exchange rate returns; such as volatility clustering
and leverage effect. Based on the GARCH(1,1) model, the results showed that
for ten out of nineteen currencies, the sum of the estimated persistent coeffi-
cients exceed one, implying that volatility is an explosive process, in contrast,
it was quite persistent for seven currencies; a result which is required to have
a mean reverting variance process. Furthermore, the asymmetrical EGARCH
(1,1) results provided evidence of leverage effect for majority of currencies, in-
dicating that negative shocks imply a higher next period volatility than positive
shocks. In [37] H. Zeghdoudi and al. studied ARCH models and their applica-
tions to the Value-At-Risk. They gave an extensive bibliographic overview of the
developments of the (GARCH) models and its applications. They made an appli-
cation relates to the exchange rate volatility of Algerian dinar against the EURO
and the U.S. Dollar for the period from June 2009 at May 2011, where they
compared the models resulting from various standard processes ARCH ( ARCH,
GARCH, IGARCH, EGARCH, TGARCH, and APARCH) and over various periods.
M.A.Thorlie and al. [31] examined the accuracy and forecasting performance
of volatility models for the Leones/USA dollars exchange rate return, including
the (ARMA), (GARCH), and Asymmetric GARCH models with normal and non-
normal (student’s t and skewed Student t) distributions. In fitting these models
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to the monthly exchange rate returns data over the period January 2004 to De-
cember 2013, they found that, the Asymmetric (GARCH) and GARCH model
better fits under the non-normal distribution rather than the normal distribu-
tion, and improve the overall estimation for measuring conditional variance.
Efimova, and Serletis [10] investigated the empirical properties of oil, natural
gas, and electricity price volatilities using a range of univariate and multivariate
GARCH models.They get results confirmed by several studies. Zeghdoudi and
Bouseba [35] added another profit of GARCH models including an application
relates to exchange rate volatility of oil price.A. Guerouahand al. [15] exam-
ined the relationship between stock and oil markets. In addition, they evalu-
ated the performance of each model with a range of diagnostic and forecast er-
formance tests using univariate GARCH(1,1) and bivariate BEKK GARCH(1,1),
DCC GARCH(1,1) models. In [25] authors have built a model to forecast the
exchange rate of Bangladesh. A study on Monthly average exchange rates of
Bangladesh for the period from August, 2004 to April, 2019. They have selected
ARIMA (1,1,1) as a mean model for this study. Then they tried to model the
volatility of exchange rate using ARCH, GARCH, EGARCH, IGARCH and TARCH
models. ARIMA (1,1,1)-GARCH (1,1) is selected as a best model compared to
others since it has the lower values of RMSE, MAE, MAPE and TI than other
models. However, to the authors´ best knowledge, very few publications can
be found on volatility of the oil price by symmetric and assymetric models that
capture most common stylized facts about oil price such as volatility clustering
and leverage effect. The main objective is to study the caracteristics of volatility
of the oil price on a sample of daily data of 3652 observations, over the period
of 1st January 2010 to 31 December. The remainder of the paper is organized as
follows: Section 2 is devoted to a brief theoretical presentation of GARCH mod-
els and its extensions, while section 3 presents data and the empirical results.
Section 4 concludes this paper.

2. METHODOLOGY

2.1. ARIMA Modelling.

2.1.1. ARIMA Models.
Autoregressive model of order p, AR(p).
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The process (Xt)t∈Z is an autoregressive model of order p if it satisfies the
equation:

(1) Φ(B)Xt = εt,

where Φ(B) = 1 − φ1B − φ2B
2 − . . . − φpB

p. The process AR(p) is stationary if
all the roots of Φ(B) are outside the unit circle. (εt)t∈Z is a centered white noise
process with variance σ2 < ∞. An AR process is invertible, that is to say it can
always be written as an MA process.

Moving average model of order q MA(q).

The MA(q) process is a stationary process given by the following equation:

(2) Xt = Θ(B)εt,

where Θ(B) = 1− θ1B − θ2B2 − · · · − θqBq. An MA(q) is always stationary, it is
invertible when all the roots of Θ(B) are outside the unit circle.

Moving average autoregressive model ARMA(p, q).

This process verifies the following equation:

(3) Φ(B)Xt = Θ(B)εt

where

{
Φ(B) = 1− φ1B − φ2B

2 − . . .− φpB
p

Θ(B) = 1− θ1B − θ2B2 − . . .− θqBq

The conditions of stationarity of an ARMA are determined by the roots of the
polynomial associated to its component AR, while its invertibility depends on
the roots of the polynomial associated to its component MA

Integrated moving average autoregressive model ARIMA(p, d, q).

When the given series (Xt)t∈Z is not stationary, it should be modeled using an
ARIMA(p, d, q) where d denotes the order of differentiation (or integration).

(Xt)t∈Z is a stationary integrated mobile average autoregressive model noted
ARIMA(p, d, q) if it admits the following representation:

(4) Φ(B)(1−B)dXt = Θ(B)εt
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2.1.2. The Box-Jenkins procedure. The Box-Jenkins methodology allows to de-
termine the appropriateARIMA(p, d, q) model for the modeling of a time series.
This procedure suggests four steps:

1-Identification: based on functions of autocorrelation and partial autocorre-
lation study. This step is the most important. Its purpose is to find the p and q
values of the ARMA processes. The rules which facilitate the search of them are:
Deseasonalisation and stationary in terms of trend. If the study of simple cor-
relograms and statistical tests, point to a series with a trend, it is appropriate to
study the characteristics -according to the Dickey Fuller Augmented test (1979)
- in order to detect the presence of a unit root. After stationary we can identify
the values of the parameters p and q of the ARMA model.

2- Estimation of ARMA processes: When the p and q values of the ARMA
process are identified, the next step is to estimate the coefficients associated
with the autoregressive term and moving average. Methods of estimation are
different depending on the type of process diagnosed. Generally, the maximum
likelihood method, ordinary least squares method, Durbin Watson method and
nonlinear least squares method are used.

3- Validation: By using, significance of the coefficients parameters tests (stu-
dent test), the null hypothesis test of homoscedasticity (tests ARCH, white,
Brensch-Pagan) and null hypothesis of autocorrelation, for the residuals (Box-
Pierre tests, Ljunge-Box). This step is about testing whether, the residuals are
white noise or not. If the residuals are white noise, it will be necessary that
the residuals series be stationary (fluctuating around a constant zero mean).
Moreover, it is after application of the Box-Pierce and ARCH tests that the alter-
native hypotheses are rejected.This step must be followed by a comparison of
the models qualities, which are validated. The criteria for choosing the model to
be used can be standard or information. The most used criteria are: the Akaike
Information Criterion (AIC), and the Schwarz Criterion (SC), mean absolute
error (MAE), root-mean-square error (RMSE), mean absolute percentage error
(MAPE) and the F test, where, T is the number of observations of the series Xt

studied and et are the estimated residuals.
Forecasting is the last step in the Box and Jenkins methodology. Knowing the

forecast horizon (h), the forecast made in T for the date T +h is given by X̂T+h:

X̂T+h = IE[XT+1/It] = X̂T+h/t−1
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This expression represents the best forecast of the series Xt conditionally to
the set of information available at date t.The term X̂T+h/t−1 means that the value
ofXt is predicted on the basis of past observationsXt, Xt, . . . using the estimated
value of the coefficients, in the same way of [24]). This paper used the SARIMA
models with methdology of the Box-Jenkins for modeling and forecast Number
of Injured in Road Accidents in Northeast Algeria.

2.2. Heteroscedastic modeling: ARCH − GARCH models. Despite the ad-
vantages ofARMA(p, q) models, they suffer from the failure to take into account
certain structural constraints linked to the phenomenon being modeled. These
constraints can reflect the volatility of a certain variable, and sometimes involve
the use of nonlinear models, likely to make the ARMA specification inadequate.

Robert F. Engle [12] introduced the ARCH model class in 1982, then Tim p.
Bollerslev [7]generalized it in 1986.

2.2.1. Linear (symmetric) ARCH processes. The fendamental assumption un-
derlying linear ARCH is the symmetry of the quadratic specifications of the
conditional variance of the error.

ARCH(q) process.

Is written in the following form:

(5) V ar(εt/It−1) = h2t = α0 +

q∑
i=1

αiε
2
t−i,

where IE(εt/It−1) = 0, α0 > 0 and αi ≥ 0. It−1 = {εt−1, εt−2, . . . , t− q}

The condition of stationarity is:
q∑

i=1

αi < 1. It−1 = {εt−1, εt−2, . . . , εt−i, . . .} .

Generalized ARCH models.

Noting GARCH(p, q) is given in the following form

(6) h2t = α0 +

q∑
i=1

αiε
2
t−i +

p∑
j=1

βjh
2
t−j,

α0 > 0, αi ≥ 0, βj ≥ 0 et
∑
αi +

∑
βj < 1 is the condition of stationarity.
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In the case where
∑
αi +

∑
βj = 1, the équation (6) becomes

(7) ε2t = α0 +

max(p,q)=r∑
i=1

(αi + βi) ε
2
t−i + µt −

p∑
j=1

βjµt−j,

where µt = ε2t − h2t .
Then, a GARCH(p, q) process becomes an ARMA(r, p) process.

ARCH models on average (ARCH −M).

This model takes in cosideration the existing relation between the mean and
the variance of the analyzed variable. A variation of the conditional variance
will be accompanied by a conditional variation of the mean.

This model is written in the following form:

(8)

 Φ(B)Xt = Θ(B)εt + δh2t

h2t = α0 +
q∑

i=1

αiε
2
t−i +

p∑
j=1

βjh
2
t−j

,

where Xt is a stationary Φ(B) and Θ(B) are, respectively, the autoregressive
lagging and moving average polynomials.

2.2.2. Nonlinear ARCH Processes (Asymmetric). Another empirical characteris-
tic of series of returns is the asymmetric behavior, the "leverage effect" which
designates a greater volatility following a negative shock (Bad Noise), than fol-
lowing a positive shock ( Good Noise). In [13] Manamba Epaphra, reveals
that exchange rate series exhibts the empirical regularities such as clustering
volatility, nonstationarity, non-normality and serial eccrelation that justify the
application of the ARCH methodology.

EGARCH Models.

The exponential EGARCH model -difficult to interpret- is a specification
adapted to the GARCH model where " αi and βj" are negative, thus remov-
ing the constraints of non-negativity imposed on the parameters. This type of
model is expressed as follows:

(9) log(h2t ) = α0 +

q∑
i=1

[
αi

∣∣∣∣ εt−iht−i

∣∣∣∣+ γi
εt−i
ht−i

]
+

p∑
j=1

βj log(h2t−j).
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Special case of an EGARCH(1, 1)

(10) log(h2t ) = α0 +

[
α1

∣∣∣∣ εt−1ht−1

∣∣∣∣+ γ1
εt−1
ht−1

]
+ β1 log(h2t−1).

TGARCH Model.

Threshold ARCH or GARCH modeling consists in integrating the effect of
asymmetry in the quadratic specifications of the conditional variance of the er-
rors. In a threshold model, h2t is a function defined in pieses which allows to
obtain different functions of volatility according to the sign and the values of
the shocks.
GARCH threshold models (TGARCH) are written:

(11) h2t = α0 +

q∑
i=1

α−i ε
2
t−iIεt−i<0

+

q∑
i=1

α+
i ε

2
t−iIεt−i≥0

+

p∑
j=1

βjh
2
t−j,

where Iεt−i
indicates the indicator function such as:Iεt−i<0

= 1, si εt−i < 0

Iεt−i≥0
= 0, sinon.

The TGARCH(1, 1) process is given in the following form:

(12) h2t = α0 + α−1 ε
2
t−1Iεt−1<0 + α+

1 ε
2
t−1Iεt−1≥0

+ β1h
2
t−1

3. DATA, RESULTS AND DISCUSSION

Our objective is to forecast the price of oil using a univariate forecasting
model, on a daily data sample of 3652 observations covering the period from
January 1, 2010 to December 31, 2019.

3.1. Statistical analysis of the oil price series. Figure 1 reveals the existence
of a growing trend for the "OIL" series, so this graph indicates non-stationarity
in mean and in variance (especially in variance). There are also volatility group-
ings, which means this series is volatile. This volatility changes over time. This
allows to say that a GARCH type process could be adapted to the modelling of
the oil price series. In order to reduce the variability of the oil price series "OIL",
we need to transform the series "OIL" into a logarithm series "lnOIL"
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According to the statistical indicators of the petroleum series, we notice that
the Kurtosis coefficient (2.53) is lower than the value of the Kurtosis of the nor-
mal law which is equal to 3 (i.e. the distribution is platykurtic). The Skewness
coefficient (0.92) is different from zero (ie the distribution is spread to the right).
This asymmetry can be an indicator of non-linearity.

3.2. Study of stationarity. The graph of the "lnOIL" series of petroleum shows
that there is a unit root which is confirmed by the Dikey-Fuller Increase test
(DFA) at the 5% level.

The first difference is applied to station the "OIL" and "lnOIL" series. The
following table summarizes the results of the ADF test.

3.3. ARMA modelling using Box Jenkins methodology.
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TABLE 1. ADFtest

Series Calculated value Critical value P -Value
OIL −1, 174 −2, 862 0, 687

DOIL −49, 840 −2, 862 0, 0001

lnOIL −1, 298 −2, 862 0, 632

DlnOIL −31, 848 −2, 862 0, 0001

3.3.1. Identification of the ARMA(p, q) model. The DlnOIL series is stationary,
we will look for an ARMA model (p, q). According to the correlogram of the
DlnOIL series, there are four models to remember: AR(1),MA(1), ARMA(1, 1)

and ARMA(3, 1). To conclude on the quality of estimation of the four models,
we will use the criteria AIC and SC (the smallest).

3.3.2. Estimation of the selected models. In all four models, the calculated stu-
dent statistic of the coefficients is greater in absolute value than 1.96. It is then
observed that the coefficients are significantly different from zero. Which shows
the following table:

TABLE 2. Model estimation

Model Coefficients S.E T.S P.V
AR(1) 0, 176 0, 010 16, 377 0, 000

MA(1) 0, 196 0, 010 18, 825 0, 000

ARMA(1, 1)
φ1 = −0, 236

θ1 = 0, 427

0, 052

0, 048

−4, 544

8, 793

0, 000

0, 000

ARMA(3, 1)
φ3 = 0, 051

θ1 = 0, 195

0, 011

0, 010

4, 303

18, 915

0, 000

0, 000

The model estimation step resulted in the conservation of the two models for
review of the residue tests.

3.3.3. Validation of the ARMA model. The validation of the model involves the
verification of tests for the absence of autocorrelation of the residuals. To do
that, we must examine the correlograms of the residuals of each of the four
models. For this we apply the Lejung − Box(LB) test, for a maximum delay
number 36 for the four models. The test results for each model are given in the
table below:
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TABLE 3. LB test

Model AR(1) MA(1) ARMA(1, 1) ARMA(3, 1)

Q(36) 90, 519 77, 666 66, 475 63, 371

P−Value 0, 0000 0, 0000 0, 0010 0, 0020

Q2(36) 1692, 3 1700, 9 1676, 1 1680, 6

P.V alue 0, 0000 0, 0000 0, 0000 0, 0000

The analysis of the residues resulting from the modelization ARMA, shows the
existence of nonlinear relation. Indeed, reading Table 3 shows the existence of
autocorrelation as indicated by the Ljungue-Box statistic of residuals and square
residuals. then the null hypothesis of autocorrelation abscence is rejected.

The characteristics of the shape of the residuals of the four models are pre-
sented in the table below:

TABLE 4. Statistical indicators of the models

AR(1) MA(1) ARMA(1, 1) ARMA(3, 1)

Kurtosis 10, 519 10, 388 10, 268 10, 332

Skewness 0, 388 0, 373 0, 351 0, 379

Jarque.B 8963, 163 8382, 721 8111, 332 8265, 802

Table 4 also confirms the leptokurtic and asymmetric nature of the residues
(kurtosis > 3 and Skewness 6= 0).

The form indicators and the analysis of the residuals indicate the presence of
volatility (the presence of a non-stationary series in variance).

The choice of the most appropriate model among the estimated models is
made on the basis of minimization of the criterion Akaike (AIC) and Schwarz
(SIC) and maximization of log likelihood LL.

TABLE 5. Criterion for choosing the model

AR(1) MA(1) ARMA(1, 1) ARMA(3, 1)

AIC −5, 882 −5, 889 −5, 891 −5, 891

SIC −5, 882 −5, 886 −5, 885 −5, 886

LL 10747 10753 10757 10758
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According to table 5, the model to be retained among the four validated mod-
els is the model ARMA (3, 1) .

We reject the assumption of normality of the residuals. This result is con-
firmed by the Jarque-Bera statistic (8265, 82 > χ2

0,05(2) = 5, 99) and the associ-
ated probability is 0, 00 < 5%.

3.3.4. Heteroscedasticity test. The number of delay “q” to be retained must first
be determined. With regard to the correlogram of squared residuals of the
ARMA(3, 1) model .

From this we therefore reject the null hypothesis of homoscedasticity in favor
of the conditional heteroscedasticity, alternative for the model ARMA(3, 1).

Note that the above graph shows that the series of squares can follow a condi-
tionally heteroscedastic ARCH model, where there is a period of high volatility.
We can now proceed to the LM test analogously to (2014) test [23].
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TABLE 6. Choice of model

ARCH(1) ARCH(2) GARCH(3, 1) EGARCH(1, 2) TARCH(3)

AIC -5,9742 -5,9858 -6,2042 -6,2155 -6,0131
SIC -5,9674 -5,9773 -6,1923 -6,2036 -6,0012
LL 10901,07 10923,14 11323,51 11344,10 10974,92
R2 0,0360 0,0357 0,0366 0,0365 0,0357

3.4. GARCH modelling. The squared residuals correlogram of the ARIMA

model (3, 1, 1) shows at least three autocorrelations (simple and partial) are sig-
nificantly different from zero. Thus we estimate the following models: ARCH(1),
ARCH(2), GARCH(3, 1), EGARCH(1, 2) and TARCH(3).

The models: ARCH(1), ARCH(2) and GARCH(3, 1) vanish the positivity
condition of coefficients of variance and stationarity equation. The two pro-
cesses EGARCH (1, 2) and TARCH(3) satisfy the condition of asymmetry.

The choice of the most suitable model is based on the selection criteria ac-
cording to Table 7:

It therefore indicates that the only model retained for predicting volatility is
the EGARCH model (1, 2).
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TABLE 7. Calculation of the standard criteria RMSE, MAE, MAPE
and THEIL

ARCH(1) ARCH(2) GARCH(3, 1) EGARCH(1, 2) TARCH(3)

RMSE 5,38E-05 8,42E-05 1,99E-05 1,51E-05 8,52E-05
MAE 1,50E-05 2,77E-05 5,49E-06 4,60E-06 2,76E-05
MAPE 726,9949 1033,348 50,42203 74,24842 870,1202
THEIL 0,057871 0,0852 0,022012 0,016558 0,085983

A very important analysis, remains to be undertaken, is a question of com-
paring the characteristics of predictive power of the various models. Hence, we
present the calculation of the RMSE (Root Mean Square Error), MAE (Mean
Absolut Error),MAPE (Mean Absolut Percentage Error) and THEIL inequality
coefficient (close to zero) for a forecast time ranging from 1 to 31 days (month
of January 2020). We have noticed that the EGARCH(1, 2) model is the best
model for the forecasts of the "OIL" series, Mohamed E. M. Abdelhafez (2018).

Table 9: Estimation of the EGARCH model(1,2)
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After examining the correlation of the residuals, we notice that the peaks are
within the confidence interval (P.V alue > 0.05). Consequently, the null hypoth-
esis of absence of autocorrelation of the residuals is accepted.

The conditional mean with conditional variance equation is given by

D lnOILt = 0, 061891D lnOILt−3 − 0, 183594εt−1 + εt − 0, 086383

+0, 285619

∣∣∣∣ εt−1σt−1

∣∣∣∣− 0, 208511

∣∣∣∣ εt−2σt−2

∣∣∣∣− 0, 046891
εt−1
σt−1

+0, 996243 log
(
σ2
t−1
)

For the forecast of the first three months of the year 2020, we use the ARIMA
(3,1,1) + EGARCH (1,2) model. The forecast values of the oil price are given in
the table above.

Table 10: Forecast and Actual OIL price for the first three month of 2020
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4. CONCLUSION

This paper has investigated daily oil price volatility. We have employed two
univariate specifications of the generalized autoregressive conditional hetero-
scedastic (GARCH) model, including both symmetric and asymmetric models
that capture most common stylized facts about oil price such as volatility clus-
tering and leverage effect. We performed an ARCH test which rejected the null
hypothesis of homoscedasticity. From this, we have deduced that a nonlinear
ARMA model of type ARCH is adequate. Then we estimated five ARMA mod-
els of the ARCH type: ARCH(1), ARCH(2), GARCH(3, 1), EGARCH(1, 2)

and TARCH(3). The criteria AIC, R2 and LL lead us to choose the model
ARIMA(3, 1, 1) + EGARCH(1, 2), as being the most adequate model for the
forecast. From the outcome of our investigation it is possible to conclude that
the RMSE, MAPE and U THEIL forecasting quality come up with a good
forecasting model.
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