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DECOMPOSITION OF GENERALIZED FAN GRAPHS

M. Subbulakshmi and I. Valliammal1

ABSTRACT. Let G = (V,E) be a finite graph. The Generalized Fan Graph Fm,n

is defined as the graph join Km + Pn, where Km is the empty graph on m

vertices and Pn is the path graph on n vertices. Decomposition of Generalized
Fan Graph denoted by D(Fm,n). A star with 3 edges is called a claw S3. In
this paper, we discuss the decomposition of Generalized Fan Graph into claws,
cycles and paths.

1. INTRODUCTION

Graph theory is proved to be tremendously useful in modeling the essential
features of system with finite components. Graphical models are used to rep-
resent telephone network, railway network, communication problems, traffic
network etc. A graph is a convenient way of representing information involving
relationship between objects. The objects are represented by vertices and the
relations by edges [5].

The Generalized Fan Graph Fm,n is defined as the graph join Km + Pn, where
Km is the empty graph on m vertices and Pn is the path graph on n vertices [6].
The case m = 1 corresponds to the usual Fan Graphs, while m = 2 corresponds
to the Double Fan Graphs, etc. Number of edges of the Generalized Fan Graph
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Fm,n with (m + n) vertices is mn + (n − 1). A star Sn is the complete bipartite
graph K1,n; A tree with one internal vertex and n edges. A vertex v ∈ V (G) is
said to be complete vertex if deg(v) = n− 1.

All graphs considered here are finite and undirected without loops, unless
otherwise noted. For the standard graph-theoretic terminology the reader is
referred to [7] and to study about the decomposition of graphs into paths, stars
and cycles is referred to [1–4].

As usual Cn denotes the cycle of length n, Pn+1 denotes the path of length
n, S3 denotes the claw and D(Fm,n) denotes decomposition of Generalized Fan
Graph.

2. BASIC DEFINITIONS

In this section, we see some basic definitions of graph decomposition and
Generalized Fan Graph.

Let L = {H1, H2, . . . , Hr} be a family of subgraphs of G. An L−decomposition

of G is an edge- disjoint decomposition of G into positive integer αi copies of
Hi, where i ∈ {1, 2, . . . , r}. Furthermore, if each Hi (i ∈ {1, 2, . . . , r}) is isomor-
phic to a graph H, we say that G has an H − decomposition. It is easily seen
that

∑r
i=1 αi e (Hi) = e (G) is one of the obvious necessary conditions for the

existence of a {H1, H2, . . . , Hr} − decomposition of G. For convenience, we call
the equation,

∑r
i=1 αi e (Hi) = e (G), a necessary sum condition [10].

The Generalized Fan Graph Fm,n is a graph with vertex set V (Fm,n) = V (Km)
∪

V (Pn), where V (Km) = {v1, v2, . . . , vm} and V (Pn) = {u1, u2, . . . , un} and edge-
set consisting of all edges of the form eij = viuj and ek = ukuk+1 where 1 ≤ i ≤
m, 1 ≤ j ≤ n and 1 ≤ k ≤ n− 1 [6].

Obviously Fan Graph F1,n has every vertex of degree 3 except the complete
vertex v1 and the vertices u1 and un are of degree 2. Complete vertex has degree
n.

3. DECOMPOSITION OF FAN GRAPHS F1,n

In this section, we characterize the theorem of decomposition of Fan Graph
F1,n into claws, cycles and paths.

Theorem 3.1. Any Fan Graph F1,n, n ≥ 2 can be decomposed into Pn and Sn.
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Proof. Proof is immediate from the definition of the Fan Graph F1,n. �

Theorem 3.2. Any Fan Graph F1,n can be decomposed into following ways.

D(F1,n) =



(4d− 1)S3 and P3, d = 1, 2, 3, . . . if n = 6d, d = 1, 2, 3, . . .

(4d)S3 and P2, d = 1, 2, 3 . . . if n = 6d+ 1, d = 1, 2, 3, . . .

4(d− 1)S3 and C3, d = 1, 2, 3, . . . if n = 6d− 4, d = 1, 2, 3, . . .

(4d− 3)S3 and P3, d = 1, 2, 3, . . . if n = 6d− 3, d = 1, 2, 3, . . .

(4d− 2)S3 and P2, d = 1, 2, 3 . . . if n = 6d− 2, d = 1, 2, 3, . . .

(4d− 1)S3, d = 1, 2, 3, . . . if n = 6d− 1, d = 1, 2, 3, . . .

.

Proof. Let V (F1,n) = {v1, u1, u2, . . . , un} and

E(F1,n) = {eij/i = 1, 1 ≤ j ≤ n}
∪

{ek/1 ≤ k ≤ n− 1} .

Case 1. n = 6d, d = 1, 2, 3, . . ..
To Prove: F1,n decomposed into (4d− 1)S3 and P3, d = 1, 2, 3, . . . .

Let Ei = {ej, e1(j+1), ej+1} where j = 1, 3, 5, . . . , n−3, Ej = {e1j, e1(j+2), e1(j+4)}
where j = 1, 7, 13, . . . , n − 5 and Ek = {en−1, e1n}. The edge induced subgraph
< Ei > forms (3d− 1) copies of S3, the edge induced subgraph < Ej > forms d
copies of S3 and the edge induced subgraph < Ek > forms a path P3 of length
2. Hence F1,n decomposed into 3d− 1 + d = 4d− 1 copies of S3 and a path P3.

Case 2. n = 6d+ 1, d = 1, 2, 3, . . ..
To Prove: F1,n decomposed into (4d)S3 and P2, d = 1, 2, 3 . . ..
Let Ei = {ej, e1(j+1), ej+1} where j = 1, 3, 5, . . . , n−2, Ej = {e1j, e1(j+2), e1(j+4)}

where j = 1, 7, 13, . . . , n−6 and Ek = {e1n}. The edge induced subgraph < Ei >

forms 3d copies of S3, the edge induced subgraph < Ej > forms d copies of S3

and the edge induced subgraph < Ek > forms a path P2 of length 1. Hence F1,n

decomposed into 3d+ d = 4d copies of S3 and a path P2.

Case 3. n = 6d− 4, d = 1, 2, 3, . . ..
To Prove: F1,n decomposed into 4(d− 1)S3 and C3, d = 1, 2, 3, . . ..
Let Ei = {ej, e1(j+1), ej+1} where j = 1, 3, 5, . . . , n−3, Ej = {e1j, e1(j+2), e1(j+4)}

where j = 1, 7, 13, . . . , n − 7 and Ek = {e1(n−1), en−1, e1n}. The edge induced
subgraph < Ei > forms (3d−3) copies of S3, the edge induced subgraph < Ej >

forms (d− 1) copies of S3 and the edge induced subgraph < Ek > forms a cycle
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C3 of length 3. Hence F1,n decomposed into 3d− 3 + d− 1 = 4d− 4 = 4(d− 1)

copies of S3 and a cycle C3.

Case 4. n = 6d− 3, d = 1, 2, 3, . . ..
To Prove: F1,n decomposed into (4d− 3)S3 and P3, d = 1, 2, 3, . . ..
Let Ei = {ej, e1(j+1), ej+1} where j = 1, 3, 5, . . . , n−2, Ej = {e1j, e1(j+2), e1(j+4)}

where j = 1, 7, 13, . . . , n− 8 and Ek = {e1(n−2), e1n}. The edge induced subgraph
< Ei > forms (3d − 2) copies of S3, the edge induced subgraph < Ej > forms
(d − 1) copies of S3 and the edge induced subgraph < Ek > forms a path P3 of
length 2. Hence F1,n decomposed into 3d − 2 + d − 1 = 4d − 3 copies of S3 and
a path P3.

Case 5. n = 6d− 2, d = 1, 2, 3, . . ..
To Prove: F1,n decomposed into (4d− 2)S3 and P2, d = 1, 2, 3, . . ..
Let Ei = {ej, e1(j+1), ej+1} where j = 1, 3, 5, . . . , n−3, Ej = {e1j, e1(j+2), e1(j+4)}

where j = 1, 7, 13, . . . , n − 9, Ek = {e1(n−3), e1(n−1), e1n} and El = {en−1}. The
edge induced subgraph < Ei > forms (3d − 2) copies of S3, the edge induced
subgraph < Ej > forms (d− 1) copies of S3, the edge induced subgraph < Ek >

forms 1 copy of S3 and the edge induced subgraph < El > forms a path P2 of
length 1. Hence F1,n decomposed into 3d − 2 + d − 1 + 1 = 4d − 2 copies of S3

and a path P2.

Case 6. n = 6d− 1, d = 1, 2, 3, . . ..
To Prove: Wn decomposed into (4d− 1)S3, d = 1, 2, 3, . . ..
Let Ei = {ej, e1(j+1), ej+1} where j = 1, 3, 5, . . . , n − 2 and Ej = {e1j, e1(j+2),

e1(j+4)} where j = 1, 7, 13, . . . , n − 4. The edge induced subgraph < Ei > forms
(3d − 1) copies of S3 and the edge induced subgraph < Ej > forms d copies of
S3. Hence F1,n decomposed into 3d− 1 + d = 4d− 1 copies of S3. �

Illustration: Decomposition of Fan Graph F1,n on case 3 and case 4 explained
through the following Figure 1.

The two figures represents decomposition of F1,8 into 4 copies of S3 and a
cycle C3 and decomposition of F1,9 into 5 copies of S3 and a path P3 respectively.

All edges of the claws, cycle and path differentiated in the Figure 1.

Note 3.1. In the above theorem Case 6 guarantees that there is a claw decomposi-
tion for Fan Graph F1,n.
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FIGURE 1.

4. DECOMPOSITION OF DOUBLE FAN GRAPH F2,n

In this section, we characterize the theorem of decomposition of Double Fan
Graph F2,n into claws and paths.

Obviously Double Fan Graph F2,n has every vertex of degree 4 except the
vertices v1 and v2 are of degree n and the vertices u1 and un are of degree 3

respectively.

Theorem 4.1. The Double Fan Graph F2,n can be decomposed into (n − 1) copies
of S3 and P3.

Proof. Let V (F2,n) = {v1, v2, u1, u2, . . . , un} and

E(F2,n) = {eij/i = 1, 2, 1 ≤ j ≤ n}
∪

{ek/1 ≤ k ≤ n− 1}.

To Prove: F2,n decomposed into (n− 1) copies of S3 and P3.
Let Ei = {e1j, ej, e2j} where j = 1, 2, 3, . . . , n − 1 and Ej = {e1n, e2n}. The

edge induced subgraph < Ei > forms (n− 1) copies of S3 and the edge induced
subgraph < Ej > forms a path P3 of length 2. Hence F2,n can be decomposed
into (n− 1) copies of S3 and P3. �

Illustration: Decomposition of Double Fan Graph F2,n explained through the
following Figure 2.

The two figures represents decomposition of F2,6 into 5 copies of S3 and a
path P3 and decomposition of F2,7 into 6 copies of S3 and a path P3 respectively.

All edges of the claws and path differentiated in the Figure 2.
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FIGURE 2.

Note 4.1. In the above theorem guarantees that there is no claw decomposition for
Double Fan Graph F2,n.

5. DECOMPOSITION OF TRIPLE FAN GRAPH F3,n

In this section, we characterize the theorem of decomposition of Triple Fan
Graph F3,n into claws and paths.

Obviously Triple Fan Graph F3,n has every vertex of degree 5 except the ver-
tices v1, v2 and v3 are of degree n and the vertices u1 and un are of degree 4

respectively.

Theorem 5.1. Any Triple Fan Graph F3,n can be decomposed into following ways.

D(F3,n) =


(4d− 1)S3 and P3, d = 1, 2, 3, . . . if n = 3d, d = 1, 2, 3, . . .

(4d+ 1)S3, d = 1, 2, 3 . . . if n = 3d+ 1, d = 1, 2, 3, . . .

(4d− 2)S3 and P2, d = 1, 2, 3 . . . if n = 3d− 1, d = 1, 2, 3, . . .

.

Proof. Let V (F3,n) = {v1, v2, v3, u1, u2, . . . , un} and

E(F3,n) = {eij/i = 1, 2, 3, 1 ≤ j ≤ n}
∪

{ek/1 ≤ k ≤ n− 1}.

Case 1. n = 3d, d = 1, 2, 3, . . ..
To Prove: F3,n decomposed into (4d− 1)S3 and P3, d = 1, 2, 3, . . . .

Let Ei = {e1(j+1), ej, e2(j+1)} where j = 1, 2, 3, . . . , n − 1, Ej = {e11, e21, e31}
∪

{e3j, e3(j+1), e3(j+2)} where j = 2, 5, 8, . . . , n−4 and Ek = {e3(n−1), e3n}. The edge
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induced subgraph < Ei > forms (3d−1) copies of S3, the edge induced subgraph
< Ej > forms d copies of S3 and the edge induced subgraph < Ek > forms a
path P3 of length 2. Hence F3,n decomposed into 3d − 1 + d = 4d − 1 copies of
S3 and a path P3.

Case 2. n = 3d+ 1, d = 1, 2, 3, . . ..
To Prove: F3,n decomposed into (4d+ 1)S3, d = 1, 2, 3 . . ..
Let Ei = {e1(j+1), ej, e2(j+1)} where j = 1, 2, 3, . . . , n− 1 and Ej = {e11, e21, e31}∪
{e3j, e3(j+1), e3(j+2)} where j = 2, 5, 8, . . . , n − 2. The edge induced subgraph

< Ei > forms 3d copies of S3 and the edge induced subgraph < Ej > forms
(d + 1) copies of S3. Hence F3,n decomposed into 3d + d + 1 = 4d + 1 copies of
S3.

Case 3. n = 3d− 1, d = 1, 2, 3, . . ..
To Prove: F3,n decomposed into (4d− 2)S3 and P2, d = 1, 2, 3, . . . .

Let Ei = {e1(j+1), ej, e2(j+1)} where j = 1, 2, 3, . . . , n − 1, Ej = {e11, e21, e31}
∪

{e3j, e3(j+1), e3(j+2)} where j = 2, 5, 8, . . . , n − 3 and Ek = {e3n}. The edge in-
duced subgraph < Ei > forms (3d− 2) copies of S3, the edge induced subgraph
< Ej > forms d copies of S3 and the edge induced subgraph < Ek > forms a
path P2 of length 1. Hence F3,n decomposed into 3d − 2 + d = 4d − 2 copies of
S3 and a path P2. �

Illustration: Decomposition of Triple Fan Graph F3,n explained through the
following Figure 3.

   

      

v1 v3v2

u1 u2 u3 u4 u5 u6

(n = 3d, d = 2) F3,6

FIGURE 3.
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The above figures represents decomposition of F3,6 into 7 copies of S3 and a
path P3.

All edges of the claws and path differentiated in the above Figure 3.

Note 5.1. In the above theorem Case 2 guarantees that there is a claw decomposi-
tion for Triple Fan Graph F3,n.

6. DECOMPOSITION OF QUADRUPLE FAN GRAPH F4,n

In this section, we characterize the theorem of decomposition of Quadruple
Fan Graph F4,n into claws and paths.

Obviously Quadruple Fan Graph F4,n has every vertex of degree 6 except the
vertices v1, v2, v3 and v4 are of degree n and the vertices u1 and un are of degree
5 respectively.

Theorem 6.1. Any Quadruple Fan Graph F4,n can be decomposed into following
ways.

D(F4,n) =



(10d− 1)S3 and P3, d = 1, 2, 3, . . . if n = 6d, d = 1, 2, 3, . . .

(10d+ 1)S3 and P2, d = 1, 2, 3 . . . if n = 6d+ 1, d = 1, 2, 3, . . .

(10d− 8)S3 and P4, d = 1, 2, 3, . . . if n = 6d− 4, d = 1, 2, 3, . . .

(10d− 6)S3 and P3, d = 1, 2, 3, . . . if n = 6d− 3, d = 1, 2, 3, . . .

(10d− 4)S3 and P2, d = 1, 2, 3 . . . if n = 6d− 2, d = 1, 2, 3, . . .

(10d− 2)S3, d = 1, 2, 3, . . . if n = 6d− 1, d = 1, 2, 3, . . .

.

Proof. Let V (F4,n) = {v1, v2, v3, v4, u1, u2, . . . , un} and

E(F4,n) = {eij/i = 1, 2, 3, 4, 1 ≤ j ≤ n}
∪

{ek/1 ≤ k ≤ n− 1}.

Case 1. n = 6d, d = 1, 2, 3, . . ..
To Prove: F4,n decomposed into (10d− 1)S3 and P3, d = 1, 2, 3, . . . .

Let Ei = {e1j, ej−1, e2j} where j = 2, 4, . . . , n, Ej = {e3j, ej, e4j} where j =

2, 4, 6, . . . , n−2, Ek = {e1j, e2j, e3j} where j = 1, 3, 5, . . . , n−1, El = {e4j, e4(j+2),

e4(j+4)} where j = 1, 7, . . . , n − 5 and Em = {e3n, e4n}. The edge induced sub-
graph < Ei > forms 3d copies of S3, the edge induced subgraph < Ej > forms
(3d− 1) copies of S3, the edge induced subgraph < Ek > forms 3d copies of S3,
the edge induced subgraph < El > forms d copies of S3 and the edge induced
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subgraph < Em > forms a path P3 of length 2. Hence F4,n decomposed into
3d+ 3d− 1 + 3d+ d = 10d− 1 copies of S3 and a path P3.

Case 2. n = 6d+ 1, d = 1, 2, 3, . . ..
To Prove: F4,n decomposed into (10d+ 1)S3 and P2, d = 1, 2, 3, . . . .

Let Ei = {e1j, ej−1, e2j} where j = 2, 4, . . . , n − 1, Ej = {e3j, ej, e4j} where
j = 2, 4, 6, . . . , n−1, Ek = {e1j, e2j, e3j} where j = 1, 3, 5, . . . , n, El = {e4j, e4(j+2),

e4(j+4)} where j = 1, 7, . . . , n − 6 and Em = {e4n}. The edge induced subgraph
< Ei > forms 3d copies of claws, the edge induced subgraph < Ej > forms 3d

copies of S3, the edge induced subgraph < Ek > forms (3d + 1) copies of S3,
the edge induced subgraph < El > forms d copies of S3 and the edge induced
subgraph < Em > forms a path P2 of length 1. Hence F4,n decomposed into
3d+ 3d+ 3d+ 1 + d = 10d+ 1 copies of S3 and a path P2.

Case 3. n = 6d− 4, d = 1, 2, 3, . . ..
To Prove: F4,n decomposed into (10d− 8)S3 and P4, d = 1, 2, 3, . . . .

Let Ei = {e1j, ej−1, e2j} where j = 2, 4, . . . , n, Ej = {e3j, ej, e4j} where j =

2, 4, 6, . . . , n−2, Ek = {e1j, e2j, e3j} where j = 1, 3, 5, . . . , n−1, El = {e4j, e4(j+2),

e4(j+4)} where j = 1, 7, . . . , n− 7 and Em = {e3n, e4n, e4(n−1)}. The edge induced
subgraph < Ei > forms (3d−2) copies of S3, the edge induced subgraph < Ej >

forms (3d − 3) copies of S3, the edge induced subgraph < Ek > forms (3d − 2)

copies of S3, the edge induced subgraph < El > forms (d − 1) copies of S3 and
the edge induced subgraph < Em > forms a path P4 of length 3. Hence F4,n

decomposed into 3d − 2 + 3d − 3 + 3d − 2 + d − 1 = 10d − 8 copies of S3 and a
path P4.

Case 4. n = 6d− 3, d = 1, 2, 3, . . ..
To Prove: F4,n decomposed into (10d− 6)S3 and P3, d = 1, 2, 3, . . . .

Let Ei = {e1j, ej−1, e2j} where j = 2, 4, . . . , n − 1, Ej = {e3j, ej, e4j} where
j = 2, 4, 6, . . . , n−1, Ek = {e1j, e2j, e3j} where j = 1, 3, 5, . . . , n, El = {e4j, e4(j+2),

e4(j+4)} where j = 1, 7, . . . , n − 8 and Em = {e4(n−2), e4n}. The edge induced
subgraph < Ei > forms (3d−2) copies of S3, the edge induced subgraph < Ej >

forms (3d − 2) copies of S3, the edge induced subgraph < Ek > forms (3d − 1)

copies of S3, the edge induced subgraph < El > forms (d − 1) copies of S3 and
the edge induced subgraph < Em > forms a path P3 of length 2. Hence F4,n

decomposed into 3d − 2 + 3d − 2 + 3d − 1 + d − 1 = 10d − 6 copies of S3 and a
path P3.
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Case 5. n = 6d− 2, d = 1, 2, 3, . . ..
To Prove: F4,n decomposed into (10d− 4)S3 and P2, d = 1, 2, 3, . . . .

Let Ei = {e1j, ej−1, e2j} where j = 2, 4, . . . , n, Ej = {e3j, ej, e4j} where j =

2, 4, 6, . . . , n−2, Ek = {e1j, e2j, e3j} where j = 1, 3, 5, . . . , n−1, El = {e4j, e4(j+2),

e4(j+4)}
∪
{e4(n−3), e4(n−1), e4n} where j = 1, 7, . . . , n − 9 and Em = {e3n}. The

edge induced subgraph < Ei > forms (3d − 1) copies of S3, the edge induced
subgraph < Ej > forms (3d−2) copies of S3, the edge induced subgraph < Ek >

forms (3d− 1) copies of S3, the edge induced subgraph < El > forms d copies of
S3 and the edge induced subgraph < Em > forms a path P2 of length 1. Hence
F4,n decomposed into 3d− 1 + 3d− 2 + 3d− 1 + d = 10d− 4 copies of S3 and a
path P2.

Case 6. n = 6d− 1, d = 1, 2, 3, . . ..
To Prove: F4,n decomposed into (10d− 2)S3, d = 1, 2, 3, . . . .

Let Ei = {e1j, ej−1, e2j} where j = 2, 4, . . . , n− 1, Ej = {e3j, ej, e4j} where j =

2, 4, 6, . . . , n−1, Ek = {e1j, e2j, e3j} where j = 1, 3, 5, . . . , n and El = {e4j, e4(j+2),

e4(j+4)} where j = 1, 7, . . . , n − 4. The edge induced subgraph < Ei > forms
(3d − 1) copies of S3, the edge induced subgraph < Ej > forms (3d − 1) copies
of S3, the edge induced subgraph < Ek > forms 3d copies of S3 and the edge
induced subgraph < El > forms d copies of S3. Hence F4,n decomposed into
3d− 1 + 3d− 1 + 3d+ d = 10d− 2 copies of S3. �

Illustration: Decomposition of Quadruple Fan Graph F4,n explained through
the following Figure 4.

    

      

v1 v2 v3 v4

u1 u2 u3 u4 u5 u6

(n = 6d, d = 1) F4,6

FIGURE 4.
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The above figures represents decomposition of F4,6 into 9 copies of S3 and a
path P3.

All edges of the claws and path differentiated in the above Figure 4.

Note 6.1. In the above theorem Case 6 guarantees that there is a claw decomposi-
tion for Quadruple Fan graph F4,n.

7. CONCLUSION

In this paper, we discussed decomposition of Fan Graphs, Double Fan Graphs,
Triple Fan Graphs and Quadruple Fan Graphs into claws, cycles and paths.
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