
ADV  MATH
SCI  JOURNAL

Advances in Mathematics: Scientific Journal 10 (2021), no.5, 2449–2468
ISSN: 1857-8365 (printed); 1857-8438 (electronic)
https://doi.org/10.37418/amsj.10.5.12

SOME FIXED POINT RESULTS FOR A GENERALIZED ψ-WEAK
CONTRACTION MAPPINGS IN b-METRIC SPACES

Eman Bashayreh1, Abdallah Talafhah, and Wasfi Shatanawi

ABSTRACT. In this paper, we will present the definitions and notation of gen-
eralized ψ-weak contraction mappings in b-metric spaces, and establish some
results besides the most important properties of fixed point in orbitally com-
plete b-metric spaces. Our results generalize several well-known comparable
results in the literature. As an application of our results we generalize the re-
sults of Shatanawi [7]. Some examples are given to illustrate the useability of
our results.

1. INTRODUCTION

The Banach contraction principle [2] is one of the basic results in fixed point
theory which asserts that every contraction function in a complete metric space
has a unique fixed point. Subsequently, many authors generalized Banach con-
traction principle in different ways (see [1–3,5].

Kamran et al. in [4] introduced the definition of extended b-metric spaces as
a generalization of b-metric spaces.

In the sequel, we need the following definitions
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Definition 1.1. [4] Let X be anon empty set and s ≥ 1 be a real number. A
function d : x × x → [0,∞) is called a b − metric space [1, 3], if it satisfies the
following properties for each x, y, z ∈ X:

(b1): d(x, y) = 0 iff x = y.
(b2): d(x, y) = d(y, x).
(b3): d(x, z) ≤ s [d(x, y) + d(y, z)] .

Definition 1.2. [6] Let (X, d) be a b − metric space. A sequence {xn} on X is
said to be

(I) Cauchy iff d(xn, xm)→ 0 as n, m→∞.
(II) Convergent iff there exist x ∈ X such that d(xn, x)→ 0 as n→∞ and we

write lim
n→∞

xn = x.

(III) The b−metric (X, d) is complete if every cauchy sequance is convergent.

Example 1. [8, 10] Let X = lp(R) with 0 < p < 1 where lp(R) = {{xn} ⊂ R :
∞∑
n=1

|xn|p <∞}. Define d : X ×X → [0,∞) as:

d(x, y) =

(
∞∑
n=1

|xn − yn|p
)1/p

,

where x = {xn}, y = {yn}. Then d is a b-metric space with coefficient s = 21/p.

Example 2. [20] Let (X, d) be a metric space and σd : X × X → R+ defined by
σd(x, y) = [d(x, y)]p for all x, y ∈ X, where p > 1 is a fixed real number. Then σd is
a b−metric with s = 2p−1.

Remark 1.1. If θ(x, y) = s for s ≥ 1, then we obtain the definition of a b-metric
space.

Example 3. Let X ={1, 2, 3} Define θ : X ×X → R+ and dθ : X ×X → R+as:

θ(x, y) = x+ y, and

dθ(1, 1) = dθ(2, 2) = dθ(3, 3) = 0,

dθ(1, 2) = dθ(2, 1) = 2, dθ(1, 3) = dθ(3, 1) = 3, dθ(2, 3) = dθ(3, 2) = 4.

Definition 1.3. [7] Let (X, d) be a b-metric space and f : X → X be a mapping.
An orbit of f at a point x of X is the set O(x, f) = {x, fx, f 2x, . . .}.
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Definition 1.4. [7] Let (X, d) be a b−metric space and f : X → X be a mapping.
X is said to be f−orbitally complete if every cauchy sequance in O(x, f), x ∈ X,

converges to a point in X.

Definition 1.5. [11] A single-valued mapping f : X → X is called a Ćiríc strong
almost contraction if there exist a constant α ∈ [0, 1] and some L ≥ 0 such that

d(fx, fy) ≤ αM(x, y) + Ld(y, fx)

for all x, y ∈ X, where

M(x, y) = max

{
d(x, y), d(x, fx), d(y, fy),

d(x, fy) + d(y, fx)

2

}
.

Definition 1.6. [7] Let f : X → B(X) be a multivalued mapping. Then x ∈ X is
said to be a fixed point of f if x ∈ fx.

Definition 1.7. [7] Let (X, d) be a b − metric space and f : X → B(X) be a
mapping. Then we say that X is f-multivalued orbitally complete (or multivalued
orbitally complete) if any Cauchy subsequence (xni

) of {x = x0, x1 ∈ fx0, x2 ∈
fx2, . . .}, x ∈ X converges in X.

Theorem 1.1. [12] Let (X, d) be an orbitally complete metric space and let f :

X → X be a given mapping. Suppose that there exist nonnegative real numbers δ,
γ and L with δ + γ < 1 and L ≥ 0 such that

d(fx,fy)∫
0

φ(s)ds ≤ δ
m(x,y)∫

0

φ(s)ds+ γ
M(x,y)∫

0

φ(s)ds+ L
N(x,y)∫

0

φ(s)ds

for all x, y ∈ X, where

m(x, y) = d(y, fy)
1 + d(x, fx)

1 + d(x, y)
,

M(x, y) = max

{
d(x, y), d(x, fx), d(y, fy),

d(x, fy) + d(y, fx)

2

}
and

N(x, y) = min {d(x, fx), d(y, fx)} .
Then f has a unique fixed point.

Definition 1.8. [7] The function φ : [0,+∞) → [0,+∞)is called an altering dis-
tance function, if the following properties are satisfied:

(1) φ is continuous and nondecreasing;
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(2) φ(t) = 0 if and only if t = 0.

For some fixed point theorems based on altering distance function, we refer
the reader as example to [13–19].

In this paper, we introduce the notion of a generalized ψ-weak contraction
mapping and establish some results in orbitally complete extended b-metric
spaces, where ψ is an altering distance function.

2. THE MAIN RESULT

Let (X, d) be a b-metric space and B(X) denotes to the class of nonempty
bounded subsets of X. For A,B ∈ B(X), let D(A,B) = inf{d(a, b) : a ∈ A, b ∈
B}, and δ(A,B) = sup{d(a, b) : a ∈ A, b ∈ B}.

Definition 2.1. Let (X, d) be a b-metric space and ψ be an altering distance
function. A mapping f : X → B(X) is said to be a multivalued generalized
ψ − weak contraction mapping if there are nonnegative real numbers a, b and L

with a+ b
s
< 1, b < 1 and L ≥ 0 such that

(2.1) ψ(δ(fx, fy)) ≤ aψ(m1(x, y)) +
b

s
ψ(Ms1(x, y)) + Lψ(N1(x, y))

for all x, y ∈ X, where

m1(x, y) = D(y, fy)
1 +D(x, fx)

1 + d(x, y)
,

Ms1(x, y) = max

{
d(x, y), D(x, fx), D(y, fy),

D(x, fy) +D(y, fx)

2s

}
and

N1(x, y) = min{D(x, fx), D(y, fx)}.

Theorem 2.1. Let (X, d) be a multivalued orbitally complete b-metric space, If
f : X → B(X) is a multivalued generalized ψ-weak contraction mapping such
that ψ(ax) ≤ aψ(x) for all x ∈ X, a ≥ 0, then f has a unique fixed point.

Proof. Let x0 ∈ X and defined a sequences (xn) in X such that xn+1 ∈ fxn. If
xn = xn+1 for some n ∈ N, then xn ∈ fxn and hence xn is a fixed point of f . So,
we may assume that xn 6= xn+1 for all n ∈ N ∪{0}. By inequality (2.1)., we have



SOME FIXED POINT RESULTS FOR A GENERALIZED ψ-WEAK CONTRACTION. . . 2453

ψ(d(xn, xn+1)) ≤ ψ(δ(fxn−1, fxn))(2.2)

≤ aψ(m1(xn−1, xn)) +
b

s
ψ(Ms1(xn−1, xn))

+ Lψ(N1(xn−1, xn)),

where

m1(xn−1, xn) = D(xn, fxn)
1 +D(xn−1, fxn−1)

1 + d(xn−1, xn)

≤ d(xn, xn+1)
1 + d(xn−1, xn)

1 + d(xn−1, xn)
= d(xn, xn+1),(2.3)

Ms1(xn−1, xn)(2.1)

= max
{
d(xn−1, xn), D(xn−1, fxn−1), D(xn, fxn), 6

D(xn−1, fxn) +D(xn, fxn−1)

2s

}
≤ max

{
d(xn−1, xn), d(xn, xn+1),

d(xn−1, xn+1)

2s

}
≤ max

{
d(xn−1, xn), d(xn, xn+1),

s [d(xn−1, xn) + d(xn, xn+1)]

2s

}
= max

{
d(xn−1, xn), d(xn, xn+1),

d(xn−1, xn) + d(xn, xn+1)

2

}
= max{d(xn−1, xn), d(xn, xn+1)},(2.4)

and

N1(xn−1, xn) = min{D(xn−1, fxn−1), D(xn, fxn−1)}

≤ min{d(xn−1, xn), d(xn, xn)} = 0.(2.5)

From (2.2)–(2.5) and the fact that ψ is an altering distance function, we get

(2.6) ψ(d(xn, xn+1)) ≤ aψ(d(xn, xn+1)) +
b

s
ψ(max{d(xn−1, xn), d(xn, xn+1)}).

If

max{d(xn−1, xn), d(xn, xn+1)} = d(xn, xn+1),
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then by (2.6) we have

ψ(d(xn, xn+1)) ≤ aψ(d(xn, xn+1)) +
b

s
ψ(d(xn, xn+1))

=

(
a+

b

s

)
ψ(d(xn, xn+1)) < ψ(d(xn, xn+1)),

a contradiction. Thus,

max{d(xn−1, xn), d(xn, xn+1)} = d(xn−1, xn).

Therefore (2.6) becomes

ψ(d(xn, xn+1)) ≤ aψ(d(xn, xn+1)) +
b

s
ψ(d(xn−1, xn)),

this implies that,

(2.7) ψ(d(xn, xn+1)) ≤
b

s(1− a)
ψ(d(xn−1, xn)).

Let r = b
s(1−a) . Then from (2.7), we have

(2.8) ψ(d(xn, xn+1)) ≤ rψ(d(xn−1, xn)).

Repeating (2.8) n-times, we get

ψ(d(xn, xn+1)) ≤ rψ(d(xn−1, xn))

≤ r2ψ(d(xn−2, xn−1))

...

≤ rnψ(d(x0, x1)).(2.9)

Letting n→ +∞ and using the fact that r < 1, we get

lim
n→+∞

ψ(d(xn, xn+1)) = 0.

Since ψ is an altering distance function, we have

(2.10) lim
n→+∞

d(xn, xn+1) = 0.

Next, we show that, (xn) is a Cauchy sequence in X. Suppose to the contrary;
that is, (xn) is not a Cauchy sequence. Then there exists ε > 0 for which we can
find two subsequences (xm(i)) and (xn(i)) of (xn) such that n(i) is the smallest
index for which

(2.11) n(i) > m(i) > i, d(xm(i), xn(i)) ≥ ε.
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This means that

(2.12) d(xm(i), xn(i)−1) < ε.

From (2.11), (2.12) and (b3) inequality, we get

ε ≤ d(xm(i), xn(i)) ≤ s
[
d(xm(i), xn(i)−1) + d(xn(i)−1, xn(i))

]
< sε+ sd(xn(i)−1, xn(i)).

Using (2.10) and letting i→ +∞ in above inequalities, we get

(2.13) ε ≤ lim
i→+∞

sup d(xm(i), xn(i)) < sε.

Again, by using (b3), we obtain that

(2.14) d(xm(i)−1, xn(i)) ≤ s
[
d(xm(i)−1, xm(i)) + d(xm(i), xn(i))

]
.

Taking limit supremum as i→∞ in (2.14), from (2.10) and (2.13), we get

(2.15) lim
i→+∞

sup d(xm(i)−1, xn(i)) < s2ε.

Similarly, we can show that

(2.16) lim
i→+∞

sup d(xm(i), xn(i)−1) < s2ε.

Finally, we obtain that

d(xm(i)−1, xn(i)−1)

≤ s
[
d(xm(i)−1, xm(i)) + d(xm(i), xn(i)−1)

]
≤ sd(xm(i)−1, xm(i)) + s2

[
d(xm(i), xn(i)) + d(xn(i), xn(i)−1)

]
.(2.17)

Taking limit supremum as i→∞ in (2.17), from (2.10) and (2.13), we get

lim
i→+∞

sup d(xm(i)−1, xn(i)−1) < s3ε.

From (2.1), we have

ψ(d(xm(i), xn(i))) ≤ ψ(δ(fxm(i)−1, fxn(i)−1))

≤ aψ(m1(xm(i)−1, xn(i)−1)) +
b

s
ψ(Ms1(xm(i)−1, xn(i)−1))

+ Lψ(N1(xm(i)−1, xn(i)−1)),(2.18)
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where

m1(xm(i)−1, xn(i)−1) = D(xn(i)−1, fxn(i)−1)
1 +D(xm(i)−1, fxm(i)−1)

1 + d(xm(i)−1, xn(i)−1)

≤ d(xn(i)−1, xn(i))
1 + d(xm(i)−1, xm(i))

1 + d(xm(i)−1, xn(i)−1)
,(2.19)

Ms1(xm(i)−1, xn(i)−1)

= max
{
d(xm(i)−1, xn(i)−1), D(xm(i)−1, fxm(i)−1), D(xn(i)−1, fxn(i)−1),

D(xm(i)−1, fxn(i)−1) +D(fxm(i)−1, xn(i)−1)

2s

}
≤ max

{
d(xm(i)−1, xn(i)−1), d(xm(i)−1, xm(i)), d(xn(i)−1, xn(i)),

d(xm(i)−1, xn(i)) + d(xm(i), xn(i)−1)

2s

}
(2.20)

and

N1(xm(i)−1, xn(i)−1) = min{D(xm(i)−1, fxm(i)−1), D(fxm(i)−1, xn(i)−1)}

≤ min{d(xm(i)−1, xm(i)), d(xm(i), xn(i)−1)}.(2.21)

Letting i → +∞ in (2.19)–(2.21). Then by using (2.10), (2.13), (2.15), (2.16)
and the properties of ψ, we get

(2.22) ψ( lim
i→+∞

m1(xm(i)−1, xn(i)−1)) = 0,

(2.23) ψ( lim
i→+∞

supMs1(xm(i)−1, xn(i)−1)) ≤ ψ(sε)

and

(2.24) ψ( lim
i→+∞

N1(xm(i)−1, xn(i)−1)) = 0.

Letting i→ +∞ in (2.14). Then using (2.13) and (2.22)–(2.24) we have

ψ(ε) ≤ b

s
ψ(sε) ≤ bψ(ε) < ψ(ε),

a contradiction. Thus (x0, x1 ∈ fx0, x2 ∈ fx1, . . .) is a Cauchy sequence in X.
Since X is multivalued orbitally complete b-metric space, there exists u ∈ X

such that

lim
i→+∞

xn = u.
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Now, we will show that u ∈ fu. By (2.1), we have

ψ(d(xn+1, fu)) ≤ ψ(δ(fxn, fu))

≤ aψ(m1(xn, u)) +
b

s
ψ(Ms1(xn, u)) + Lψ(N1(xn, u)),(2.25)

where

m1(xn, u) = D(u, fu)
1 +D(xn, fxn)

1 + d(xn, u)

≤ D(u, fu)
1 + d(xn, xn+1)

1 + d(xn, u)
,(2.26)

Ms1(xn, u) = max

{
d(xn, u), D(xn, fxn), D(u, fu),

D(xn, fu) +D(fxn, u)

2s

}
≤ max

{
d(xn, u), d(xn, xn+1), D(u, fu),

D(xn, fu) + d(xn+1, u)

2s

}
,(2.27)

and

N1(xn, u) = min{D(xn, fxn), D(u, fxn)}

≤ min{d(xn, xn+1), d(u, xn+1)}.(2.28)

Letting n→ +∞ in (2.26)–(2.28) and using the property of ψ,we get

ψ( lim
n→+∞

supm1(xn, u)) ≤ ψ(d(u, fu)),

ψ( lim
n→+∞

supM1(xn, u)) ≤ ψ(D(u, fu))

and

ψ( lim
n→+∞

N1(xn, u)) = 0.

Letting n→ +∞ in (2.25). Then we get

ψ(δ(u, fu)) ≤ aψ(D(u, fu)) +
b

s
ψ(D(u, fu))

≤
(
a+

b

s

)
ψ(δ(u, fu)).

The above inequality happened only if δ(u, fu) = 0. Thus u ∈ fu. So u is a fixed
point of f . To prove the uniqueness of fixed point. Suppose that f has two fixed
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point u and v such that u 6= v. By (2.1), we have

ψ(d(u, v)) ≤ ψ((δ(fu, fv)) ≤ aψ(m1(u, v)) +
b

s
ψ(Ms1(u, v)) + Lψ(N1(u, v))

= aψ(D(u, fu)
1 +D(u, fu)

1 + d(u, v)
)

+
b

s
ψ

(
max

{
d(u, v), D(u, fu), D(v, fv),

D(u, fv) +D(fu, v)

2s

})
+ Lψ(min {D(u, fu), D(v, fu)})

=
b

s
ψ(d(u, v)) < ψ(d(u, v)),(2.29)

a contradiction. Thus u = v. Therefore f has a unique fixed point. �

Corollary 2.1. Let (X, d) be a multivalued orbitally complete b-metric space, and
let f : X → B(X) be a multivalued mapping. Suppose there exist a ∈ [0, 1) and
L ≥ 0 such that

ψ(δ(fx, fy)) ≤ a

s
ψ(Ms1(x, y)) + Lψ(N1(x, y))

for all x, y ∈ X, such that ψ(αx) ≤ αψ(x) for all x ∈ X, α ≥ 0.Then f has a
unique fixed point.

Corollary 2.2. Let (X, d) be a multivalued orbitally complete b−metric space, and
let f : X → B(X) be a multivalued mapping. Suppose there exist a+ b

s
∈ [0, 1), b <

1 and L ≥ 0 such that

ψ(δ(fx, fy)) ≤ aψ(m1(x, y)) +
b

s
ψ(Ms1(x, y))

for all x, y ∈ X, where ψ(αx) ≤ αψ(x) for all x ∈ X, α ≥ 0. Then f has a unique
fixed point.

Let ψ = i, the identity function, in Theorem 2.1 and Corollaries 2.1 and 2.2.
Then we have the following results.

Corollary 2.3. Let (X, d) be a multivalued orbitally complete b−metric space where
and let f : X → B(X) be a multivalued mapping. Suppose there exist a+ b

s
∈ [0, 1),

b < 1 and L ≥ 0 such that

δ(fx, fy) ≤ am1(x, y) +
b

s
Ms1(x, y) + LN1(x, y)

for all x, y ∈ X. Then f has a unique fixed point.
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Corollary 2.4. Let (X, d) be a multivalued orbitally complete b−metric space where
and let f : X → B(X) be a multivalued mapping. Suppose there exist a ∈ [0, 1)

and L ≥ 0 such that

δ(fx, fy) ≤ a

s
Ms1(x, y) + LN1(x, y)

for all x, y ∈ X. Then f has a unique fixed point.

Corollary 2.5. Let (X, d) be a multivalued orbitally complete b−metric space,
where and let f : X → B(X) be a multivalued mapping. Suppose there exist
a+ b

s
∈ [0, 1), b < 1 and L ≥ 0 such that

δ(fx, fy) ≤ am1(x, y) +
b

s
Ms1(x, y)

for all x, y ∈ X. Then f has a unique fixed point.

Let f : X → X be a single valued mapping. In the rest of this paper, we set

m(x, y) = d(y, fy)
1 + d(x, fx)

1 + d(x, y)
,

Ms(x, y) = max

{
d(x, y), d(x, fx), d(y, fy),

d(x, fy) + d(y, fx)

2s

}
and

N(x, y) = min {d(x, fx), d(y, fx)} .

Now, we introduce the following definition.

Definition 2.2. Let (X, d) be an extended b-metric space and ψ be an altering
distance function. We say that a mapping f : X → X is a generalized ψ-weak
contraction mapping if there are nonnegative real numbers a, b and L with a+ b

s
<

1, b < 1 and L ≥ 0 such that

ψ(d(fx, fy)) ≤ aψ(m(x, y)) +
b

s
ψ(Ms(x, y)) + Lψ(N(x, y))

for all x, y ∈ X.

As a consequence result of Theorem 2.1, we have the following result.

Corollary 2.6. Let (X, d) be an orbitally complete extended b-metric space. If f :

X → X is a generalized ψ-weak contraction mapping, such that ψ(αx) ≤ αψ(x)

for all x ∈ X,α ≥ 0, then f has a unique fixed point.
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Corollary 2.7. Let (X, d) be an orbitally complete b-metric space, and let f : X →
X be a mapping. Suppose there exist a ∈ [0, 1) and L ≥ 0 such that

ψ(d(fx, fy)) ≤ a

s
ψ(Ms(x, y)) + Lψ(N(x, y))

for all x, y ∈ X, such that ψ(αx) ≤ αψ(x) for all x ∈ X, α ≥ 0. Then f has a
unique fixed point.

Corollary 2.8. Let (X, d) be an orbitally complete b−metric spaceand let f : X →
X be a mapping. Suppose there exist a+ b

s
∈ [0, 1) and L ≥ 0 such that

ψ(d(fx, fy)) ≤ aψ(m(x, y)) +
b

s
ψ(Ms(x, y))

for all x, y ∈ X, such that ψ(αx) ≤ αψ(x) for all x ∈ X, α ≥ 0. Then f has a
unique fixed point.

Let ψ = i, the identity function, in Corollaries (2.6)–(2.8). Then we have the
following results.

Corollary 2.9. Let (X, d) be an orbitally complete b−metric space, let f : X → X

be a mapping. Suppose there exist a+ b
s
∈ [0, 1), b < 1 and L ≥ 0 such that

d(fx, fy) ≤ am(x, y) +
b

s
Ms(x, y) + LN(x, y)

for all x, y ∈ X. Then f has a unique fixed point.

Corollary 2.10. 2Let (X, d) be an orbitally complete b−metric space, let f : X →
X be a mapping. Suppose there exist a ∈ [0, 1) and L ≥ 0 such that

d(fx, fy) ≤ a

s
Ms(x, y) + LN(x, y)

for all x, y ∈ X. Then f has a unique fixed point.

Corollary 2.11. Let (X, d) be an orbitally complete b−metric space, let f : X → X

be a mapping. Suppose there exist a+ b
s
∈ [0, 1), b < 1 and L ≥ 0 such that

d(fx, fy) ≤ am(x, y) +
b

s
Ms(x, y)

for all x, y ∈ X. Then f has a unique fixed point.
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3. APPLICATIONS

Denote by Φ the set of functions φ : [0,+∞) → [0,+∞) satisfying the follow-
ing hypotheses:

1. φ is a Lebesgue integrable function on each compact subset of [0,+∞),

2. for every x > 0, we have
x∫
0

φ(t)dt > 0,

3. φ(at) ≤ aφ(t).

Now, the maping ψ : [0,+∞)→ [0,+∞) defined by

ψ(x) =
x∫
0

φ(t)dt.

is an altering distance function with ψ(ax) ≤ aψ(x).

Now, we have the following result.

Corollary 3.1. Let (X, d) be a multivalued orbitally complete b-metric space and
f : X → B(X) be a multivalued mapping. Suppose that there exist nonnegative
real numbers a, b and L with a+ b

s
< 1, b < 1, and L ≤ 0 such that

δ(fx,fy)∫
0

φ(t)dt ≤ a
m1(x,y)∫

0

φ(t)dt+
b

s

Ms1 (x,y)∫
0

φ(t)dt+ L
N1(x,y)∫

0

φ(t)dt

for all x, y ∈ X. Then f has a unique fixed point.

Proof. Follows from Theorem 2.1 by taking ψ(x) =
x∫
0

φ(t)dt. �

Corollary 3.2. Let (X, d) be an orbitally complete b-metric space and let f : X →
X be a given mapping. Suppose that there exist nonnegative real numbers a, b and
L with a+ b

s
< 1, b < 1, and L ≥ 0 such that

d(fx,fy)∫
0

φ(t)dt ≤ a
m(x,y)∫

0

φ(t)dt+
b

s

Ms(x,y)∫
0

φ(t)dt+ L
N(x,y)∫

0

φ(t)dt

for all x, y ∈ X. Then f has a unique fixed point.

Proof. Follows from Corollary 3.1 by noting that every single valued mapping
can be considered as a multivalued mapping from X into B(X). �
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4. EXAMPLES

In this section, we present some examples to support the useability of our
results.

Example 4. Let X = [0, 4] . Define f : X → X by:

fx = sinh−1
x

c
, x ∈ [0, 4] , c > 2.

Let d : X × X → [0,+∞) be given by

d(x, y) = |x− y|2

for all x, y ∈ X. Then (X, d) is a complete b−metric space with coefficient s = 2.

Define an altering distance functions ψ : [0,+∞)→ [0,+∞) by ψ(t) = rt, r ≥ 0.

Proof. Let x, y ∈ X, then

Ms(x, y) = max

{
|x− y|2, |x− sinh−1

x

c
|2, |y − sinh−1

y

c
|2,

|x− sinh−1 y
c
|2 + |y − sinh−1 x

c
|2

4

}
.

By using the mean value theorem simultaneously for the inverse hyperbolic sine
function we get,

r |fx− fy|2 = r
∣∣∣sinh−1

x

c
− sinh−1

y

c

∣∣∣2 ≤ r

c2
|x− y|2 ≤ r

c2
Ms(x, y),

we have

ψ(d(fx, fy)) ≤ ψ(Ms(x, y))

c2
+ Lψ(N(x, y)) for any L ≥ 0.

So f satisfies all the hypotheses of Theorem 2.1 Therefore f has a unique fixed
point. Here 0 is the unique fixed point of f . �

Example 5. Let X = {0, 1, 2, . . .}. Define f : X → B(X) by:

fx =


{1} , x = 0;

{0} , x = 1;

{x− 1, x− 2} , x ≥ 2.

Let d : X ×X → R+ be given by

d(x, y) =

{
0, x = y;

(x+ y)2, x 6= y.
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Define ψ : [0,+∞)→ [0,+∞) by ψ(t) = tet. Then
1. (X, d) is a complete b-metric space with s = 2.
2. f hase no fixed point.
3. ψ(at) > aψ(t), ∀a > 1.

4. ψ(δ(fx, fy)) ≤ e−1ψ(Ms1(x, y)) + ψ(N1(x, y)) for any x, y ∈ X.

Proof. The proof of (1, 2, 3) are clear. The proof (4) is divided to the following
cases:

case 1: If x > y ≥ 2, then fx = {x− 1, x− 2} and fy = {y − 1, y − 2}. Thus

δ(fx, fy) = (x+ y − 2)2

and

Ms1(x, y) = max

{
(x+ y)2, (2x− 2)2, (2y − 2)2,

(x+ y − 2)2

4
or

(y + x− 2)2

2

}
.

Since

(x+ y − 2)2e(x+y−2)
2 ≤ (x+ y)2e(x+y)

2−4(x+y)+4 ≤

e−12(x+ y)2e(x+y)
2 ≤ e−1(x+ y)2e(x+y)

2 ≤ e−1Ms1(x, y)eMs1(x,y),

we have

ψ(δ(fx, fy)) ≤ e−1ψ(Ms1(x, y)) + ψ(N1(x, y)).

case 2: If x ≥ 2 and y = 1, then fx = {x − 1, x − 2} and fy = 0. Thus
δ(fx, fy) = (x− 1)2 and

Ms1(x, y) = max

{
(x+ 1)2, (2x− 2)2, 1,

x2 + (x− 1)2

4
or

x2

4

}
.

Since

(x− 1)2e(x−1)
2 ≤ (x+ 1)2ex

2−3 ≤ e−3(x+ 1)2ex
2

≤ e−3(x+ 1)2e(x+1)2 ≤ e−1Ms1(x, y)eMs1(x,y),

we have

ψ(δ(fx, fy)) ≤ e−1ψ(Ms1(x, y)) + ψ(N1(x, y)).
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case 3: (i) If x > 2 and y = 0, then fx = {x − 1, x − 2} and fy = 1. Thus,
δ(fx, fy) = (x)2 and

Ms1(x, y) = max

{
x2, 4(x− 1)2, 1,

(x+ 1)2 + (x− 2)2

4
or

(x+ 1)2

4

}
.

Since

x2ex
2 ≤ x2e4(x−1)

2−1 ≤ 4(x− 1)2e−1e4(x−1)
2

≤ e−1Ms1(x, y)eMs1(x,y),

we have

ψ(δ(fx, fy)) ≤ 2e−3

2
ψ(Ms1(x, y)) + Lψ(N1(x, y)).

(ii) If x = 2 and y = 0, then fx = {1, 0} and fy = 1. Thus, δ(fx, fy) = 1

and

Ms1(x, y) = max

{
4, 4, 1,

9

4

}
= 4.

Since

e ≤ 4e−3e4 ≤ 4e−1e4 ≤ e−1Ms1(x, y)eMs1(x,y),

we have

ψ(δ(fx, fy)) ≤ e−1ψ(Ms1(x, y)) + ψ(N1(x, y)).

case 4: If x = y ≥ 2, then fx = fy = {x− 1, x− 2}. Thus δ(fx, fx) = (2x− 3)2

and

Ms1(x, y) = max

{
0, (2x− 2)2,

(2x− 2)2

2

}
= (2x− 2)2

Since

(2x− 3)2e(2x−3)
2 ≤ (2x− 2)2e((2x−2)−1)

2 ≤ e−3(2x− 2)2e(2x−2)
2

≤ e−1Ms1(x, y)eMs1(x,y),

we have

ψ(δ(fx, fy)) ≤ e−1ψ(Ms1(x, y)) + ψ(N1(x, y)).

case 5: If x, y ∈ {0, 1}
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(i) x = y, then fx = fy. Thus

δ(fx, fy) = 0.

Hence

ψ(δ(fx, fy)) ≤ e−1ψ(Ms1(x, y)) + ψ(N1(x, y)).

(ii) x = 1 and y = 0 then fx = 0 and fy = 1. Thus

δ(fx, fy) = 1 = Ms1(x, y)

and

N1(x, y) = min {D(x, fx), D(y, fy)} = 1.

Since

e ≤ 1 + e,

we have

ψ(δ(fx, fy)) ≤ e−1ψ(Ms1(x, y)) + ψ(N1(x, y)).

So f satisfies all the hypotheses of Theorem 2.1 except the condition ψ(at) ≤
aψ(t) for all a ≥ 0, this means that this condition is necessary for existence of a
fixed point of f . �

Example 6. Let X = {0, 1, 2, . . .}. Define f : X → B(X) by:

fx =

{
{0} , x ∈ {0, 1} ;

{x− 1, x− 2} , x ≥ 2.

Let d : X ×X → R+ be given by

d(x, y) =

{
0, x = y;

(x+ y)2, x 6= y.

Define ψ : [0,+∞)→ [0,+∞) by ψ(t) = tet. Then
1. (X, d) is a complete b-metric space with s = 2.
2. ψ(δ(fx, fy)) ≤ e−3ψ(Ms1(x, y)) + Lψ(N1(x, y))for any x, y ∈ X and any

L ≥ 0.

Proof. The proof of (1) is clear. The proof (2) is divided to the following cases:
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case 1: If x > y ≥ 2, then fx = {x− 1, x− 2} and fy = {y − 1, y − 2}. Thus

δ(fx, fy) = (x+ y − 2)2

and

Ms1(x, y) = max

{
(x+ y)2, (2x− 2)2, (2y − 2)2,

(x+ y − 2)2

4
or (y + x− 2)2

}
Since

(x+ y − 2)2e(x+y−2)
2 ≤ (x+ y)2e(x+y)

2−4(x+y)+4 ≤

e−12(x+ y)2e(x+y)
2 ≤ e−3(x+ y)2e(x+y)

2 ≤ 2e−3

2
Ms1(x, y)eMs1(x,y);

we have

ψ(δ(fx, fy)) ≤ 2e−3

2
ψ(Ms1(x, y)) + Lψ(N1(x, y)).

case 2: If x ≥ 2 and y = 1, then fx = {x − 1, x − 2} and fy = 0. Thus
δ(fx, fy) = (x− 1)2 and

Ms1(x, y) = max

{
(x+ 1)2, (2x− 2)2, 1,

x2 + (x− 1)2

4
or

x2

4

}
.

Since

(x− 1)2e(x−1)
2 ≤ (x+ 1)2ex

2−3 ≤ e−3(x+ 1)2ex
2

≤ e−3(x+ 1)2e(x+1)2 ≤ e−3Ms1(x, y)eMs1(x,y),

we have

ψ(δ(fx, fy)) ≤ 2e−3

2
ψ(Ms1(x, y)) + Lψ(N1(x, y)).

case 3: If x ≥ 2 and y = 0, then fx = {x−1, x−2} and fy = 0. Thus, δ(fx, fy) =

(x− 1)2 and

Ms1(x, y) = max

{
x2, (2x− 2)2, 0,

x2 + (x− 2)2

4
or

x2

4

}
.

Since

(x− 1)2e(x−1)
2 ≤ x2e(x−1)

2

= x2ex
2−2x+1 ≤ e−3x2ex

2

≤ e−3Ms1(x, y)eMs1(x,y),



SOME FIXED POINT RESULTS FOR A GENERALIZED ψ-WEAK CONTRACTION. . . 2467

we have

ψ(δ(fx, fy)) ≤ 2e−3

2
ψ(Ms1(x, y)) + Lψ(N1(x, y)).

case 4: If x = y ≥ 2, then fx = fy = {x− 1, x− 2}. Thus δ(fx, fx) = (2x− 3)2

and

Ms1(x, y) = max

{
0, (2x− 2)2,

(2x− 2)2

2

}
Since

(2x− 3)2e(2x−3)
2 ≤ (2x− 2)2e((2x−2)−1)

2 ≤ e−3(2x− 2)2e(2x−2)
2

≤ 2e−3

2
Ms1(x, y)eMs1(x,y),

we have

ψ(δ(fx, fy)) ≤ 2e−3

2
ψ(Ms1(x, y)) + Lψ(N1(x, y)).

case 5: If x, y ∈ {0, 1}, then fx = fy = 0. Thus δ(fx, fy) = 0. Hence

ψ(δ(fx, fy)) ≤ 2e−3

2
ψ(Ms1(x, y)) + Lψ(N1(x, y)).

Clear, f has a unique fixed point although f does not satisfiy all the hypotheses
of Theorem 2.1. �
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