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Eman Bashayreh', Abdallah Talathah, and Wasfi Shatanawi

ABSTRACT. In this paper, we will present the definitions and notation of gen-
eralized i-weak contraction mappings in b-metric spaces, and establish some
results besides the most important properties of fixed point in orbitally com-
plete b-metric spaces. Our results generalize several well-known comparable
results in the literature. As an application of our results we generalize the re-
sults of Shatanawi [|7]]. Some examples are given to illustrate the useability of
our results.

1. INTRODUCTION

The Banach contraction principle [2] is one of the basic results in fixed point
theory which asserts that every contraction function in a complete metric space
has a unique fixed point. Subsequently, many authors generalized Banach con-
traction principle in different ways (see [[1-43}/5]].

Kamran et al. in [4] introduced the definition of extended b-metric spaces as
a generalization of b-metric spaces.

In the sequel, we need the following definitions
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Definition 1.1. [4] Let X be anon empty set and s > 1 be a real number. A
function d : © x x — [0,00) is called a b — metric space [1,3|], if it satisfies the
following properties for each x, y, z € X:

(b1): d(z,y) =0iff x =1y.
(b2): d(z,y) = d(y, z).
(b3): d(z,2) < s[d(x,y) + d(y, z)] .

Definition 1.2. [6] Let (X,d) be a b — metric space. A sequence {z,} on X is
said to be

(D) Cauchy iff d(x,,, z,,) — 0as n, m — oo.
(I1) Convergent iff there exist « € X such that d(z,,z) — 0 as n — oo and we

write lim z,, = z.
n—oo

(IIT) The b — metric (X, d) is complete if every cauchy sequance is convergent.

Example 1. [8,/10] Let X = [,(R) with 0 < p < 1 where [,(R) = {{z,} C R:
S |xn|? < 0o}. Defined : X x X — [0,00) as:
n=1

0o 1/p
o) = (£ o=l
where z = {x,}, y = {y,}. Then d is a b-metric space with coefficient s = 2'/7.

Example 2. [20] Let (X, d) be a metric space and o, : X x X — R* defined by
oq(z,y) = [d(z,y)|F for all z,y € X, where p > 1 is a fixed real number. Then o is
a b — metric with s = 2P71,

Remark 1.1. If 0(x,y) = s for s > 1, then we obtain the definition of a b-metric
space.

Example 3. Let X ={1,2,3} Define § : X x X — RT and dy : X x X — Rtas:

0(x,y) =z +vy, and
d9(17 1) = d9(272) = d0(373) =0,
dg(1,2) = dp(2,1) = 2,dp(1,3) = dy(3,1) = 3,dy(2,3) = dp(3,2) = 4.

Definition 1.3. [7]] Let (X, d) be a b-metric space and f : X — X be a mapping.
An orbit of f at a point x of X is the set O(x, f) = {x, fz, f>x,...}.
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Definition 1.4. [7]] Let (X, d) be a b— metric space and f : X — X be a mapping.
X is said to be f—orbitally complete if every cauchy sequance in O(x, f), z € X,
converges to a point in X.

Definition 1.5. [[11] A single-valued mapping f : X — X is called a Ciri¢ strong
almost contraction if there exist a constant « € [0, 1] and some L > 0 such that

d(fz, fy) < aM(z,y) + Ld(y, fx)
forall z,y € X, where

M (z,y) = max {d(a; o). d(z, f2). d(y, Fy), SS9+, [2) } '

2
Definition 1.6. [7]] Let f : X — B(X) be a multivalued mapping. Then x € X is
said to be a fixed point of f if x € fux.

Definition 1.7. [7] Let (X, d) be a b — metric space and f : X — B(X) be a
mapping. Then we say that X is f-multivalued orbitally complete (or multivalued
orbitally complete) if any Cauchy subsequence (x,,) of {x = xo,x1 € fxg,z2 €
fxa, ...}, € X converges in X.

Theorem 1.1. [12] Let (X,d) be an orbitally complete metric space and let f :
X — X be a given mapping. Suppose that there exist nonnegative real numbers ¢,
~vand L with § +~v < 1 and L > 0 such that

d(fz,fy) m(z,y) M (z,y) N(z,y)

[ p(s)ds <é “o[ d(s)ds+~ [ ¢(s)ds+ L of o(s)ds

0 0
forall x,y € X, where

m(z,y) = d(y, fy) L+ dlw, f7)

1+d(z,y)’

M(z, y) = max {d<x, ). d(, fx), d(y, fy),

(z, fy) + d(y,fw)}
2

and
N(z,y) = min{d(z, fz),d(y, fx)} .
Then f has a unique fixed point.

Definition 1.8. [|7] The function ¢ : [0, +00) — [0, +00)is called an altering dis-
tance function, if the following properties are satisfied:

(1) ¢ is continuous and nondecreasing;
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(2) ¢(t) =0ifand only if t = 0.

For some fixed point theorems based on altering distance function, we refer
the reader as example to [13-19]].

In this paper, we introduce the notion of a generalized )-weak contraction
mapping and establish some results in orbitally complete extended b-metric
spaces, where ¢ is an altering distance function.

2. THE MAIN RESULT

Let (X,d) be a b-metric space and B(X) denotes to the class of nonempty
bounded subsets of X. For A, B € B(X), let D(A, B) = inf{d(a,b) :a € A,b €
B}, and (A, B) = sup{d(a,b) : a € A,b € B}.

Definition 2.1. Let (X,d) be a b-metric space and 1) be an altering distance
function. A mapping f : X — B(X) is said to be a multivalued generalized
1) — weak contraction mapping if there are nonnegative real numbers a,b and L
witha+ % < 1,b<1and L > 0 such that

@1 (e ) < aplmle ) + V(Mo (e,9) + DN ()

forall z,y € X, where

1+ D(z, fx)
1+d(x,y) ’

Mg (z,y) = max {d(x,y), D(x, fx), D(y, fy),

mi(z,y) = D(y, fy)

D(z, fy) + D(y, frv)}
2s

and
Ni(z,y) = min{D(z, fz), D(y, fz)}.

Theorem 2.1. Let (X,d) be a multivalued orbitally complete b-metric space, If
f X — B(X) is a multivalued generalized )-weak contraction mapping such
that (ax) < ap(x) for all x € X,a > 0, then f has a unique fixed point.

Proof. Let xy € X and defined a sequences (z,) in X such that z,.; € fz,. If
Z, = T,y for some n € N, then z,, € fz,, and hence z,, is a fixed point of f. So,
we may assume that x,, # x,,1 for all n € N U{0}. By inequality (2.1I)., we have



(2.2)

where

(2.3)

(2.1)

(2.4)

and

(2.5)
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w(d<xn7 anrl)) S ¢(5(f37n71, fzn))

< a(my(Tp_1,2,)) + gw(M&(xn—b Ty))
-+ Lw(Nl(wnflaxn»a

1+ D(zp_1, fr,_1)
1+ d(zp_1,zn)

1+ d(xp_1,2y,)

1+ d($n_1, [L’n)

my (Tn-1,Tn) = D(p, f2,)

< d($n7$n+1) = d(l’n,l’n_}_l),

Ms1 (xn—ly xn)

= max {d(a:n_l, xn), D(xp_1, frn_1), D(xy, f2,),6

D(In—la fxn) + D(:L’n, fxn—l) }
25

d(wn—l ) xn-{—l)
2s

< max {d(xn_l, ), d(Xy, Tpit),

S [d({En_l, ZUn> + d(afm -Tn+1)]

S maX{d(xn—laxn)ad(xnaxn+l)7 9
S

d(xnfla LL‘n) + d<xn7 :UnJrl)

= max {d(l‘n—lv xn)7 d(x’m xn—l—l)a 9

= max{d(z,_1, %), d(Tn, Tni1)},

Nl (mnfb xn) = min{D(xnfh fxnfl)a D(xnv fxnfl)}
< min{d(zp-1, ), d(xy, z,)} = 0.

2453

|

From (2.2)-(2.5) and the fact that ¢ is an altering distance function, we get

(2.6) Y(d(zp,xni1)) < ap(d(zp, Tpi1)) + g Y(max{d(x,—1,2n), d(Tpn, Tpi1)}).

If

maX{d(fEn_l, xn)a d(xnv $n+1)} — d(xm xn—l—l))
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then by we have

V(s 0s2)) S @A, i) + 2 D, 20s)

_ ( N g) (A, Tn1)) < (A0, T0s1)),

a contradiction. Thus,
max{d(l‘n—la xn)a d(ZEn, xn—l—l)} = d(xn—la mn)

Therefore becomes

Vs 02)) S @, 02)) + 2D 1,72))

this implies that,

b
2.7) (d(@n, Tne1)) < s(1—a) (d(zn-1,2n))-
Let r = s(l—b—a) Then from (2.7)), we have
(2.8) Y(d(Tn, Tngr)) < rp(d(Tn-1,20)).

Repeating (2.8)) n-times, we get

V(d(@n, Tnt1)) < 1(d(Tn-1, 7))
< T2w(d<xn—2= xn—l))

(29) S Tn¢(d($o,$1)).

Letting n — +oo and using the fact that r < 1, we get

lim ¥ (d(xp, xne1)) = 0.

n—-+00
Since ® is an altering distance function, we have
(2.10) nl—igloo d(xp, Tpy1) = 0.
Next, we show that, (z,) is a Cauchy sequence in X. Suppose to the contrary;
that is, (z,,) is not a Cauchy sequence. Then there exists ¢ > 0 for which we can
find two subsequences (x,,;;)) and (z,.) of (x,) such that n(7) is the smallest
index for which
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This means that
(2.12) d(Zm(iys Tn(i)—1) < €.
From (2.11)), and (b3) inequality, we get
e < d(xm(i),:ﬂn(i)) <s [d(xm(i)a xn(i)fl) + d(xn(i)*bxn(i))]
< s€ + 5d(Tp )1, Tn(s))-
Using and letting i — +oo in above inequalities, we get
(2.13) e < Zginoo SUP d(Tom(i); Tn(i)) < SE.

Again, by using (b3), we obtain that
(2.14) A(@m(i)—1, Tn@i)) < 8 [A(@m@)—1, Tm@s)) + A @me), Tny)] -
Taking limit supremum as i — oo in (2.14), from (2.10) and (2.13)), we get

(2.15) lim sup d(Tm()—1, Tn)) < se.

i——400

Similarly, we can show that

(2.16) lim sup d(Tme)s Tn@)-1) < s2e.

i—r+00
Finally, we obtain that
A(Tm(i)-15 Tn(i)-1)
< 5 [d(@m@)-1, Tm@s)) + ATy, Tni)1)]
(2.17) < 8A(Tp(i)—1, Tm(s)) + 52 [d(a:m(i), Tn@)) + d(Tp), xn(i)_l)} .
Taking limit supremum as 7 — oo in (2.17)), from and (2.13), we get

ZLIJIPOO SUP d( L (5)—15 Tn(i)—1) < s’e.

From (2.1), we have
V(d(Zm(iys Tngy)) < VO Tme)-1, fTn@)-1))

b
< ap(ma(Tm(i)—1, Tn(i)—1)) + 51/1(Msl (Tm(i)—1, Tn(i)-1))
(2.18) + LY (N1 (Tm(iy—1, Tn@)—-1))
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where

L+ D(Zm@)—1, [Tm(i)-1)
L+ d(@m@i)-1, Tn(i)-1)
1+ d(@mi)-1, Tm(i))

L+ d(Zm(i)—1, Tngi)—1)

M1 (Tn(iy—1, To(i)-1) = D(Tngy—1, fTn()-1)

(2.19) < d(Tp(iy—1, Tn(i))

M, (Z(i)—15 Tn(i)—1)

= max {d(flfm(i)q, Tn(i)=1)s D(@mi)-15 [Tm()-1), D(@n@)—1, fTn@)-1),

D(Zm(iy—15 fTngiy-1) + D(fTm(iy-1, Tn(iy-1) }
2s

< max {d(ivm(i)q, Tp(i)=1)s A Tm()—1, Tm(i)) s ATn(s)—15 Tn(s) )5

(2.20)

A(Tm(i)-1, Tn(i)) + A(@m(i), Tng)-1) }
2s

and

N1(Zp(i)=1, Tn@)—1) = Min{ D(Xpme)—1, fTm@)-1)s D([Tme)-1, Tn)-1) }
(2.21) < min{d(Zm(i)-1; Tm(i) ) A @), Tni)-1) }-
Letting i — +oo in (2.19)-(2.21)). Then by using (2.10), (2.13), (2.15), (2.16)

and the properties of ¢, we get

(2.22) W,Einoo M (Tm(i) -1, n(i)-1)) = 0,
(2.23) Y lim_sup Mo, (@) -1, Zniy-1)) < ¥(s€)
and

(2.24) O lim Ny (21, Zaw-1)) = 0.

Letting i — +oo in (2.14). Then using (2.13)) and (2.22)—(2.24) we have
b
i) < “(se) < byle) < (o),

a contradiction. Thus (zg,z1 € fxo,x2 € fx1,...) is a Cauchy sequence in X.
Since X is multivalued orbitally complete b-metric space, there exists u € X
such that

lim z, = u.
1——400
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Now, we will show that v € fu. By (2.1]), we have

Vi, S0)) < V6o, f)
2.25) < apim n, 1)) + 20 (M (o, ) + LY (Vs 0, 0),

where

1+ D(xy,, fz,)
1+ d(zp,u)

1+ d(xn, i)
1+ d(zy, uw)

mi(zn,u) = D(u, fu)

(2.26) < D(u, fu)

Y

MSI (x”’ U) - {d<xn’ u)7 D(Ina fxn)a D(U, fu>a D(xm fu) + D(fx”’ u) }

25
(2.27) S max {d(zn’ u)7 d(ﬂ:n, xn-i—l)a D(u, fu), D(xna fu> ;; d(xn+17 U) } ’
and

Ni(zp,u) = min{D(z,, fx,), D(u, fx,)}
(2.28) < min{d(zy,, Tpi1), d(u, pi1)}-

Letting n — +o0 in (2.26)-(2.28) and using the property of ¢),we get

$( lim supmy (2, u)) < ¢(d(u, fu)),

n——+o00

¢( lim sup My(zn, u)) < 9(D(u, fu))

n—-+oo
and

Y( lim  Ny(x,,u)) =0.

n——+o0o

Letting n — +o0 in (2.25). Then we get
b
¥(0(u, fu)) < ap(D(u, fu)) + ~o(D(u, fu))
< (a + g) »(d(u, fu)).

The above inequality happened only if §(u, fu) = 0. Thus v € fu. So u is a fixed
point of f. To prove the uniqueness of fixed point. Suppose that f has two fixed
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point u and v such that u # v. By (2.1, we have

P(d(u,v)) < P((fu, fv) < ap(ma(u,v)) + gw(Msl(u,v)) + Lp(N1(u, v))

— a(D(u, f“)%)

20 (ma {01, DL . ey, 2SO DU

+ Liwin {D(u, fu), Do, fu)})
2p(d(u,0) < $(d(w,v)),

a contradiction. Thus u = v. Therefore f has a unique fixed point. d

(2.29)

Corollary 2.1. Let (X, d) be a multivalued orbitally complete b-metric space, and
let f: X — B(X) be a multivalued mapping. Suppose there exist a € [0,1) and
L > 0 such that

O, fy) < TU(Ma(e,y) + Li(Ni(x,y))

for all z,y € X, such that ¥(azx) < aip(z) for all x € X, a > 0.Then f has a
unique fixed point.

Corollary 2.2. Let (X, d) be a multivalued orbitally complete b—metric space, and
let f : X — B(X) be a multivalued mapping. Suppose there exist a+2 € [0,1),b <
1 and L > 0 such that

D(8(fz. F9)) < aplm(z, ) + S6(Mo(z,9))

forall x,y € X, where Y(ax) < ay(zx) for all x € X, o > 0. Then f has a unique
fixed point.

Let ¢y = i, the identity function, in Theorem [2.1] and Corollaries [2.1] and
Then we have the following results.

Corollary 2.3. Let (X, d) be a multivalued orbitally complete b—metric space where
andlet f : X — B(X) be a multivalued mapping. Suppose there exist a+2 € [0,1),
b < 1and L > 0 such that

5(fl‘, fy) S aml(w,y) + ngl(xwy) + LNl(x7y>

forall x,y € X. Then f has a unique fixed point.
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Corollary 2.4. Let (X, d) be a multivalued orbitally complete b—metric space where
and let f : X — B(X) be a multivalued mapping. Suppose there exist a € [0, 1)
and L > 0 such that

5(f{17, fy) S ngl(xa y) + LNl(xa y)
forall z,y € X. Then f has a unique fixed point.

Corollary 2.5. Let (X,d) be a multivalued orbitally complete b—metric space,
where and let f : X — B(X) be a multivalued mapping. Suppose there exist
a+%€l0,1),b<1and L > 0 such that

6(fz, fy) < amy(z,y) + ngl(I,y)

forall x,y € X. Then f has a unique fixed point.

Let f : X — X be a single valued mapping. In the rest of this paper, we set

1+d(z, fx)
1+d(z,y)’

M(z,y) = max {d(% y),d(z, fz),d(y, fy),

m(z,y) = d(y, fy)

d(z, fy) +d(y, fr) }
2s

and
N(z,y) = min{d(z, fz),d(y, fr)} .
Now, we introduce the following definition.
Definition 2.2. Let (X,d) be an extended b-metric space and 1) be an altering
distance function. We say that a mapping f : X — X is a generalized -weak

contraction mapping if there are nonnegative real numbers a,b and L with a + lg’ <
1,b< 1and L > 0 such that

b
v(d(fz, fy)) < av(m(z,y)) + o (Ms(z,9)) + LY (N (2, y))
forall z,y € X.
As a consequence result of Theorem [2.1], we have the following result.

Corollary 2.6. Let (X,d) be an orbitally complete extended b-metric space. If f :
X — X is a generalized 1)-weak contraction mapping, such that {(ax) < ai)(x)
forall x € X,a > 0, then f has a unique fixed point.
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Corollary 2.7. Let (X, d) be an orbitally complete b-metric space, and let f : X —
X be a mapping. Suppose there exist a € [0,1) and L > 0 such that

W(d(fa, fy) < (M) + Li(N (2, y))

for all x,y € X, such that ¥ (ax) < ay(x) forall x € X, a > 0. Then f has a
unique fixed point.

Corollary 2.8. Let (X, d) be an orbitally complete b—metric spaceand let f : X —
X be a mapping. Suppose there exist a + % € [0,1) and L > 0 such that

V(d(f, fo) < av(m(z,)) + “Y(M,(x,9))

for all z,y € X, such that ¢ (azx) < ayp(x) for all z € X, « > 0. Then f has a
unique fixed point.

Let ¢ = 1, the identity function, in Corollaries (2.6)—(2.8). Then we have the
following results.

Corollary 2.9. Let (X, d) be an orbitally complete b—metric space, let f : X — X
be a mapping. Suppose there exist a + S €[0,1),b < 1land L > 0 such that

b
forall z,y € X. Then f has a unique fixed point.

Corollary 2.10. 2Let (X, d) be an orbitally complete b—metric space, let f : X —
X be a mapping. Suppose there exist a € [0,1) and L > 0 such that

a
d(fz, fy) < _M(z.y) + LN(z,y)
forall x,y € X. Then f has a unique fixed point.

Corollary 2.11. Let (X, d) be an orbitally complete b—metric space, let f : X — X
be a mapping. Suppose there exist a+ % € [0,1), b < 1 and L > 0 such that

(fe, fy) < am(z,y) + M (x.y)

forall x,y € X. Then f has a unique fixed point.
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3. APPLICATIONS

Denote by @ the set of functions ¢ : [0, +00) — [0, +00) satisfying the follow-
ing hypotheses:
1. ¢ is a Lebesgue integrable function on each compact subset of [0, +c0),

2. for every x > 0, we have [¢(t)dt > 0,
0

3. ¢lat) < ag(t).
Now, the maping ¢ : [0, +o0) — [0, 4+00) defined by

is an altering distance function with ¢ (az) < a)(z).

Now, we have the following result.

Corollary 3.1. Let (X, d) be a multivalued orbitally complete b-metric space and
f X — B(X) be a multivalued mapping. Suppose that there exist nonnegative
real numbers a,b and L with a + g <1,b<1,and L < 0 such that

5(fx,fy) m1(z,y) p M1 (z) Ni(z,y)
[ ot)dt<a [ o¢t)dt+ ; [ o@)dt+L [ o(t)dt
0 0 0 0

forall z,y € X. Then f has a unique fixed point.

xT

by taking ¢(z) = [¢(t)dt. O

0

—

Proof. Follows from Theorem |2.

Corollary 3.2. Let (X, d) be an orbitally complete b-metric space and let f : X —
X be a given mapping. Suppose that there exist nonnegative real numbers a, b and
Lwitha+?%<1,b<1,and L > 0 such that

d(fz.fy) m(z,y) p Ms(z.y) N(z,y)
[ et)dt<a [ ¢(t)dt+g [ o@)dt+ L [ ¢(t)dt
0 0 0 0

forall z,y € X. Then f has a unique fixed point.

Proof. Follows from Corollary by noting that every single valued mapping
can be considered as a multivalued mapping from X into B(X). O
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4. EXAMPLES

In this section, we present some examples to support the useability of our
results.

Example 4. Let X = [0,4]. Define f : X — X by:
fa = sinh™ %, x €[0,4],¢> 2.
Let d: X x X — [0, +00) be given by
d(z,y) = |z —y|*

forall x,y € X. Then (X,d) is a complete b—metric space with coefficient s = 2.
Define an altering distance functions v : [0, +00) — [0, +00) by ¥(t) = rt, r > 0.

Proof. Let x,y € X, then

M(z,y) = max {\x —y|?, |z — sinh ™ E\Q, |y — sinh ™" Q|27
c c

|z —sinh™! 212 + |y — sinh ™" £2 }
1 :

By using the mean value theorem simultaneously for the inverse hyperbolic sine
function we get,
N A & r
rlfe = fyP = fsioh ™ —sinh 2P < D ey < LM(a,y),
C C C C

we have

wld(fz, ) < YD) | Ly () forany L > 0.

So f satisfies all the hypotheses of Theorem [2.1| Therefore f has a unique fixed
point. Here 0 is the unique fixed point of f. O

Example 5. Let X = {0,1,2,...}. Define [ : X — B(X) by:
{1}, x =0
fl‘: {0}7 r =1
{r—1,2-2}, x>2.
Let d : X x X — R™ be given by

] 0 xr =1;
Aen) = { (x+y)? z#y.
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Define ¢ : [0, +00) — [0, 400) by ¥(t) = te'. Then
1. (X,d) is a complete b-metric space with s = 2.
2. f hase no fixed point.
3. Y(at) > ap(t), Ya > 1.
4. b(0(fx, fy)) < e ' P(Ma(2,y)) + (Ni(z,y)) for any z,y € X.

Proof. The proof of (1, 2, 3) are clear. The proof (4) is divided to the following
cases:

case 1: If z > y > 2, then fxr = {x — 1,z — 2} and fy = {y — 1,y — 2}. Thus

6(fx, fy) = (x+y —2)°

and
M (2, y) = max {(w +y)?, (22 —2)*, (2y — 2)*,
_ 9)2 _9)\2
(x+y—2) or (y+x—2) }
4 2
Since

(x +y— 2)2e(z+y72)2 < (SL’ + y>2€(x+y)274(x+y)+4 <
e a4 y)PeT < e a4 y) e < e M (o, e,
we have

1@((5(]81’, fy)) S e_lw(Msl(xuy)) + ¢(N1($7?J))
case2: If x+ > 2 and y = 1, then fxr = {z — 1,2 — 2} and fy = 0. Thus
o(fz, fy) = (z — 1)* and

2 —1)2 2
Msl(x7y) = max {(I’ + 1)27 (21’ - 2)27 17 WOT %} :

Since
(. — 12" < (24 1)%" 3 < e 3z +1)%"
< 6_3(1‘ + 1)26(w+1)2 < e_lMsl (l’, y)eMﬂ(x’y)’

we have

¢(5(f$; fy)) S 6_1w(Msl(x7 y)) + W-M(%?/))
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case 3: (i) Ifx > 2and y = 0, then fr = {x — 1,2 — 2} and fy = 1. Thus,
o(fz, fy) = (x)* and

1)2 _9)2
Msl(xyy) = Imax {_%'274(1- _ 1)27 1’ ('T + ) 1‘ (Z‘ ) or
(z+1)?
1 .
Since

x2€x2 < 1264(2:—1)2—1 < 4(x _ 1)26—164(x—1)2
S e_1]\481 ([L’, y)eM81(x7y)v
we have
2e73

(ii) Ifz = 2and y = 0, then fz = {1,0} and fy = 1. Thus, 6(fz, fy) =1

and
M (x,y) = max {4,4, 1,2 } = 4.
Since
e < de 3 < de et < e My (z,y)eMa @),
we have

¢(5(fx7 fy)) S e_lw(Msl(xa y)) + ¢(N1(I7?J))

case 4: If x = y > 2, then fr = fy = {z — 1,z — 2}. Thus §(fx, fz) = (22 — 3)?
and

Mg (z,y) = max {O, (22 —2)% @} = (22 —2)?

Since

we have

(o(fr, fy)) < e (Mo (z,y)) +L(Ni(z,y)).
case 5: If z,y € {0,1}
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(i) x =y, then fx = fy. Thus
o(fx, fy) =0.
Hence
D(6(fz, fy) < e (Mo (z,y)) + P (Ni(z,y)).
(i) z =1and y = 0 then fx =0 and fy = 1. Thus

0(fr, fy) =1= Ma(z,y)

and
Ni(z,y) = min {D(z, fz), D(y, fy)} = L.
Since
e<1+e,
we have

¢(5(f17> fy)) S eilw(Msl('ra y)) + w(Nl(x7y))

So f satisfies all the hypotheses of Theorem except the condition ¢ (at) <
a(t) for all @ > 0, this means that this condition is necessary for existence of a
fixed point of f. O

Example 6. Let X = {0,1,2,...}. Define f : X — B(X) by:

o= {0}, x€{0,1};
v {r—1,z-2}, z>2.

Let d : X x X — R™ be given by
0 T =1y;
d(z,y) = ’
{ (x+y)?* z#y.

Define 1) : [0, +00) — [0, 400) by ¥(t) = te'. Then
1. (X,d) is a complete b-metric space with s = 2.

2. P(6(fx. fy)) < eV(Ma(r,y)) + LY(Ni(x,y))for any =,y € X and any
L>0.

Proof. The proof of (1) is clear. The proof (2) is divided to the following cases:
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case 1: If + > y > 2, then fr ={x — 1,2 — 2} and fy = {y — 1,y — 2}. Thus
(fa, fy) = (x +y —2)°

and
Mg (z,y) = max {(:Jc + y)2, (2z — 2)2, (2y — 2)?,
92
Wor (y + T — 2)2}
Since

(x+y— 2)26(a:+y—2)2 < (x _|_y)2€(x+y)2—4(x+y)+4 <

2 -3
6—12@ +y)26($+y)2 < 6—3@ +y)26(w+y)2 < 62 Msl(%y)eMﬂ(:my).

I

we have

-3
V(5(f, Fu) < (Mo (w0)) + LE(N (2,9))
case2: If + > 2 and y = 1, then fr = {# — 1,z — 2} and fy = 0. Thus
o(fx, fy) = (x — 1)* and

(x+1)2 2r-2)%1, ———Zor —

Mg (z,y) = max 1 1

—N

22+ (z —1)? 352}
Since
(z —1)%™ D < (24 1)2” 2 < e 3z +1)%"
< e a4 1)2e ) < e M (2, y)eMa ),

we have
2e3

v(0(fz, fy)) < ——¥(Ma(z,y)) + LY (Ni(z, y)).
case 3: If x > 2and y = 0, then fx = {r—1,2—2} and fy = 0. Thus, d(fz, fy) =

(r —1)%* and
2 _9)2 2
M (z,y) = max {mQ, (22 —2)%,0, %or %}
Since

_1)2 _1)2 2_ _ 2
(l'—l)z@(x 1) §$26(I 1) :x2€x 2z+1 <e 3$26x

g 6_3]\/[51 (.CE, y)eMd (l"y)>
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we have

o3
V(f7, f1)) < 250 (Mar(,9) + LY(Na(z, )
case 4: If z = y > 2, then fz = fy = {z — 1,2 — 2}. Thus §(fz, fr) = (22 — 3)?

and
Aﬂl@;y)—Wnax{oxgx__2y7§%zgjﬁf}
Since
(2 — 3)2e@79 < (2 — 2)2e(CrD1? < =3(9y _ 9)2(20-2)
= 267_3 (@, y)eMa @),
we have

-3
V((fr, £9)) < 2ot (Maa(,9)) + Lo(Na(a, ).
case 5: If z,y € {0,1}, then fz = fy = 0. Thus 6(fz, fy) = 0. Hence

23
Y(0(fz, fy)) < =~ (Ma(z,y)) + L (Ni(2, y)).
Clear, f has a unique fixed point although f does not satisfiy all the hypotheses
of Theorem O
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