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DYNAMICAL ANALYSIS OF FRACTIONAL ORDER ZIKV MODEL

N.A. Hidayati1, A. Suryanto, and W.M. Kusumawinahyu

ABSTRACT. The ZIKV model presented in this article is developed by modify-
ing [1]’s model. The classical order is changed into fractional order model. The
equilibrium points of the model are determined and the stability conditions of
each equilibrium point have been done using Routh-Hurwitz conditions. Nu-
merical simulation is presented to verify the result of stability analysis result.
Numerical simulation is also used to shows the effect of the order α to the
stability of the model’s equilibrium point.

1. INTRODUCTION

ZIKV is a member of Flaviviridae family, family of pathogenic viruses as causes
of Dengue fever, Yellow fever, Japanese encephalitis, and West Nile fever. Main
vector of ZIKV is the Aedes aegypti and Aedes albopictus [2]. ZIKV infection
causes Zika fever with mild symptoms such as fever, red eyes, joint pain, head-
ache, and rash on the skin that will be felt 2 to 7 days after incubation [3].
ZIKV can be transferred through Aedes aegypti and Aedes albopictus bite, sexual
contact, blood transfusions, and can be transferred from mother to fetus in her
womb during pregnancy.
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Mathematical models are used widely to represent the transmission of disease
in a particular area. Various mathematical epidemic models which describe the
transmission of ZIKV have been discussed in [1–9]. Most of ZIKV mathematical
model is constructed by considering transmission routes between human and
mosquito. One of simple ZIKV mathematical model in [1] is given by

dSh
dt

= Λh − (1− µ1) βhSh (Iv + δIh)− µhSh,

dIh
dt

= (1− µ1) βhSh (Iv + δIh)− (µh + γ + ηhµ2) Ih,

dRh

dt
= (γ + ηhµ2) Ih − µhRh,(1.1)

dSv
dt

= Λv − (1− µ1) βvSvIh − (µv + ηvµ3)Sv,

dIv
dt

= (1− µ1) βvSvIh − (µv + ηvµ3) Iv.

Sh, Ih, Rh, Sv, and Iv represent the number of suspectible human, infected
human, recovered human, suspectible mosquito, and infected mosquito respec-
tively. Λh and Λv is the recruitment rate of susceptible human and susceptible
mosquito, µh and µv is the natural mortality rates for human and mosquito, βh is
the rate of transmission from human to mosquito, βv is the rate of transmission
from mosquito to human, ηh is the rate of recovery of human from infection
with treatment, γ is the rate of recovery, µ1, µ2, and µ3 are control parameters.

In this article, the ZIKV model is developed by modifying model in [1]. The
order of ordinary differential equation fractional is changed into fractional or-
der as demonstrated in [8] to considering memory effect. In addition, we elim-
inate control parameters from the model. The dynamical analysis of the frac-
tional order have been done by determining the equilibrium point and analyzing
the local stability of equilibrium points. Numerical simulation using Predictor-
Corrector method for fractional order equation developed in [10] is presented
to verify the result of stability analysis.

2. PRELIMINARIES

In fractional calculus, order of derivatives and integrals α notated by Dα
t =

dα

dtα
. In general α is any whole number, fraction, or any complex number
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α = p + iq, with p, q ∈ R. Calculus Fractional is the development of calcu-
lus which includes fractional derivatives and fractional integrals. Compared to
classical derivatives, fractional derivatives are considered to be able describe
real system better. The memory effect on fractional derivatives means that the
solution of the fractional derivative depends on the entire function value from
lower bound to upper bound. The following definition is definition of Caputo
fractional derivative [11].

Definition 2.1. Suppose α ∈ R+ and n = min {z ∈ Z : z ≥ α}. Caputo fractional
derivative of y(t) in order α, n− 1 < α < n on t > a is defined as

CDα
a y(t) =

1

Γ(n− α)

∫ t

a

(t− ξ)n−α−1y(n)(ξ)dξ.

Γ is Gamma function. The fractional differential equation (FDE) is an equa-
tion that contains the fractional derivative defined in α ∈ R+ [12].

Definition 2.2. Equation
CDα

t y(t) = f (t, y(t))

referred as Caputo FDE, initial condition is written below,

(2.1) CDk
t y(0) = bk k = 1, 2, . . . , n− 1.

The stability of the nonlinear system of FDE’s equilibrium point y∗ = (y∗1, y
∗
2,

. . . , y∗n) can be determined using Theorem 2.1 (See [13]).

Theorem 2.1. The equilibrium point y∗ = (y∗1, y
∗
2, . . . , y

∗
n) locally asymptotically

stable if any eigenvalues λi, i = 1, 2, . . . n of the Jacobi matrix J = ∂fi
∂y

which is
evaluated at equilibrium point satisfies

(2.2) |arg (λi)| >
απ

2
.

Theorem 2.2. Let the characteristics equation of the Jacobian matrix evaluated
at the equlibrium points is given by P (λ) = λn + c1λ

n−1 + c2λ
n−2 + . . . + cn = 0.

The polynomial equation P (λ) has n roots that satisfy (2.2) if and only if the
Routh-Hurwitz conditions for fractional order system are satisfied [14].
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3. MAIN RESULT

In this article, ZIKV model is presented as system of fractional differential
equation. The model is the result of modifying ordinary differential equation
model presented in [1] into fractional order and ignoring the control parame-
ters. The modified model can be formulated as follows:

CDα
t Sh = Λh − βhSh (Iv + δIh)− µhSh,

CDα
t Ih = βhSh (Iv + δIh)− (µh + γ + ηh) Ih,

CDα
t Rh = (γ + ηh) Ih − µhRh,(3.1)

CDα
t Sv = Λv − βvSvIh − µvSv,

CDα
t Iv = βvSvIh − µvIv.

The equilibrium points of (3.1) is obtained when

Dα
t Sh = Dα

t Ih = Dα
t Rh = Dα

t Sv = Dα
t Iv = 0,

from system (3.1), we have

Sh =
Λhµv (βvIh + µv)

βhβvΛvIh + (βhδIh + µh) (µv (βvIh + µv))
,(3.2)

Rh =
(γ + ηh) Ih

µh
,(3.3)

Sv =
Λv

(βvIh + µv)
,(3.4)

Iv =
βvΛvIh

µv (βvIh + µv)
,(3.5)

and

I3h (−A4µvβhβvδ) + I2h
(
µvβhβvδΛh − A4βhβvΛv − A4µhµvβv − A4µ

2
vβhδ

)
+Ih

(
βhβvΛhΛv + µ2

vβhδΛh − A4µhµ
2
v

)
= 0.

with A4 = µh + γ + ηh. If Ih = 0, obtained the first equilibrium point E0 and
called as disease-free equilibrium (DFE) written below:

E0 =

(
Λh

µh
, 0, 0,

Λv

µv
, 0

)
.

If Ih 6= 0, then Ih satisfy the quadratic equation below:

(3.6) AI2h +BIh + C = 0,
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with

A = −A4µvβhβvδ,

B = µvβhβvδΛh − A4βhβvΛv − A4µhµvβv − A4µ
2
vβhδ,

C = βhβvΛhΛv + µ2
vβhδΛh − A4µhµ

2
v.

Equation (3.6) has real and unique positive root if only if C < 0. The real
and unique positive root of equation (3.6) is referred as point I∗h. Substitute
point I∗h into equations (3.2), (3.3), (3.4) and (3.5), then obtained the sec-
ond equilibrium point or referred as endemic equilibrium (EE) written as E1 =

(S∗
h, I

∗
h, R

∗
h, S

∗
v , I

∗
v ), with

S∗
h =

Λhµv (βvI
∗
h + µv)

βhβvΛvI∗h + (βhδI∗h + µh) (µv (βvI∗h + µv))
,

R∗
h =

(γ + ηh) I
∗
h

µh
,

S∗
v =

Λv

(βvI∗h + µv)
,

I∗v =
βvΛvI

∗
h

µv (βvI∗h + µv)
.

To analyze the stability of the equilibrium point, we perform linearization in the
form of a Jacobi matrix at point Ê =

(
Ŝh, Îh, R̂h, Ŝv, Îv

)
, written as:

(3.7)

J =



−βh
(
Îh + δÎh

)
− µh −βhδŜh 0 0 −βhŜh

βh

(
Îv + δÎh

)
βhδŜh − (µh + γ + ηh) 0 0 βhŜh

0 γ + ηh −µh 0 0

0 −βvŜv 0 −βv Îh − µv 0

0 βvŜv 0 βv Îh −µv


.

The Jacobi matrix (3.7) is evaluated at E0, obtained the following charasteristic
equation:

(3.8) (−µh − λ)2 (−µv − λ)
(
λ2 + d1λ+ d2 = 0

)
= 0,

with

d1 = −A2 + A4 + µv,

d2 = µv(−A2 + A4)− A1A3.
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Based on equation (3.8), we have 5 eigenvalues, i.e. λ1,2 = −µh, λ3 = −µv.
It is clear that λj < 0, for j = 1, 2, 3 and arg (λj) = π so that |arg (λj)| > απ

2
.

Eigenvalues λ4 and λ5 are the roots of quadratic equation below:

λ4,5 =
−d1 ±

√
41

2
,

which41 = d21− 4d2. Disease-free equilibrium point E0 is locally asymptotically
stable if and only if it satisfy any of the following condition:

(i) If d1 > 0 and satisfy one of the following conditions,
(1) 41 = 0, or
(2) 41 > 0, and d2 > 0, or
(3) 41 < 0.

(ii) If d1 < 0 and |arg (λ4,5)| > απ
2

.

Next to determine the stability of E1, Jacobi matrix (3.7) is evaluated at E1, so
that it is obtained the characteristic equation below:

(3.9) (λ+ µv) (λ+ µh)
(
λ3 + k1λ

2 + k2λ+ k3
)

= 0,

with

k1 = B11 −B12 +B44 + µh + µv + A4,

k2 = B11B44 +B11µv +B11A4 −B12B44 −B12µh −B12µv − 2 ∗B15B42

+B44µh +B44A4 + µhµv + µhA4 + µvA4, and

k3 = B11B15B42 +B11B44A4 +B11µvA4 −B12B44µh −B12µhµv −B15B42B44

−2B15B42µh +B44µhA4 + µhµvA4.

Based on equation (3.9) obtained λ1 = −µh and λ2 = −µv. Its clear that λJ <
0, for J = 1, 2 and arg (λJ) = π so that it satisfy stability condition |arg (λJ)| >
απ
2

. λ3,4,5 are the roots from the cubic equation which has a discriminant written
as follows:

42 = −

∣∣∣∣∣∣∣∣∣∣∣

1 k1 k2 k3 0

0 1 k1 k2 k3

3 2k1 k2 0 0

0 3 2k1 k2 0

0 0 3 2k1 k2

∣∣∣∣∣∣∣∣∣∣∣
,

= 18k1k2k3 + (k1k2)
2 − 4k3k

3
1 − 4k32 − 27k23.
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Based on Routh-Hurwitz condition, equilibrium point E1 is locally asymptoti-
cally stable if and only if one of the following condition is satisfied:

(i) If 42 > 0 and satisfy the following condition,
(1) k1 > 0,
(2) k3 > 0, and
(3) k1k2 > k3.

(ii) If 42 < 0, α < 2
3
, and satisfy the following condition.

(1) k1 ≥ 0,
(2) k2 ≥ 0, and
(3) k3 > 0.

(iii) If 42 < 0, α > 2
3
, and satisfy the following condition.

(1) k1 < 0 and
(2) k2 < 0.

(iv) 42 < 0 and satisfy the following condition.
(1) k1 < 0,
(2) k2 < 0, and
(3) k1k2 = k3.

4. NUMERICAL SIMULATION

The numerical simulation have been done using Predictor-Corrector method,
the parameter values used are presented in Table 1 below:

TABLE 1. Parameter value

Parameter Paremeter value Source
Λh 10 Assumption
Λv 100 Assumption
δ 0.05 [9]
µh

1
365×60

[1]
µv

1
14

[1]
ηh 0.01 [1]
γ 0.05 [15]
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(i) Simulation 1
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FIGURE 1. The growth of (a) suspectible human, (b) infected hu-
man, (c) recovered human, (d) suspectible mosquito, and (e) in-
fected mosquito in Simulation 1.

In the first simulation, selected parameters value are βh = 2 × 10−7,
βv = 2× 10−8. Selected parameters value satisfy the local stability of E0.
The results of the simulation verify the results of stability analysis. The
stability of E0 is not affected by α value. The α value affects the speed
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of convergence of the system to E0. The system converge faster to E0 as
the closer α value to 1.

(ii) Simulation 2
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FIGURE 2. The growth of (a) suspectible human, (b) infected hu-
man, (c) recovered human, (d) suspectible mosquito, and (e) in-
fected mosquito in Simulation 2.
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The selected parameter value are presented in Table 1 and βh = 2 ×
10−3 and βv = 2×10−3. The first local stability condition of E1 is satisfied
and those result are supported by the simulation result in Figure 2. The
stability of E1 is not affected by α value. The α value affects the speed
of convergence of the system to E1. The system converge faster to E1 as
the closer α value to 1.

(iii) Simulation 3
Parameters value used in the third simulation are same as second sim-

ulation, except γ = 5 and ηh = 5. Based on second stability condition
of E1, E1 is locally asymptotically stable if and only if α < 2

3
. The sim-

ulation results of infected human and infected mosquito using various
α value are presented in Figure 3 and 4. As shown in Figure 3 and 4,
E1 stable when α < 2

3
and unstable when α > 2

3
. The simulation result

with α = 0.5 < 2
3

is presented in Figure 5. In Figure 5, E1 is locally
asimptotically stable as the second stability condition is satisfied.
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FIGURE 3. The growth of the infected human in Simulation 3.
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FIGURE 4. The growth of the infected mosquito in Simulation 3.
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FIGURE 5. The growth of the suspectible human, infected human,
recovered human, suspectible mosquito, and infected mosquito in
Simulation 3.

5. CONCLUSION

The ZIKV model presented as system of fractional differential equations which
is formulated by considering two populations and divided into 5 compartments,
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namely suspectible human (Sh), infected human (Ih), recovered humand (Rh),
susceptible mosquito (Sv), and infected mosquito (Iv). The model has two
points of equilibrium, i.e. the disease free equilibrium (E0) and endemic equilib-
rium (E1). Both of the equilibrium points are locally asymptotically stable under
different certain conditions. Numerical simulation verify the stability analysis
result of each equilibrium point and show the effect of α to equilibrium point’s
stability. The stability of E0 is not affected by α, and the stability of E1 can be
affected by the order size α depend on the which conditions are satisfied by the
parameter values used.
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