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ON SOME LOGARITHMIC INEQUALITIES

Neha Elizabeth Thomas1, Arya Chandran, and K. Vishnu Namboothiri

ABSTRACT. We establish some inequalities involving log(1 + x) using elemen-
tary techniques. Using these inequalities, we show an alternate approach to

evaluate the integral
∞∫
1

log t
t2 dt. This integral is later used to evaluate the as-

ymptotic value of a logarithmic sum.

1. INTRODUCTION

There are many inequalities involving the natural logarithm function, which
are useful in many areas of science and engineering in addition to being inter-
esting in its own in pure Mathematics. The very basic inequality

log(1 + x) ≤ x, x ≥ 0,

is such an example. Somewhat more useful is the inequality

1− 1

x
≤ log x ≤ x− 1 for x > 0.
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Deriving and using such bounds have been an active area of interest for math-
ematicians. For example, a number of useful logarithmic ineqalities were de-
rived by F. Topsøe in [4]. Two of them stated there without proof are the fol-
lowing:

(1.1)
2x

2 + x
≤ log(1 + x) ≤

(x
2

)(2 + x

1 + x

)
, x ≥ 0,

(1.2)
2x

2 + x
≥ log(1 + x) ≤

(x
2

)(2 + x

1 + x

)
, −1 ≤ x ≤ 0.

In [3], C. Chesneau et. all established a upper bound for log(1 + x) for x ≥ 0

involving arctan function as follows:

log(1 + x) ≤ f(x)√
x+ 1

,

where f(x) = π +
1

2
(4 + π)x− 2(x+ 2)arctan

(√
x+ 1

)
.

In connection with the above, M. Kostic [2] proved the following:

Theorem 1.1. There is no rational real function which intermediates the func-
tions log(1 + x) and f(x)√

x+1
for x ∈ (−1, 0], where f(x) = π + 1

2
(4 + π)x − 2(x +

2) arctan
(√

x+ 1
)
.

In this paper, we provide a proof of the second part of both the inequalities
(1.1) and (1.2) claimed to be true by F. Topsøe in [4]. Precisely, we establish
the following two inequalities:

log(1 + x) ≥
(x
2

)(2 + x

1 + x

)
, −1 ≤ x ≤ 0,

log(1 + x) ≤
(x
2

)(2 + x

1 + x

)
, 0 ≤ x ≤ ∞.

It will be interesting to note that these inequalities combined with the result of
M. Kostic (1.1) gives the immediate consequence that(

2 + x

1 + x

)
>

f(x)√
x+ 1

where f is as in (1.1). We try to prove these inequalities using some elemen-
tary techniques. We also try to assess the asymptotic behaviour of the sum∑
n≤x

logn
n

using these inequalities. The importance of such logarithmic integrals
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and inequlities can be understood to some extent if one considers various re-
sults leading to the proof of the classical Prime Number Theorem and the role
of logarithmic inequalities in the proof of the theorem.

To derive the inequalities in question, we need to prove the existence of some
improper integrals. Here, we try to prove the existence of the improper integral
∞∫
1

log t
t2
dt using the general method of comparison test.

2. NOTATIONS AND BASIC RESULTS

Most of the notations, functions, and identities we use in this writeup are
standard and can be found in [1]. The remaining ones we introduce in this
section.

Definition 2.1 (The big oh notation). Let f, g be arithmetical functions. If g(x) >
0 for all x ≥ a, we write f(x) = O(g(x)) to mean that the quotient f(x)

g(x)
is bounded

for x ≥ a.

If [x] denotes the greatest integer ≤ x for any real number x, then we have
the following result.

Theorem 2.1 (Euler summation formula). [1, Theorem 3.1] If f has a continuous
derivative f ′ on the interval [y, x], where 0 < y < x, then∑
y<n<x

f(n) =

x∫
y

f(t) dt+

x∫
y

(t− [t]) (f ′(t)) dt+ f(x) ([x]− x) − f(y) ([y]− y) .

3. MAIN RESULTS AND PROOFS

To find some reasonable bound for the integral
∞∫
1

log t
t2
dt and hence to arrive at

an estimate for
∑
n≤x

logn
n

, we prove the inequalities we claimed in the first section

of this paper.

Proposition 3.1. The natural logarithm function satisfies the following inequali-
ties:

(3.1) log(1 + x) ≥
(x
2

)(2 + x

1 + x

)
, −1 ≤ x ≤ 0,
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(3.2) log(1 + x) ≤
(x
2

)(2 + x

1 + x

)
, 0 ≤ x ≤ ∞,

Proof. Define

L(x) = log(1 + x)−
(x
2

)(2 + x

1 + x

)
, −1 ≤ x ≤ 0.

The first inequality (3.1) is equivalent to the claim that L(x) ≥ 0 for −1 ≤
x ≤ 0.

At x = 0, L(x) = 0. Now it is suffices to prove that L(x) is decreasing in
(−1, 0). To prove the monotonic nature, we use derivative test. Consider the
derivative of the function L(x):

L′(x) =
1

1 + x
− 1

2
− 1

2(x+ 1)2
=

1

2

(
2x+ 1

(x+ 1)2
− 1

)
.

Since for −1 < x < 0, 2x+1
(x+1)2

< 1 we quickly arrive at the conclusion L′(x) ≤ 0.
Hence the first equality holds.

We use a similar argument to prove the second inequality (3.2).
Define

H(x) =
(x
2

)(2 + x

1 + x

)
− log(1 + x), 0 ≤ x ≤ ∞.

Clearly H(x) = 0 at x = 0. It is enough to prove H is an increasing function.
Now

H ′(x) =
1

2

(
1− 2x+ 1

(x+ 1)2

)
.

Since 2x+1
(x+1)2

≤ 1 for 0 ≤ x ≤ ∞, H ′(x) ≥ 0. This completes the proof. �

Corollary 3.1.

log x ≤ x− 1√
x
, 1 ≤ x ≤ ∞.

Proof. For 1 ≤ x ≤ ∞, write log x = log(1 + x − 1). Note that when 1 ≤ x ≤ ∞
we have 0 ≤ x− 1 ≤ ∞. Now use inequality (3.2) to get

log x = log(1 + x− 1) ≤
(
x− 1

2

)(
2 + x− 1

1 + x− 1

)
=

1

2

(
x2 − 1

x

)
=

1

2

(
x− 1

x

)
.

Therefore, log x ≤ 1
2

(
x− 1

x

)
for 0 ≤ x ≤ ∞.

Now let x = xa where a > 0.
Since 0 ≤ xa ≤ ∞, we get

log(xa) ≤ 1

2

(
xa − x−a

)
⇒ log x ≤ 1

2a

(
xa − x−a

)
.
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Let a = 1
2
. Hence

log x ≤
√
x− 1√

x
=
x− 1√
x
.

�

Now we are ready to prove the existence of the promised integral.

Proposition 3.2. The improper integral
∞∫
1

log t
t2
dt exists.

Proof. To prove the existence of
∞∫
1

log t
t2
dt, we use comparison test.

By corollary 3.1, the integrand log t
t2

is dominated by t−1
t
5
2

. Thus,

0 ≤
∞∫
1

log t

t2
dt ≤

∞∫
1

t− 1

t
5
2

dt =

∞∫
1

(
t
−3
2 − t

−5
2

)
dt =

4

3
.

Hence
∞∫
1

log t
t2
dt exists. �

Applying Proposition 3.2, we immediately get the following result.

Corollary 3.2. For x ≥ 2,∑
n≤x

log n

n
=

1

2
log2 x+ A+O

(
log x

x

)
,

where A is a constant.

Proof. By Euler’s summation formula, we see that

∑
n≤x

log n

n
=

x∫
1

log t

t
dt+

x∫
1

(t− [t])

(
1− log t

t2

)
dt+ (t− [t])

log x

x

=
log2 x

2
+

x∫
1

(t− [t])

(
1− log t

t2

)
dt+O

(
log x

x

)

=
log2 x

2
+

∞∫
1

(t− [t])

(
1− log t

t2

)
dt−

∞∫
x

(t− [t])

(
1− log t

t2

)
dt

+O

(
log x

x

)
.
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Observe that
∞∫
x

(t− [t])

(
1− log t

t2

)
dt ≤

∞∫
x

(
1− log t

t2

)
dt =

∞∫
x

1

t2
dt−

∞∫
x

log t

t2
dt

≤
∞∫
x

1

t2
dt =

1

x
= O

(
1

x

)
.

Now,

∞∫
1

(t− [t])

(
1− log t

t2

)
dt ≤

∞∫
1

(
1− log t

t2

)
dt =

∞∫
1

1

t2
dt−

∞∫
1

log t

t2
dt,

exists. Hence

∑
n≤x

log n

n
=

1

2
log2 x+

∞∫
1

(t− [t])

(
1− log t

t2

)
dt+O

(
log x

x

)

=
1

2
log2 x+ A+O

(
log x

x

)
,

where A =
∞∫
1

(t− [t])
(
1−log t

t2

)
dt, a constant. �

4. FURTHER DIRECTIONS

It is interesting to compare our last result above with the well known result
(see [1, Theorem 4.10])

(4.1)
∑

p prime≤x

log p

p
= log x+O(1).

To get (4.1), powerful tools like Shapiro’s theorem [1, Theorem 4.8] was used,
where as we used only elementary results to establish our claim. We hope to use
this technique to get better bounds for other logarithmic polynomials without
much difficulty.
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