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THE EFFECTS OF HALL CURRENT ON THE FLOW DUE TO THE
OSCILLATING ROTATING POROUS DISK WITH A VISCOUS FLUID AT

INFINITY: GRAPHICAL SOLUTIONS USING MATLAB

R. Lakshmi1 and A. Santhakumari

ABSTRACT. The flow due to the oscillating rotating porous disk with a viscous
fluid at infinity is studied under the influence of Hall current. Governing equa-
tions are implied with reasonable approximations and solved analytically to get
the expressions for the velocity fields in closed form. Graphical results are pre-
sented for the velocity components for various values of parameters namely, the
Hall, suction and blowing through MATLAB and a discussion is provided. It is
important to note that presented results are valid for all values of the frequen-
cies.

1. INTRODUCTION

In many MHD problems it is assumed that the electrical conductivity of the
fluid is isotropic and as such a scalar quantity. However, this need not be so
always in nature and the conductivity of the medium is an anisotropic if the
medium is rarefied and /or if a string magnetic field is present. In the presence
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of a strong magnetic field, the charged particles are tied to the lines of force, and
this prevents their motion transverse to the magnetic field. Then the tendency
of the current flow in a direction normal both the electrical and magnetic field is
known as Hall current. The Hall Effect is the production of a voltage difference
(Hall voltage) across an electrical conductor, transverse to an electric current in
the conductor and a magnetic field perpendicular to the current. Thus the Hall
Effect rotates the current vector away from the direction of the electric field
generally reduces the level of the Lorenz force on the flow.

The Hall coefficient is defined as the ratio of the induced electric field to the
product of the current density and applied magnetic field. It is a characteristic
of the material from which the conductor is made, since its value depends on
the type, number, and properties of the charge carries that constitute the cur-
rent. Hall problems are often used as magnetometers (i.e) to measure magnetic
fields, or inspect materials (such as tubing or pipelines) using the principles
of magnetic fluid leakage. Hall Effect devices produce a very low signal level
and thus require amplification. While suitable for laboratory instruments, the
vacuum tube amplifiers available in the first half of the 20th century were too
expensive, power consuming, and unreliable for everyday applications. It was
only with the development of the low cost integrated circuit that the Hall Ef-
fect sensor became suitable for mass application. Many devices now sold as
Hall Effect sensors in fact contain both the sensor as described above plus a
high gain integrated circuit (IC) amplifier in a single package. The flow of a
viscous incompressible fluid due to non-coaxial rotations of a disk and the fluid
at infinity has been studied by a number of researchers. An exact solution of
this type of problem was obtained by Berker [17]. Coirier [16] studied the
flow due to a disk and the fluid at infinity which are rotating non- coaxially
at a slightly different angular velocity. The non-Newtonian flow due to a disk
and the fluid at infinity which are rotating non-coaxially at a slightly different
angular velocity was studied by Erdogan [15]. An exact solution of the three
dimensional Navier-Stokes equations for the flow due to non coaxial rotation of
a porous disk and the fluid at infinity was studied by Erdogan [13,14]. Murthy
and Ram [12] studied the magnetohydrodynamic flow and heat transfer due to
eccentric rotations of a porous disk and the fluid at infinity. The unsteady flow
due to non-coaxial rotations of a disk, oscillating in its own plane and the fluid
at infinity was studied by Kasiviswanathan and Rao [11]. Chakraborti et al. [12]
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studied the hydromagnetic flow due to non-coaxial rotations of a disk and the
fluid at infinity with same angular velocity. The flow due to non-coaxial rota-
tions of an oscillatory porous disk and the fluid at infinity about an axis passing
through a fixed point parallel to the axis of rotation of the disk was investigated
by Hayet et al. [10]. The flow due to non-coaxial rotations of an oscillating
porous disk and the fluid at infinity which rotate about an axis passing through
a fixed point parallel to the axis of rotation of the disk was studied by Guria
et al. [5]. Hayet et al. [8] studied the unsteady MHD flow due to non-coaxial
rotations of a porous disk and the fluid at infinity.Turkyilmazoglu M. A class of
exact solutions for the incompressible viscous magnetohydrodynamic flow over
a porous rotating disk said by the three-dimensional hydromagnetic equations
of motion are treated analytically to obtained exact solutions with the inclusion
of suction and injection was obtained Turkyilmazoglu [2020]. Hall effects on
unsteady hydromagnetic flow induced by an eccentric–concentric rotation of a
disk and a fluid at infinity. Rotating disk flows of conducting fluids have practi-
cal applications in many areas such as rotating machinery, lubrication, computer
storage devices, viscometry and crystal growth process. In most cases the hall
term was ignored in applying Ohm’s law as it has no marked effect for small and
moderate values of the magnetic field. In recent years, considerable interest has
been shown in mass addition to boundary layer flows, especially in connection
with the cooling of the turbine blades and the sting of high speed aero vehi-
cles.In the present paper, proposed to study the theoretical study of the Hall
Effect in steady MHD flow over a rotating porous disk with a viscous fluid at
infinity.

2. MATHEMATICAL FORMULATION

Consider an incompressible viscous fluid which fills the space z > 0 and is
in contact with an infinite porous disk making oscillations in its own plane.
Introduce a Cartesian coordinate system with the z - axis normal to the disk,
which lies in the plane z = 0. The axis of rotation of both the disk and the fluid,
are assumed to be in the plane x = 0, with the distance between the axes being
l. The geometry of the problem is shown in Fig 1. Initially, the disk and the
fluid at infinity are rotating with the same angular velocity Ω about the z1- axis
and at time t = 0, the disk start to oscillate suddenly along the x- axis and to
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rotate impulsively about the z- axis with Ω and the fluid continues to rotate with
Ω about the z1- axis. A uniform magnetic field B0 is applied in the positive z-
direction

FIGURE 1.

The relevant boundary and initial conditions are

u = −Ωy + U cosnt or u = −Ωy + U sinnt; v = Ωxat z = 0 for t > 0,

u = −Ω(y − l), v = Ωx atz = 0 for t > 0,(2.1)

u = −Ω(y − l), v = Ωx att = 0 for z > 0,

in which n being the frequency of the non - torsional oscillations. The equations
governing the flow are (2.1)-(2.5),(2.11), (2.12) and the following generalized
Ohm’s law which includes the Hall current [1]

(2.2) J +
Weτe
B0

(J X B) = σ[E + V XB +
1

ene
∆pe,

where e is the electron charge, pe is the electron pressure, ne is the electron num-
ber density, ωe is the cyclotron frequency and τe is the electron collision time.
Note that the ion-slip and thermoelectric effects are not included in equation
(2.2). In the absence of an external applied electric field and with negligible ef-
fects of polarization of the ionized gas, E is taken as zero (E = 0). The induced
magnetic field is negligible which is a valid consideration is on the laboratory
scale. Further, it is assumed that ωeτe ≈ θ(1) and ω1τ1 << 1, where ω1 and τ1

are cyclotron frequency and collision time for ions respectively.
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Proceeding with the Equations (2.1), (2.11), (2.12) in [1] and (2.2) then
using the above assumptions, the flow with Hall effects is governed by the fol-
lowing scalar equations:

(2.3)
∂f

∂t
− Ωg −W0

∂f

∂z
= −1

ρ

∂p̂

∂x
+ v

∂2f

∂z2
− σB2

0

ρ (1− im)
(f − Ωy),

(2.4)
∂g

∂t
+ Ωf −W0

∂g

∂z
= −1

ρ

∂p̂

∂x
+ v

∂2g

∂z2
− σB2

0

ρ (1− im)
(g − Ωx),

(2.5)
1

ρ

∂p̂

∂x
=

σB2
0

ρ (1− im)
W0.

Here m = ωeτe is the Hall parameter and the modified pressure p̂ is

(2.6) p̂ = p1 −
ρr2Ω2

2
, r2 = x2 + y2.

From equations (2.11)in [1] and (2.1), one can write

f(0, t) = U cosnt or f(0, t) = U sinntg(0, t) = 0 for t > 0,

f(z, t) = Ωl; g(z, t) = 0 as z →∞ for all t,(2.7)

f(z, 0) = Ωl; g(z, 0) = 0 for z > 0.

Eliminating p̂ from equations (2.3) to (2.5), using boundary conditions (2.7)
and then combining the resulting equations one can write the following prob-
lem:

(2.8) v
∂2G

∂z2
− ∂G

∂t
+W0

∂G

∂z
− (N + iΩ)G = 0,

G (0, t) =
u

Ωl
cosnt− 1 or G (0, t) =

u

Ωl
sinnt− 1; t > 0,

G (0, t) = 0, as z →∞, for all t,(2.9)

G (0, t) = 0 for z > 0,

in which

(2.10) G =
f

Ωl
+ i

g

Ωl
− 1,

and

N =
σB2

0(1 + im)

ρ(1 +m2)
.
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Introducing

(2.11) H = GeiΩt.

The governing problem becomes

(2.12) v
∂2H

∂z2
− ∂H

∂t
+W0

∂H

∂z
−NH = 0,

H(0, t) = −1 +
U

Ωl
cosnt or H(0, t) = −1 +

U

Ωl
sinnt; t > 0,

H(z, t) = 0 as z →∞ for all t; H(z, 0) = 0.(2.13)

3. EXACT SOLUTION TO THE PROBLEM FOR NON-RESONANT FREQUENCIES

(K = N/Ω 6= 1)

By means of the Laplace transform, we obtain the following solutions for the
resulting transformed problems for U cosnt

(3.1) H̄(z, s) =

[
− 1

s− iΩ
+

U

2Ωl

{
1

s+ i(n− Ω)
+

1

s− i(n+ Ω)

}]
e1; n > Ω,

(3.2) H̄(z, s) =

[
− 1

s− iΩ
+

U

2Ωl

{
1

s− i(Ω− n)
+

1

s− i(n− Ω)

}]
e1; n < Ω,

and for U sinnt

(3.3) H̄(z, s) =

[
− 1

s− iΩ
+ i

U

2Ωl

{
1

s+ i(n− Ω)
− 1

s− i(n+ Ω)

}]
e1;n > Ω,

(3.4) H̄(z, s) =

[
− 1

s− iΩ
+ i

U

2Ωl

{
1

s− i(Ω− n)
− 1

s− i(n+ Ω)

}]
e1; n < Ω,

in which

(3.5) e1 = e
−
[

W0
2v

++

√
(W0

2v )
2
+N

v

]
z

.
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After the inversion for the Laplace transform, the equations (3.1) to (3.5) yield
the following suction solutions for U cosnt, n > Ω:
(3.6)

f

Ωl
+i

g

Ωl
= 1+e−

√
2Wξ



−1
2

 e(x2+iy2)ξerfc
(

ξ√
2τ

+ (x2 + iy2)
√

τ
2

)
+e−(x2+iy2)ξerfc

(
ξ√
2τ
− (x2 + iy2)

)√
τ
2


+ U

2Ωl
e−ikτ

 e(x3+iy3)ξerfc
(

ξ√
2τ

+ (x3 + iy3)
√

τ
2

)
+e−(x3+iy3)ξerfc

(
ξ√
2τ
− (x3 + iy3)

)√
τ
2


− U

2Ωl
e−ikτ

 e(x4+iy4)ξerfc
(

ξ√
2τ

+ (x4 + iy4)
√

τ
2

)
+e−(x4+iy4)ξerfc

(
ξ√
2τ
− (x4 + iy4)

)√
τ
2




,

and for n < Ω,
(3.7)

f

Ωl
+i

g

Ωl
= 1+e−

√
2Wξ



−1
2

 e(x2+iy2)ξerfc
(

ξ√
2τ

+ (x2 + iy2)
√

τ
2

)
+e−(x2+iy2)ξerfc

(
ξ√
2τ
− (x2 + iy2)

)√
τ
2


+ U

2Ωl
e−ikτ

 e(x5+iy5)ξerfc
(

ξ√
2τ

+ (x5 + iy5)
√

τ
2

)
+e−(x5+iy5)ξerfc

(
ξ√
2τ
− (x5 + iy5)

)√
τ
2


− U

2Ωl
e−ikτ

 e(x4+iy4)ξerfc
(

ξ√
2τ

+ (x4 + iy4)
√

τ
2

)
+e−(x4+iy4)ξerfc

(
ξ√
2τ
− (x4 + iy4)

)√
τ
2




.

For U sinnt, n > Ω,
(3.8)

f

Ωl
+i

g

Ωl
= 1+e−

√
2Wξ



−1
2

 e(x2+iy2)ξerfc
(

ξ√
2τ

+ (x2 + iy2)
√

τ
2

)
+e−(x2+iy2)ξerfc

(
ξ√
2τ
− (x2 + iy2)

)√
τ
2


+ U

2Ωl
e−ikτ

 e(x5+iy5)ξerfc
(

ξ√
2τ

+ (x5 + iy5)
√

τ
2

)
+e−(x5+iy5)ξerfc

(
ξ√
2τ
− (x5 + iy5)

)√
τ
2


− U

2Ωl
e−ikτ

 e(x4+iy4)ξerfc
(

ξ√
2τ

+ (x4 + iy4)
√

τ
2

)
+e−(x4+iy4)ξerfc

(
ξ√
2τ
− (x4 + iy4)

)√
τ
2




,
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and for n < Ω,
(3.9)

f

Ωl
+i

g

Ωl
= 1+e−

√
2Wξ



−1
2

 e(x2+iy2)ξerfc
(

ξ√
2τ

+ (x2 + iy2)
√

τ
2

)
+e−(x2+iy2)ξerfc

(
ξ√
2τ
− (x2 + iy2)

)√
τ
2


+i U

2Ωl
e−ikτ

 e(x5+iy5)ξerfc
(

ξ√
2τ

+ (x5 + iy5)
√

τ
2

)
+e−(x5+iy5)ξerfc

(
ξ√
2τ
− (x5 + iy5)

)√
τ
2


−i U

2Ωl
e−ikτ

 e(x4+iy4)ξerfc
(

ξ√
2τ

+ (x4 + iy4)
√

τ
2

)
+e−(x4+iy4)ξerfc

(
ξ√
2τ
− (x4 + iy4)

)√
τ
2




.

Here

x2 =

√(W 2 +
N1

1 +m2

)2

+

(
1 +

N1m

1 +m2

)2

+

(
W 2 +

N1

1 +m2

) 1
2

,

x3 =

√(W 2 +
N1

1 +m2

)2

+

(
k − 1− N1m

1 +m2

)2

+

(
W 2 +

N1

1 +m2

) 1
2

,

x4 =

√(W 2 +
N1

1 +m2

)2

+

(
k + 1 +

N1m

1 +m2

)2

+

(
W 2 +

N1

1 +m2

) 1
2

,

x5 =

√(W 2 +
N1

1 +m2

)2

+

(
1 +

N1m

1 +m2
− k
)2

+

(
W 2 +

N1

1 +m2

) 1
2

,

y2 =

√(W 2 − N1

1 +m2

)2

+

(
1 +

N1m

1 +m2

)2

−
(
W 2 +

N1

1 +m2

) 1
2

,

y3 =

√(W 2 +
N1

1 +m2

)2

+

(
k − 1 +

N1m

1 +m2

)2

−
(
W 2 +

N1

1 +m2

) 1
2

,

y4 =

√(W 2 +
N1

1 +m2

)2

+

(
k + 1 +

N1m

1 +m2

)2

−
(
W 2 +

N1

1 +m2

) 1
2

,
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y5 =

√(W 2 +
N1

1 +m2

)2

+

(
1 +

N1m

1 +m2
− k
)2

−
(
W 2 +

N1

1 +m2

) 1
2

,

x2 =

√(W 2 +
N1

1 +m2

)2

+

(
1 +

N1m

1 +m2

)2

+

(
W 2 +

N1

1 +m2

) 1
2

,

x3 =

√(W 2 +
N1

1 +m2

)2

+

(
k − 1− N1m

1 +m2

)2

+

(
W 2 +

N1

1 +m2

) 1
2

,

x4 =

√(W 2 +
N1

1 +m2

)2

+

(
k + 1 +

N1m

1 +m2

)2

+

(
W 2 +

N1

1 +m2

) 1
2

,

x5 =

√(W 2 +
N1

1 +m2

)2

+

(
1 +

N1m

1 +m2
− k
)2

+

(
W 2 +

N1

1 +m2

) 1
2

,

y2 =

√(W 2 − N1

1 +m2

)2

+

(
1 +

N1m

1 +m2

)2

−
(
W 2 +

N1

1 +m2

) 1
2

,

y3 =

√(W 2 +
N1

1 +m2

)2

+

(
k − 1 +

N1m

1 +m2

)2

−
(
W 2 +

N1

1 +m2

) 1
2

,

y4 =

√(W 2 +
N1

1 +m2

)2

+

(
k + 1 +

N1m

1 +m2

)2

−
(
W 2 +

N1

1 +m2

) 1
2

,

y5 =

√(W 2 +
N1

1 +m2

)2

+

(
1 +

N1m

1 +m2
− k
)2

−
(
W 2 +

N1

1 +m2

) 1
2

,

and

(3.10) ξ =

√
Ω

2v
z, k =

n

Ω
, τ = Ωt, N1 =

σB2
0

ρΩ
, W =

W0

2
√
vΩ

.

Note that in Equations (3.6) to (3.9), the Equations (2.10) and (2.11) have also
been used. The solutions (3.6) to (3.9) are unsteady and valid for the suction
case. For blowing, the unsteady solutions can be directly taken from the suction
case i.e from equations (3.6) to (3.9) by replacing W by −W1 (W1 > 0). Further,
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the steady state solutions in the respective case can be obtained by using the
following asymptotic values of the complementary error function

(3.11) erf c
(

ξ√
2γ
± (xj + iyj)

√
τ

2

)
→ (0, 2), j = 1 to 4.

4. EXACT SOLUTION FOR THE RESONANT CASE (n/Ω = 1)

The unsteady suction solutions for and U cosnt and U sinnt can be respec-
tively written as

f

Ωl
+ i

g

Ωl
= 1 + e−

√
2Wξ

·



−1
2

 e(x2+iy2)ξerfc
(

ξ√
2τ

+ (x2 + iy2)
√

τ
2

)
+e−(x2+iy2)ξerfc

(
ξ√
2τ
− (x2 + iy2)

)√
τ
2


U

2Ωl
e−ikτ

 e(x6+iy6)ξerfc
(

ξ√
2τ

+ (x6 + iy6)
√

τ
2

)
+e−(x6+iy6)ξerfc

(
ξ√
2τ
− (x6 + iy6)

)√
τ
2


+ U

2Ωl
eikτ

 e(x7+iy7)ξerfc
(

ξ√
2τ

+ (x7 + iy7)
√

τ
2

)
+e−(x7+iy7)ξerfc

(
ξ√
2τ
− (x7 + iy7)

)√
τ
2





(4.1)

f

Ωl
+ i

g

Ωl
= 1 + e−

√
2Wξ

·



−1
2

 e(x2+iy2)ξerfc
(

ξ√
2τ

+ (x2 + iy2)
√

τ
2

)
+e−(x2+iy2)ξerfc

(
ξ√
2τ
− (x2 + iy2)

)√
τ
2


+i U

2Ωl
e−kτ

 e(x6+iy6)ξerfc
(

ξ√
2τ

+ (x6 + iy6)
√

τ
2

)
+e−(x6+iy6)ξerfc

(
ξ√
2τ
− (x6 + iy6)

)√
τ
2


−i U

2Ωl
e−kτ

 e(x7+iy7)ξerfc
(

ξ√
2τ

+ (x7 + iy7)
√

τ
2

)
+e−(x7+iy7)ξerfc

(
ξ√
2τ
− (x7 + iy7)

)√
τ
2




.

(4.2)

Here

x6 =

√(W 2 +
N1

1 +m2

)2

+

(
1 +

N1m

1 +m2

)2

+

(
W 2 +

N1

1 +m2

) 1
2

,
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x7 =

√(W 2 +
N1

1 +m2

)2

+

(
2 +

N1m

1 +m2

)2

+

(
W 2 +

N1

1 +m2

) 1
2

,

y6 =

√(W 2 +
N1

1 +m2

)2

+

(
1 +

N1m

1 +m2

)2

+

(
W 2 +

N1

1 +m2

) 1
2

,

y7 =

√(W 2 +
N1

1 +m2

)2

+

(
1 +

N1m

1 +m2

)2

−
(
W 2 +

N1

1 +m2

) 1
2

.

For blowing W = −W1 (W1 > 0)and the respective unsteady solutions for
U cosnt and U sinnt are

f

Ωl
+ i

g

Ωl
= 1 + e−

√
2Wξ

·



−1
2

 e(x̃2+iỹ2)ξerfc
(

ξ√
2τ

+ (x̃2 + iỹ2)
√

τ
2

)
+e−(x̃2+iỹ2)ξerfc

(
ξ√
2τ
− (x̃2 + iỹ2)

)√
τ
2


+ U

2Ωl
e−ikτ

 e(x̃3+iỹ3)ξerfc
(

ξ√
2τ

+ (x̃3 + iỹ3)
√

τ
2

)
+e−(x̃3+iỹ3)ξerfc

(
ξ√
2τ
− (x̃3 + iỹ3)

)√
τ
2


U

2Ωl
e−ikτ

 e(x̃4+iỹ4)ξerfc
(

ξ√
2τ

+ (x̃4 + iỹ4)
√

τ
2

)
+e−(x̃4+iỹ4)ξerfc

(
ξ√
2τ
− (x̃4 + iỹ4)

)√
τ
2





(4.3)

f

Ωl
+ i

g

Ωl
= 1 + e−

√
2Wξ

·



−1
2

 e(x̃2+iỹ2)ξerfc
(

ξ√
2τ

+ (x̃2 + iỹ2)
√

τ
2

)
+e−(x̃2+iỹ2)ξerfc

(
ξ√
2τ
− (x̃2 + iỹ2)

)√
τ
2


+i U

2Ωl
e−kτ

 e(x̃3+iỹ3)ξerfc
(

ξ√
2τ

+ (x̃3 + iỹ3)
√

τ
2

)
+e−(x̃3+iỹ3)ξerfc

(
ξ√
2τ
− (x̃3 + iỹ3)

)√
τ
2


−i U

2Ωl
e−kτ

 e(x̃4+iỹ4)ξerfc
(

ξ√
2τ

+ (x̃4 + iỹ4)
√

τ
2

)
+e−(x̃4+iỹ4)ξerfc

(
ξ√
2τ
− (x̃4 + iỹ4)

)√
τ
2

 .



(4.4)
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Here

x̃3 =

√(W 2 +
N1

1 +m2

)2

+

(
N1m

1 +m2

)2

+

(
W 2 +

N1

1 +m2

) 1
2

,

x̃4 =

√(W 2 +
N1

1 +m2

)2

+

(
2 +

N1m

1 +m2

)2

+

(
W 2 +

N1

1 +m2

) 1
2

,

x̃4 =

√(W 2 +
N1

1 +m2

)2

+

(
2 +

N1m

1 +m2

)2

+

(
W 2 +

N1

1 +m2

) 1
2

,

ỹ4 =

√(W 2 +
N1

1 +m2

)2

+

(
k − 1− N1m

1 +m2

)2

+

(
W 2 +

N1

1 +m2

) 1
2

.

In order to determine the steady state solutions, equations (3.11) are used
and get for U cosnt

(4.5)
f

Ωl
+ i

g

Ωl
= 1 + e

√
2w1ξ

{
−e(x̃2+ỹ2)ξ + U

Ωl
e−iτe(x̃3+iỹ3)ξ+

u
Ωl
eiτe(x̃4+ỹ4)ξ

}
,

and for U sinnt,

(4.6)
f

Ωl
+ i

g

Ωl
= 1 + e

√
2w1ξ

{
−e(x̃2+ỹ2)ξ + i U

Ωl
e−iτe(x̃3+iỹ3)ξ−

i u
Ωl
eiτe(x̃4+ỹ4)ξ

}
.

5. RESULTS AND DISCUSSION

In this chapter, the effects of Hall current on the flow due to non-coaxial
rotation of an oscillating disk and fluid at infinity in the presence of suction
and blowing is investigated. For small times, the analytic solutions have been
obtained using Laplace transform method. The analytic solutions for large times
have been computed through asymptotic behavior of the complementary error
function. We also compared the present velocity profiles mathematically and
graphically with those given in the reference. The results are found in well
agreement. The mathematical problem contains altogether six dimensionless
parameters (ξ, k, τ,W,N1 and ε). Here the investigation is made for of the hall
parameter for cosine and sine oscillations when the angular velocity is greater
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than, smaller than or equal to the frequency of oscillations for both suction and
blowing.

The illustration is for how the Hall Effect modifies the structure of flow, the
profiles of velocity for both cosine and sine oscillations when τ = 0.3, U

4Ωl
= 1,

N1 = 4. The effect of Hall parameter m = 0.5, 1, 2 on velocity profiles for cosine
oscillations when W = 0 and k = −4, 1, 4 are shown in Figs.2 (i, ii), respectively.
It is seen from these Figures that the magnitudes of f/ Ωl increases and g/

Ωldecreases with the increase of m. Moreover, it is observed that boundary
layer thickness for k = 1 is smallest when compared with k < 1 and k > 1. Also,
the boundary layer thickness in case of k < 1 is smaller than that of k > 1.

In order to see the variation of hall parameter m = 0.5, 1, 2 on the velocity
profiles in presence of suction W = 0.5 and cosine oscillation, we display Fig-
uress.3 (i, ii) for k = −4, 1, 4. It appears that when the applied magnetic field is
strong, both f

Ωl
and g

Ωl
depend strongly on the hall parameter m. The magnitude

of f
Ωl

increases while g
Ωl

decreases for large m. Here, the boundary layer thick-
ness is minimum and the velocity profiles are maximum when k = 1. Also, the
velocity profiles for k > 1 are greater than for k < 1. Further, the comparison
of Figures 2 (i, ii) and 3 (i, ii) indicate that velocity profiles and boundary layer
thickness are smaller in case of suction. This is not surprising; it is known that
suction causes reduction in the boundary layer thickness.

To demonstrate the effect of hall parameter m = 0.5, 1, 2 on velocity profiles
in blowing W = −0.5 and cosine oscillations, the Figures 4 (i, ii) are prepared
for k = −4, 1, 4. These Figures elucidate that the magnitude of velocity profiles
is largest for k = 1 while the boundary layer thickness is smallest. It is also
evident that velocity profiles f

Ωl
and g

Ωl
are larger for k > 1 when compared with

that of k < 1.
Figures 5 (i, ii) to 7 (i, ii) illustrate the variation of Hall parameter m = 0.5,1,2

on f
Ωl

and g
Ωl

for W = 0. W > 0 and W < 0 for sine oscillations. It is obvious
from Figure 2 (i, ii) to 4.7(i, ii) that boundary layer thickness in case of sine
oscillations is smaller than that of cosine oscillations.

6. CONCLUSIONS

Effects of Hall current on the flow characteristics due to non-coaxial rotations
of disk and a fluid has been investigated in this chapter. The following conclu-
sions have been emerged:
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• It is observed that in the presence of hall parameter, the asymptotic
steady solution for blowing and resonance exists.
• When the external magnetic field is strong, the role of hall parameter

becomes more significant.
• As the Hall parameter increases the magnitude of primary velocity f

Ωl

increases while both secondary velocity g
Ωl

and boundary layer thickness
decreases.
• The boundary layer thicknesses in case of sine oscillations are smaller

than for cosine oscillations

W = 0, N1 = 5, τ = 0.3,
n

Ω
= 5.

The Figures 2, 3 and 4 show the effect of hall parameter on f
Ωl

and g
Ωl

for
Cosine oscillation in the absence of suction and blowing at

(
u

4Ωl
= 1
)

FIGURE 2. W = 0, N1 = 5, τ = 0.3, n
Ω

= 5
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FIGURE 3. W = 0 N1 = 5, τ = 0.3, n
Ω

= −5

FIGURE 4. W = 0 N1 = 5, τ = 0.3, n
Ω

= 1
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The Figures 5, 6 and 7 show the effect of hall parameter on f
Ωl

and g
Ωl

for
Cosine oscillation in the absence of suction and blowing at

(
u

4Ωl
= 1
)

FIGURE 5. W = 0.5, N1 = 5, τ = 0.3, n
Ω

= 5

FIGURE 6. W = 0.5, N1 = 5, τ = 0.3, n
Ω

= −5
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FIGURE 7. W = 0.5, N1 = 5, τ = 0.3, n
Ω

= 1

FIGURE 8. W = −0.5, N1 = 5, τ = 0.3, n
Ω

= 5
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FIGURE 9. W = −0.5, N1 = 5, τ = 0.3, n
Ω

= −5

FIGURE 10. W = −0.5, N1 = 5, τ = 0.3, n
Ω

= 1
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The Figures 8, 9 and 10 show the effect of hall parameter on f
Ωl

and g
Ωl

for
Cosine oscillation in the presence of suction

(
u

4Ωl
= 1
)

FIGURE 11. W = 0, N1 = 5, τ = 0.3, n
Ω

= 5

FIGURE 12. W = 0, N1 = 5, τ = 0.3, n
Ω

= −5
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FIGURE 13. W = 0, N1 = 5, τ = 0.3, n
Ω

= 1

The Figures 11, 12 and 13 show the effect of Hall parameter on f
Ωl

and g
Ωl

for
sine oscillation in the absence of suction and blowing at

(
u

4Ωl
= 1
)

FIGURE 14. W = 0.5, N1 = 5, τ = 0.3, n
Ω

= 5
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FIGURE 15. W = 0.5, N1 = 5, τ = 0.3, n
Ω

= −5

FIGURE 16. W = 0.5, N1 = 5, τ = 0.3, n
Ω

= 1

The Figures 14, 15 and 16 show the effect of Hall parameter on f
Ωl

and g
Ωl

for
sine oscillation in the presence of suction at

(
u

4Ωl
= 1
)
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FIGURE 17. W = −0.5, N1 = 5, τ = 0.3, n
Ω

= 5

FIGURE 18. W = −0.5, N1 = 5, τ = 0.3, n
Ω

= −5
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FIGURE 19. W = −0.5, N1 = 5, τ = 0.3, n
Ω

= 1

The Figures 17, 18 and 19 show the effect of Hall parameter on f
Ωl

and g
Ωl

for
sine oscillation in the presence of blowing at

(
u

4Ωl
= 1
)
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