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SUBSET BASED NON-ZERO COMPONENT UNION GRAPHS OF VECTOR
SPACES

G. Kalaimurugan1 and S. Gopinath

ABSTRACT. In this paper, we introduce a graph structure, called a subset based

non-zero component union graph on finite-dimensional vector spaces. We show

that the graph is connected and find its girth, diameter, clique number and chro-

matic number. Further, we characterize the finite-dimensional vector spaces

whose subset based non-zero component union graphs are planar, unicyclic,

claw-free and bipartite.

1. INTRODUCTION

Algebraic structures are studying by using the graph theory properties is play

the important role in last twenty years. Especially different kind of graphs from

vector space are done namely, nonzero component graph of a finite dimensional

vector space and non-zero component union graph of a finite-dimensional vec-

tor space are introduced and studied by A.Das in [1, 2]. Also, vector space

semi-Cayley graphs was introduced by B. Tolue in [5]. Some of the authors are

studied the graph theoretical properties of graphs from vector spaces, like T.

Tamizh Chelvam, K. Prabha Ananthi found the genus of graphs associated with
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vector spaces in [4] and U. Ali, S. A. Bokhary studied the resolvability of a graph

associated to a finite vector space in [6].

2. SUBSET BASED NON-ZERO COMPONENT UNION GRAPH ON

FINITE-DIMENSIONAL VECTOR SPACES

Let V be a vector space over a field F with the basis B = {β1, β2, . . . , βn}. Every

elements v in V can be written as linear combination of βi where 1 ≤ i ≤ n. (i.e.,

v = a1β1 + a2β2 + . . . + anβn here ai are from the field F.) Now the skeleton of

v with respect to B as KB(v) = {βi : ai 6= 0, 1 ≤ i ≤ n}. Let S be the subset

of B. Also, We define skeleton of v with respect to S as KS (v) = {βi ∈ S :

ai 6= 0, 1 ≤ i ≤ n}. Let 0 is the zero vector in V. Now we define the graph called

subset based non-zero component union graphs of vector spaces with vertex set

is V = V \ 0 and two vertices are adjacent if and only if union of skeleton of

thus two vertices with respect to S is equal to S , equivalently we say that the

vertices u and v are adjacent if and only if KS (u)∪KS (v) = S and it is denoted

by ΓS (VF

B
) simply ΓS (VB).

Now, let us recall basic definitions and notations about graphs. By a graph

G = (V,E), we mean a simple graph with non-empty vertex set V and edge

set E. The number of elements in V is called order of G and the number of

elements in E is called the size of G. A graph G is said to be complete if any pair

of distinct vertices is adjacent in G. We denote the complete graph of order n by

Kn. A graph G is bipartite if the vertex V can be partitioned into two disjoint

subsets with no pair of vertices in one subset is adjacent. A star graph is a

bipartite graph with any one of the partition containing a single vertex and the

same is called as the center of the star. A graph G is connected if there exists a

path between every pair of distinct vertices in G. The degree of the vertex v ∈ V,

denoted by d(v), is the number of edges in G which are incident with v. A graph

G is said to be r-regular if the degree of all the vertices in G is r. The diameter

of a connected graph is supremum of shortest distances between vertices in G

and is denoted by diam(G). The girth of G is defined as length of the shortest

cycle in G and is denoted by gr(G). We take gr(G) = ∞ if G contains no cycles.

For undefined terms in graph theory, A planar graph is a graph that can be

embedded in the plane and the genus of planar graphs is zero. we refer [3].

We list out certain existing results which will be referred in this paper.
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Theorem 2.1. ( [2, Theorem 4.2]) Let V be an n-dimensional vector space over

a finite field F with q elements. Then Γ(VB) is complete if and only if V is one-

dimensional or V is two-dimensional and |F| = 2.

Theorem 2.2. ( [3, Corollary 9.5.4]) K5 is nonplanar.

Theorem 2.3. ( [3, Lemma 9.10]) A graph is planar if and only if it contains no

subdivision of K5 or K3,3.

Theorem 2.4. ( [7, Theorem 4.1]) Let n ≥ 1 and q ≥ 2 be integers. Let V be an

n-dimensional vector space over the field F with q elements. Then Γ(VB) is planar

if and only if either (n = 1 and q ≤ 5) or (n = 2 and q = 2) or (n = 3 and q = 2).

Theorem 2.5. ( [7, Theorem 4.1]) Let n ≥ 1 and q ≥ 2 be integers. Let V be

an n-dimensional vector space over the field F with q elements. Then Γ(VB) is

claw-free if and only if either (n = 1) or (n = 2 and q ≤ 3).

3. GRAPH PROPERTIES OF ΓS (VB)

In this section, we show that the graph ΓS (VB) is connected and found the

basic properties like, diameter, grith, completeness and domination number.

Theorem 3.1. ΓS (VB) is connected for any subset S of B.

Proof. The vertex set of ΓS (VB) is V \ {0}. If u and v are not adjacent then it is

connected by the path u − w − v where w = β1 + β2 + . . . + βn. Hence ΓS (VB)

is connected. �

Theorem 3.2. If |S1| = |S2|, then ΓS1
(VB) ∼= ΓS2

(VB).

Proof. Let V be a vector space over a field F with the basis B = {β1, β2, . . . , βn}.

Consider S1 = {α1, α2, . . . , αr, } and S2 = {α′

1, α
′

2, . . . , α
′

r, } two subsets of B.

Now we define the mapping F : S1 → S2 such that f(αi) = α′

i for i = 1, 2, . . . , r.

One can seen that function f is one to one and onto. we have to prove that

ΓS1
(VB) ∼= ΓS2

(VB). Let u = a1α1+ a2α2+ · · ·+ atαt+ at+1βt+1+ . . .+ anβn and

v = b1α1+ b2α2+ · · ·+ a′tα
′

t+ at′+1βt′+1+ . . .+ anβn are adjacent in ΓS1
(VB) i.e.,

KS1
(u)∪KS1

(v) = S1. To apply f to u and v we get, f(u) = a1α
′

1 + a2α
′

2 + · · ·+

atα
′

t + at+1βt+1 + . . . + anβn and f(v) = b1α
′

1 + b2α
′

2 + · · · + at′α
′

t′ + at′+1βt′+1 +

. . . + anβn. Hence, KS2
(u) ∪ KS2

(v) = S2 and f(u) and f(v) are adjacent in

ΓS2
(VB). �
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Corollary 3.1. If |S1| < |S2|, then ΓS2
(VB) is spanning subgraph of ΓS1

(VB).

Corollary 3.2. Let V1 and V2 be two finite-dimensional vector spaces over the same

field F having basis B1 and B2. The vector spaces V1 and V2 are isomorphic if and

only if ΓS1
(VB1

) and ΓS2
(VB2

) are isomorphic where S1 ⊆ B1,S2 ⊆ B2 and

|S1| = |S2|.

Theorem 3.3. ΓS (VB) is complete if, and only if, the following one of them holds:

(1) every n with S is empty;

(2) n = 2 and q = 2;

(3) n = 1.

Proof. Let ΓS (VB) is complete.

Case i Suppose n ≥ 3. If |S | ≥ 3, then the vertices u = β1 and v = β2 are not

adjacent, which is a contradiction. If |S | = 2, there is an vertices u = βi ∈ B\S

and v = βj ∈ S are not adjacent, which is a contradiction. If |S | = 1 there is

an vertices u = βi, v = βj ∈ B \ S are not adjacent, which is a contradiction. If

S is empty, then KS (u) ∪KS (v) = S for every u, v ∈ ΓS (VB). Therefore for

every n ≥ 3, S must be empty.

Case ii Let n = 2, Suppose, S = B then by Theorem 2.1 the proof is hold.

Suppose, S 6= B.

If n = 2, |S | = 1 and q ≥ 3 consider the vertices u = β /∈ S and u = aβ for

some non zero a 6= 1 ∈ V. One can seen that u and v are not adjacent for any

subset S of B, which is a contradiction. If n = 2, |S | = 1 and q = 2 in this

case elements are u = β1, v = β2, w = β1 + β2. Hence u, v, w are adjacent for any

subset S of B.

Case iii Suppose n = 1 (i.e., B = {β}.) The possibility for |S | is 1 and 0. If

|S | = 1 by Theorem 2.1 the proof is hold.

Conversely, S is empty then skeleton of all the elements in V with respect to

S are empty. Hence the graph ΓS (VB) is complete. �

4. MAXIMAL CLIQUE NUMBER OF ΓS (VB)

In this section, we find out the maximal clique number of ΓS (VB). Let S

arbitrary subset of B with cardinality r. We define the set VS = {v ∈ V \ {0} |

KS (v) = S } also, the cordiality of VS is qn − qr − 2. Now consider, Ui =
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(α1+α2+ · · ·+αr)−αi where αi ∈ S with 1 ≤ i ≤ r. Let V ′

S
= {U1, U2, . . . , Ur}.

The sub graphs induced by VS and V ′

S
are complete subgraph of ΓS (VB).

Theorem 4.1. If |S | = r then, clique number of ΓS (VB) is qn − qr + r − 2.

Proof. Let M = VS ∪ V ′

S
. Here, VS and V ′

S
are complete subgraphs in ΓS (VB).

Let u ∈ M if u ∈ VS by definition u is adjacent to all the elements of ΓS (VB),

if u ∈ V ′

S
by definition u is adjacent to all the elements of VS . This shows that

M is clique in ΓS (VB). Next we have to show that M is maximum clique. Let

any arbitrary v ∈ ΓS (VB) \ M . Then |KS (v)| ≤ r − 1 and hence there exist

Ui ∈ V ′

S
such that KS (u) ⊆ KS (Ui) this implies that the two vertices v and Ui

are not adjacent. Hence M is the maximal clique and clique number of ΓS (VB)

is qn − qr + r − 2. �

Theorem 4.2. Domination number of ΓS (VB) is 1.

Proof. Let S arbitrary subset of B with cardinality r. Hence the vertex v =
∑r

i=1
αi where αi ∈ S is adjacent to all the elements of ΓS (VB). �

Theorem 4.3. grith(ΓS (VB)) =







∞, if n = 1 and q = 2 or 3,

3, otherwise.

Proof. Let n = 1 then ΓS (VB) is complete of order q − 1. Suppose q = 2 or 3

the graph ΓS (VB) is K1 or K2 respectively, thus there is no cycle and grith is

infinity. If q ≥ 4 then the graph ΓS (VB) have the subgraph K3. Hence the grith

of ΓS (VB) is 3.

Let n ≥ 2. Consider the three vertices v = β1+β2+. . .+βn, U1 = β2+β3+. . .+βn

and U2 = β1 + β3 + . . . + βn. One can seen that the above vertices are form a

cycle of length 3 for any subset S of B. �

Theorem 4.4. diam(ΓS (VB)) =







1, if S = ∅ (or) n = 1(or)n = 2 and q = 2,

2, otherwise.

Proof. By Theorem 3.3 first case is hold. For n = 2 and q ≥ 3 in this case, for

every non-empty set S , the vertices u = βi /∈ S and v = aβi are not adjacent

for any nonzero a 6= 1 ∈ F. But it is connected by the path u−w− v of length 2.

Where, w = β1 + β2.
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For n ≥ 3. If |S | ≥ 3, for every non-empty set S the vertices u = β1 and

v = 2β1 are not adjacent but it is connected by the path u − w − v of length 2.

Where, w = β1 + β2 . . .+ βn.

If |S | = 2, there exist an elements u = βi ∈ B \ S and v = βj ∈ B are not

adjacent in ΓS (VB) but it is connected by the path u−w−v of length 2. Where,

w = β1 + β2 . . .+ βn.

If |S | = 1, consider the vertices u = βi /∈ S and v = aβi are not adjacent for

any nonzero a 6= 1 ∈ F. But it is connected by the path u − w − v of length 2.

Where, w = β1 + β2 . . .+ βn. �

5. PLANARITY

Theorem 5.1. ΓS (VB) is planar if and only if (n = 1 and q ≤ 5) or (n = 2 and

q = 2) or (n = 3, q = 2 and S = B).

Proof. Let ΓS (VB) is planar then we have to prove either (n = 1 and q ≤ 5) or

(n = 2 and q = 2) or (n = 3, q = 2 and S = B). Suppose, n ≥ 4 consider

the vertices u = β1 + β2 + β3 + . . . + βn, v = β2 + β3 + β4 + . . . + βn, w =

β1+β3+β4+ . . .+βn, x = β1+β2+β4+ . . .+βn and y = β1+β2+β3+β5+ . . .+βn.

For any non-empty subset S of B the subgraph H induced by Ω = {u, v, w, x, y}

is K5. By Theorem 2.3 gives the contradiction. Hence n ≤ 3

If n = 3, q ≥ 2 and S = B then by Theorem 2.4 gives the contradiction.

Hence q must be 2 and |S | 6= 3. If n = 3, q ≥ 2 and S 6= B. Suppose, |S | = 2

without loss of generalityβ1 and β2 in S . Consider the vertices u = β1, v =

β2, w = β1 + β2, x = β1 + β2 + . . . + βn, y = β1 + β3, z = β2 + β3. ΓS (VB) has a

subgraph H induced by Ω = {u, v, w, x} and H is isomorphic to K4 which is not

an outer planar. But the vertices y, z are adjacent and N(y) ∪ N(z) = Ω, which

is a contradiction.

Conversely, let n = 1 and q ≤ 5. Since by Theorem 3.3 ΓS (VB) is complete

graph and order of the graph is q − 1 ≤ 4. Hence ΓS (VB) is planar.

Let n = 2 and q = 2 Since by Theorem 3.3 ΓS (VB) is a complete graph and

|V| = qn = 22 = 4. Hence, order of the graph is 3. Therefore, K3
∼= ΓS (VB) is

planar.

Let n = 3, q = 2 and S = B. By Theorem 2.4 gives the proof. �

Theorem 5.2. ΓS (VB) is unicyclic if and only if the following one of them holds:
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(1) n = 1 and q = 4;

(2) n = 2 and q = 2.

Proof. Let, ΓS (VB) is unicyclic. Suppose, n ≥ 3 then by Theorem 4.1 clique

number of ΓS (VB) ≥ 4 for all possibilities of S . Since, |VS | ≥ 1 and |V ′

S
| ≥ 3.

Which gives the contradiction. Hence n ≤ 2.

Suppose, n = 2 and q ≥ 3 then |VS | ≥ 3 and |V ′

S
| = 2. by Theorem 4.1 clique

number of ΓS (VB) ≥ 5 for all possibilities of S . Which is a contradiction.

Hence, q must be 2.

Suppose, n = 1 and if q ≥ 5 then by Theorem 3.3 the graph ΓS (VB) is

complete of order greater than 4. Which is a contradiction. If q = 2 or 3 then

ΓS (VB) is K1, K2 respectively. Which is a contradiction. Since, there is no cycle

in K1 and K2.

Conversely, By Theorem 3.3 for the both case (n = 1 and q = 4) or (n = 2 and

q = 2) the graph ΓS (VB) is a complete graph and its order is 3. This proves the

theorem. �

Theorem 5.3. ΓS (VB) is claw-free if and only if the following one of them holds:

(1) n = 1;

(2) n = 2 and q ≤ 3.

Proof. Let ΓS (VB) is claw-free. First we have to prove n ≤ 2. Suppose n ≥ 3. If

|S | = n then by Theorem 2.5 gives the contradiction. If 0 < |S | < n then there

exist atleast one element βi ∈ B \ S and βj ∈ S where i 6= j. Consider the set

Ω = {u = βi, v = βj, w = βi + βj, x = β1 + β2, . . . , βn}. The graph induced by Ω

is isomorphic to K1,3 which is a contradiction. Hence, n ≤ 2.

Case i. Let n = 2. Suppose q > 3, there exist atleast three non zero elements

in F namely a, b and c, we have the following cases

Subcase i. If |S | = 1. Without loss of generality let β1 ∈ S . Consider the set

Ω = {u = β1, v = aβ2, w = bβ2, x = cβ2}. The graph induced by Ω is isomorphic

to K1,3 which is a contradiction.

Subcase ii. If |S | = 2. Consider the set Ω = {u = β1, v = aβ2, w = bβ2, x =

cβ2}. The graph induced by Ω is isomorphic to K1,3 which is a contradiction.

Hence, q ≤ 3.

Case ii. Let n = 1, by Theorem 3.3 ΓS (VB) is a complete graph, hence it has

no K1,3.



2568 G. Kalaimurugan and S. Gopinath

Conversely, Let n = 1 by Theorem 3.3 ΓS (VB) is a complete graph it is claw

free.

Let n = 2 and q ≤ 3. Only possibilities for |S | is 0 or 1 or 2. The following

figure one can check that ΓS (VB) is claw-free.

b b

Fig A. n = 2 and |S | = 2

q = 2

q = 2 q = 3

Fig B. n = 2 and |S | = 1

β1 β2

β1 + β2b b b

b b

β1 + β2 β1 + 2β2

2β1 + β22β1 + 2β2

b

b

b

b

β1 aβ1

β2 aβ2

b b
β1 β2

β1 + β2b b b

b b

β1 + β2 β1 + 2β2

2β1 + β2
2β1 + 2β2

b

b

b

b

β1 aβ1

β2 aβ2

q = 3

�

Theorem 5.4. ΓS (VB) is bipartite if and only if n = 1 and q = 3.

Proof. Let, ΓS (VB) is bipartite. Suppose n ≥ 2 then consider the vertices u =

β1 + β2 + · · · + βn−1, v = β1 + β2 + · · · + βn−2 + βn and w = β1 + β2 + · · · + βn

form a cycle of length 3. Which is a contradiction.

Suppose, n = 1 and q ≥ 4 then by Theorem 3.3 ΓS (VB) is a complete with

order greater than 2. which is contradiction. Hence, q ≤ 3. If q = 2 then by

Theorem 3.3 ΓS (VB) is K1. Therefore q = 3.

Conversely, Let n = 1 and q = 3. Then by Theorem 3.3 ΓS (VB) is K2.

�

REFERENCES

[1] A. Das: Nonzero Component graph of a finite dimensional vector space, Commu. Algebra,

44(9)(2016), 3918–3926.



SUBSET BASED GRAPHS OF VECTOR SPACES 2569

[2] A. Das: Non-zero component union graph of a finite-dimensional vector space, Linear and

Multilinear Algebra, 2016.

[3] J. A. Bondy, U.S.R. Murty: Graph Theory with Applications Elsevier, North Holland, Ams-

terdam, 1986.

[4] T. Tamizh Chelvam, K. Prabha Ananthi: On the genus of graphs associated with vector

spaces, J. Algebra Appl., 19(5) (2020), art.no. 2050086.

[5] B.Tolue: Vector Space Semi-Cayley Graphs, Iranian Journal of Mathematical Sciences and

Informatics., 13(2) (2018), 83–91.

[6] U. Ali, S. A. Bokhary, K. Wahid, G. Abbas: On resolvability of a graph associated to a finite

vector space, J. Algebra Appl., 18(2) (2019), art.no. 1950029.

[7] G. Kalaimurugan, S.Gopinath, T. Tamizh Chelvam: Genus of non-zero component union

graphs of vector spaces, Communicated.

DEPARTMENT OF MATHEMATICS

THIRUVALLUVAR UNIVERSITY

VELLORE - 632115

INDIA.

Email address: kalaimurugan@gmail.com

DEPARTMENT OF MATHEMATICS

THIRUVALLUVAR UNIVERSITY

VELLORE - 632115

INDIA.

Email address: gopinathmathematics@gmail.com


	1. Introduction
	2. Subset based non-zero component union graph on finite-dimensional vector spaces
	3. Graph properties of S(VB)
	4. Maximal clique number of S(VB)
	5. Planarity
	References

