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ON THE LIMITS OF SOME p-ADIC SCHNEIDER CONTINUED FRACTIONS

Rafik Belhadef1 and Henri Alex Esbelin

ABSTRACT. In the present paper, we first generalize some convergence results
for continued fractions given in real domain and p-adic domain. However, we
prove the transcendence of a p-adic number given by it’s Schneider continued
fractions, such that the sequence of partial quotients is a Thue-Morse sequence.

1. INTRODUCTION AND STATEMENTS

Schneider continued fractions are defined as sequences of the shape:

(1.1)
pn
qn

= a0 +
pα0

a1 +
pα1

a2 + · · · p
αn−1

an

where (αi)i∈N is a sequence of positive integers and (ai)i∈N is a sequence of
integers in {1, . . . , p− 1}.

In [7], M. Kojima proved the convergence of (1.1), both in Qp and in R when
αi = 1 for all i ∈ N (he proved indeed slightly more, considering that the
coefficients (ai)i∈N could be any positive integers).
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Moreover, he proved the convergence in Qp for all sequences of (αi)i∈N. How-
ever, he failed to prove a similar theorem for the convergence in R.

In our paper, we first generalize its convergence result in R, easily to bounded
sequences of (αi)i∈N (see theorem 2.1) and with much more tedious method
to more general sequences (see theorem 2.2 up to theorem 2.5). Furthermore,
we prove transcendence results concerning the limits in Qp and in R, when
the sequence (ai)i∈N is a Thue-Morse sequence (see Main Theorem 1.1). The
method is based on Schlickewei theorem [8] providing a suffisant condition of
transcendence.

To state our results, we will recall some definitions and basic facts from p-
adic numbers and words. Throughout, p is a prime number, Q is the field of
rational numbers, Q∗ is the field of nonzero rational numbers and R is the field
of real numbers. We use |.| to denote the ordinary absolute value, vp the p-adic
valuation, |.|p the p-adic absolute value. The field of p-adic numbers Qp is the
completion of Q with respect to the p-adic absolute value.

Let us introduce the combinatorics to be used in the sequel: Let the word
W = w1w2 . . . wm−1wm be on the alphabet A, we denote |W | the length m of
W . The mirror of W is the word W = wmwm−1 . . . w2w1. We say that W is a
palindrome if W = W .

A Thue-Morse sequence (tn)n∈N with values in a two elements set {α; β} is
defined by tn = α (resp. β) if the binary expansion of n has an even (resp.
odd) number of digits 1. We shall identify a sequence (ak)k∈N of elements of a
given set A with an infinite word a0a1 . . . ak . . . in A∗. A Thue-Morse sequence
has numerous properties (see [2]). In the sequel, the following are used:

Theorem 1.1. Let (tn)n∈N be a Thue-Morse sequence. Then the word t0t1 . . . t4k−1

is a palindrome and the two letters of the alphabet have the same number of occur-
rences.

The transcendence method of Adamczewski and Bugeaud [1] is based on the
Schmidt’s subspace theorem. We make use the p-adic version of this theorem
(see [8]). Let ν ≥ 2 be an integer, x = (x1, . . . , xν) a ν−tuple of rational num-
bers. We put |x|∞ = max{|xi| ; 1 ≤ i ≤ ν} and |x|p = Max{|xi|p; 1 ≤ i ≤ ν}.

Theorem 1.2 (Schlickewei). Let p be a prime number, L1,∞, . . . , Lν,∞ be ν linearly
independent forms with variable x and algebraic real coefficients, L1,p, . . . , Lν,p be
ν linearly independent forms with algebraic p-adic coefficients and same variables
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and δ > 0 a real number. Then, the set of solutions x in Zν/{0} of the inequality

ν∏
i=1

(
|Li,∞(x)| . |Li,p(x)|p

)
≤ |x|−δ∞

is contained in the union of a finite number of proper subspaces of Qν .

In [3], we have studied the periodicity of rational number given by its p-adic
expansion. So, in [4], we have studied the transcendence of a p-adic number
given by its Ruban continued fractions, such that the sequence of partial que-
tients is of Thue-Morse.

Theorem 1.3. Let p be a prime odd positive integer. Let α = α1

α2
and β = β1

β2

be two rational numbers in Z
[

1
p

]
∩ (0; p) such that vp(α1) = vp(β1) = 0 and

vp(α2) ≥ vp(β2) ≥ 1. Let θ be defined in Qp as the limit of [0; a1, a2, . . .] where
ai ∈ {α, β}. Suppose that the sequence of partial quotients (ai)i≥1 is a Thue-Morse
word. Let us denote Ξ = Max{α; β}. If

p
5vp(β2)−vp(α2)

6 > Max{α2; β2} ×
Ξ +
√

Ξ2 + 4

2
,

then, the p-adic number θ is either transcendental or quadratic.

Using the p-adic version of the subspace theorem, we give sufficient conditions
for a number defined through a Schneider continued fraction to be quadratic or
transcendental.

Main Theorem 1.1. Let p be a prime odd positive integer. Let ((ai, αi))i∈N with
values in {1, . . . , p − 1} × N∗. We suppose the sequence ((αi))i∈N is bounded, and
let A = max{αi; i ∈ N}. Let θ be defined in Qp as the limit of

a0 +
pα0

a1 +
pα1

a2 + · · · p
αn−1

an . . .

.

Suppose that the sequence of partial quotients (ai)i≥1 is a Thue-Morse word. then
θ is either transcendental or quadratic.
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2. CONTINUED FRACTIONS

Definitions and results of this section are well known (see [6] for the real case
and [5,9] for the p-adic case), so we just sketch the proofs.

Definition 2.1. From a sequence ((ai, αi))i∈N with values in {1, . . . , p − 1} × N∗,
we define a sequence of homographic functions of a field K = R or Qp by

[(a, α);x] = a+
pα

x

and

[(a0, α0), (a1, α1), . . . , (an, αn);x] = [(a0, α0), . . . , (an−1, αn−1); [(an, αn);x]] .

We call [(a0, α0), (a1, α1), . . . , (an−1, αn−1); an] the n − th convergent of this se-
quence.

A matrix of the homographic function ak +
pαk

x
is

(
ak pαk

1 0

)
. Hence, a

matrix of the homographic function [(a0, α0), (a1, α1), . . . , (an, αn);x] is(
a0 pα0

1 0

)(
a1 pα1

1 0

)
· · ·

(
an pαn

1 0

)
.

Let us denote it

(
pn p′n
qn q′n

)
. We have

a0 +
pα0

a1 +
pα1

a2 + · · · pαn−1

an +
pαn

x

= [(a0, α0), (a1, α1), . . . , (an, αn);x] =
pnx+ p′n
qnx+ q′n

.

The sequences (pn)n∈N and (qn)n∈N satisfy both the following recurrence relation:

un+2 = an+2un+1 + unp
αn+1 ,

with p−1 = 1, p0 = a0 and q−1 = 0, q0 = 1. Moreover, we have p′n+1 = pnp
αn+1

and q′n+1 = qnp
αn+1. Hence we have:

a0 +
pα0

a1 +
pα1

a2 + · · · p
αn−1

an

=
pn−1an + p′n−1

qn−1an + q′n−1

=
pn
qn
.
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Given a p-adic number α, a question is to find a sequence ((ai, αi))i∈N with val-
ues in {1, . . . , p − 1} × N∗ such that the sequence

([
(a0, α0), (a1, α1), . . . ,

(an−1, αn−1); an
])
n∈N converges to α in Qp, with a unique solution. We shall

concurently consider the convergence of this sequence in R.
Let us consider the series

∑i=n
i=1

(
pi
qi
− pi−1

qi−1

)
. Using the easy to check property

piqi−1 − qipi−1 = (−1)i+1

k=i−1∏
k=0

pαk

it comes
pn
qn

=
p0

q0

+
i=n∑
i=1

(−1)i+1
∏k=i−1

k=0 pαk

qiqi−1

.

Lemma 2.1. For all positive n, we have: qn ≥ p
n
2 , et pn ≥ p

n
2

Proof. Easy recursion on n. �

2.1. Convergence in R.

Theorem 2.1. If the set {αi; i ∈ N} is bounded, the sequence defined by

[(a0, α0), (a1, α1), . . . , (ai−1, αi−1); ai]

converges in R.

Proof. We shall use the following notation

ui =

∏k=i−1
k=0 pαk

qiqi−1

.

Let us use Leibniz criterium for alternating series. We have
ui
ui+1

− 1 =
ai+1qi
pαiqi−1

> 0.

Suppose that A = max{αi; i ∈ N}. Then ui
ui+1
− 1 ≥ 1

pA
> 0 and the proof is

complete. �

In the sequel, we need the following lemma, this subsection we provide some
insight convergence in other uses:

Lemma 2.2. Let the sequence (vn)n∈N be defined by vn+1 = kanvn + vn−1 with
0 < a ≤ 1 and 0 < k ≤ 1. If a < 2

k+
√
k2+4

, then the sequences v2n and v2n+1

converge, and their limits are different.
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Proof. To show the convergence, let the sequence (Fn)n∈N defined by

Fn+1 = kFn + Fn−1

with F0 = v0 et F1 = v1. Then, Fn is given by the formula

Fn =
1

2
(v0 +

2v1 − kv0√
k2 + 4

)Φk
n +

1

2
(v0 −

2v1 − kv0√
k2 + 4

)(
−1

Φk

)n,

with Φk = k+
√
k2+4
2

. It is easy to show by induction that vn ≤ Fn. In the other
hand, we have vn−1 ≤ vn+1 ≤ kanFn + vn−1 and

kanFn ∼
k

2
(u0 +

2u1 − ku0√
k2 + 4

)(aΦk)
n.

The proof is complete where Φk <
1
a
.

To show that the two limits are different, suppose that v2n converg to ` and
v2n+1 converg to `′, we have

F2n =
1

2
(v0 +

2v1 − kv0√
k2 + 4

)Φk
2n +

1

2
(v0 −

2v1 − kv0√
k2 + 4

)(
1

Φk

)2n

and

F2n+1 =
1

2
(v0 +

2v1 − kv0√
k2 + 4

)Φk
2n+1 − 1

2
(v0 −

2v1 − kv0√
k2 + 4

)(
1

Φk

)2n+1.

Then, for λ = 2v1−kv0√
k2+4

we have

v2n <
1

2
(v0 + λ)Φk

2n +
1

2
(v0 − λ)(

1

Φk

)2n

and

v2n+1 <
1

2
(v0 + λ)Φk

2n+1 − 1

2
(v0 − λ)(

1

Φk

)2n+1.

It follows that
v2n

v2n+1

< Φk
(v0 + λ)Φk

4n + (v0 − λ)

(v0 + λ)Φk
4n+2 + (v0 − λ)

.

Passing to the limit, we obtain ` < 1
Φk
`′ < `′. �

Example 1. Suppose that for all i, ai = 1 and αi = i. Then the sequence defined
by [(a0, α0), (a1, α1), . . . , (ai−1, αi−1); ai] does not converge in R.

Proof. We put q′i = qi

p
i2
4

, therefore q′i+1 = kaiq′i + q′i−1, with a = 1

p
1
2

and k = 1

p
3
4
,

so with the previous lemma the sequence (q′2i)i converge to the limit ` and the
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sequence (q′2i−1)i converge to the limits `′, that is to say that for all given ε > 0

from a certain rank we have

q2i ≤ (`+ ε)p
(2i)2

4 and q2i−1 ≤ (`′ + ε)p
(2i−1)2

4

Then

u2i =
p

2i(2i−1)
2

q2iq2i−1

≥ p
1
4

(`+ ε)(`′ + ε)

thus u2i do not converge to 0. �

In the sequel, we shall use this notation:

A2n = α1 + α3 + · · ·+ α2n−1

A2n+1 = α0 + α2 + · · ·+ α2n

q′i =
qi
pAi

.

Hence we have obviously ui = 1
q′iq
′
i−1

, Ai+2 − Ai = αi+1, q′0 = 1, q′1 = a1, and

q′i+2 = ai+2

q′i+1

pAi+2−Ai+1
+ q′i.

Theorem 2.2. Suppose that for all i, ai in {1, . . . , p − 1} and αi = i. Then the
sequence [(a0, α0), (a1, α1), . . . , (ai−1, αi−1); ai] does not converges in R.

Proof. We have A2n = 1 + 3 + · · · + (2n− 1) = n2, A2n+1 = 2 + 4 + · · · + (2n) =

n(n + 1), Ai+2 − Ai = i + 1 and we have Ai+2 − Ai+1 = i
2

+ 1 if i is even, and
]Ai+2 − Ai+1 = i+1

2
+ 1 if i is odd. It is easy to prove that q′i ≤ Fi where Fi is the

sequence defined by: Fn+2 = p−1
p
Fn+1 + Fn with F0 = 1 and F1 = a1.

In the other hand we have

0 ≤ q′i+2 − q′i ≤
p− 1

pAi+2−Ai+1+1
Fi+1.

So, for i even, we have

0 ≤ q′i+2 − q′i ≤
p− 1

p
i
2

+1
Fi+1 ∼

p− 1
√
p

(
1
√
p

Φ p−1
p

)
n

.

�

Theorem 2.3. Suppose that for all i, ai ∈ {1, . . . , p − 1}, α2j = 1 for i = 2j,
and α2j+1 = (j + 1)2 for i = 2j + 1. Then the sequence

[
(a0, α0), (a1, α1), . . . ,

(ai−1, αi−1); ai
]

converges in R.
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Proof. We have

A2j = 1 + 4 + · · ·+ (2j)2 =
1

6
j(j + 1)(2j + 1), A2j+1 = j + 1.

It is easy to prove that A2j+1 − A2j = j+1
6

(−2j2 − j + 6). Then, we have

q′2j+1 ≤ p
j+1
6

(−2j2−j+6).

Finally, we makes j tend to infinity. �

More generally, it is possible to prove in the same way the following results.

Theorem 2.4. If for same ε > 0 we have

Ai+2 − Ai+1 > i(ε+ logp(Φ p−1
p

))

Then the sequence (pi
qi

)i∈N does not converge in R.

Theorem 2.5. If we have Ai+2−Ai+1 ≤ logp(i) Then the sequence (pi
qi

)i∈N converge
in R.

Conjecture 2.1. We conjecture that: For αi = b
√
ic, the sequence (pi

qi
)i∈N does not

converge in R. For αi = kblogp(i)c, with k ≥ 1, the sequence (pi
qi

)i∈N converge in R.

In all the sequel, we denote θR the limit in R. In the proof of the transcendence
theorem, we shall need the following lemma.

Lemma 2.3. Under the hypothesis of the previous theorem, we have:

|qnθR − pn| ≤
∏j=n−1

j=0 pαj

qn−1

.

Proof. From the Leibniz criterium for alternating series, we have∣∣∣∣θR − pn
qn

∣∣∣∣ ≤ ∣∣∣∣pn−1

qn−1

− pn
qn

∣∣∣∣ .
�

2.2. Convergence in Qp.

Theorem 2.6. The sequence [(a0, α0), (a1, α1), . . . , (an−1, αn−1); an] converges in
Qp.
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Proof. An easy recursion on n shows that valp(qn) = 0. Hence, the series

i=k∑
i=1

(−1)i+1
∏k=i−1

k=0 pαk

qiqi−1

,

have a limit in Qp. �

In all the sequel, we denote θQp the limit in Qp. In the proof of the transcen-
dence theorem, we shall need the following lemmas:

Lemma 2.4. Under the hypothesis of the previous proposition, we have:∣∣qkθQp − pk∣∣p =
1

pα0+···+αk
.

Proof. Suppose k < n, we have

pn
qn
− pk
qk

=
i=n−1∑
i=k

pi+1

qi+1

− pi
qi

=
i=n−1∑
i=k

(−1)i+2
∏j=i

j=0 p
αj

qiqi+1

.

Hence we have ∣∣∣∣pnqn − pk
qk

∣∣∣∣
p

=
1

pα0+···+αk
≤ 1

pk+1
.

Then take the limit when n goes to infinity to get∣∣∣∣θ − pk
qk

∣∣∣∣
p

= |qkθ − pk|p =
1

pα0+···+αk
.

�

3. PROOF OF MAIN THEOREM

Suppose θ is algebraic. Consider now the following linear forms with variable
x = (x1, x2, x3) and algebraic coefficients.

L1,∞(x) = θR.x1 − x3, L2,∞(x) = θR.x3 − x2, L3,∞(x) = x3,

L1,p(x) = θQp .x1 − x3, L2,p(x) = θQp .x3 − x2, L3,p(x) = x1.

Evaluating them on the triple xn = (qn, pn−1, pn), with n = 4k−1. We get from
Lemma 2.3, the inequality

|L1,∞(xn)| < p
∑j=n−1
j=0 αj

qn−1

,
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and from Theorem 1.3 and Lemma 2.3, the inequality

|L2,∞(xn)| < p
∑j=n−2
j=0 αj

qn−2

.

For the p-adic forms, we have from Lemma 2.4

|L1,p(xn)|p =
1

p
∑j=n
j=0 αj

and

|L2,p(xn)|p =
1

p
∑j=n−1
j=0 αj

.

From the hypothesis of the theorem, wa have A < n then pn < pn+1, for
n = 4k − 1 large enough.

|xn|δ
i=3∏
i=1

|Li,∞(xn)|
i=3∏
i=1

|Li,p(xn)|p <
pδn

pαn−1+αnqn−2

<
pδn

p2qn−2

<
(pn+1)

δ

p2+n
2

converges to 0 for δ < 1
2
.

Schlickewei’s theorem confirms the existence of non-zero rational integers
y1, y2, y3, such that, for an infinite set of n, we have

y1qn + y2pn−1 + y3pn = 0, i.e., y1 + y2
pn−1

qn
+ y3

pn
qn

= 0.

So, y1 + y2
pn−1

qn−1

pn
qn

+ y3
pn
qn

= 0.

Passing to the limit as n −→ +∞ (in Qp), we obtain y2θ
2
Qp + y3θQp + y1 = 0.

So, θQp is quadratic.
Passing to the limit as n −→ +∞ (in R), we obtain y2θ

2
R + y3θR + y1 = 0. So,

θR is quadratic.

ACKNOWLEDGMENT

This paper is supported by the Scientific Research Project C00L03UN1801201
80006, in University Mohammed Seddik Benyahia of Jijel.



ON THE LIMITS OF SOME p-ADIC SCHNEIDER CONTINUED FRACTIONS 2591

REFERENCES

[1] B. ADAMCZEWSKI, Y. BUGEAUD: On the complexity of algebraic numbers, II. Continued
fractions, Acta Math. 195 (2005), 1–20.

[2] J.P. ALLOUCHE, J. SHALLIT: Automatic sequences: Theory, Applications, Generalizations,
Cambridge University Press., 2003.

[3] R. BELHADEF, H-A. ESBELIN: On the Periodicity of p-adic Expansion of Rational Number,
J. Math. Comput. Sci. 11 (2016), 1704–171.

[4] R. BELHADEF, H-A. ESBELIN, T. ZERZAIHI: Transcendence of Thue-Morse p-Adic Contin-
ued Fractions, Mediterr. J. Math. 13(2016), 1429–1434.

[5] B. M. M. DE WEGER: Approximation lattices of p-adic numbers, J. Number Theory.
24(1986), 70–88.

[6] A.Y.A. KHINCHIN: Continued Fractions, Phoenix Science Series. The University Of Chicago
Press, Chicago, 1964.

[7] M. KOJIMA: Continued fractions in p-adic numbers, Algebraic number theory and related
topics, RIMS Bessatsu. B32 (2012), 239–254.

[8] H.P. SCHLICKEWEI: On prudects of special linear forms with algebric coefficients, Acta Arith.
31 (1976), 389–398.

[9] T. SCHNEIDER: Über p-adische Kettenbrüche, Symp. Math. 4 (1969), 181–189.

DEPARTMENT OF MATHEMATICS

UNIVERSITY MOHAMMED SEDDIK BENYAHIA OF JIJEL

BP 98, OULED AISSA, JIJEL,
ALGERIA.
Email address: belhadef_rafik@univ-jijel.dz

LIMOS LABORATORY

CLERMONT AUVERGNE UNIVERSITY

COMPUS DES CEZAUX, AUBIÈRE,
FRANCE.
Email address: alex.esbelin@math.univ-bpclermont.fr


	1. Introduction and statements
	2. Continued fractions
	2.1. Convergence in R
	2.2. Convergence in bold0mu mumu QpQpprogram@epstopdfQpQpQpQp

	3. Proof of main theorem
	acknowledgment
	References

