

Advances in Mathematics: Scientific Journal **10** (2021), no.5, 2581–2591 ISSN: 1857-8365 (printed); 1857-8438 (electronic) https://doi.org/10.37418/amsj.10.5.22

ON THE LIMITS OF SOME p-ADIC SCHNEIDER CONTINUED FRACTIONS

Rafik Belhadef¹ and Henri Alex Esbelin

ABSTRACT. In the present paper, we first generalize some convergence results for continued fractions given in real domain and p-adic domain. However, we prove the transcendence of a p-adic number given by it's Schneider continued fractions, such that the sequence of partial quotients is a Thue-Morse sequence.

1. INTRODUCTION AND STATEMENTS

Schneider continued fractions are defined as sequences of the shape:

(1.1)
$$\frac{p_n}{q_n} = a_0 + \frac{p^{\alpha_0}}{a_1 + \frac{p^{\alpha_1}}{a_2 + \dots \frac{p^{\alpha_{n-1}}}{a_n}}}$$

where $(\alpha_i)_{i\in\mathbb{N}}$ is a sequence of positive integers and $(a_i)_{i\in\mathbb{N}}$ is a sequence of integers in $\{1, \ldots, p-1\}$.

In [7], M. Kojima proved the convergence of (1.1), both in \mathbb{Q}_p and in \mathbb{R} when $\alpha_i = 1$ for all $i \in \mathbb{N}$ (he proved indeed slightly more, considering that the coefficients $(a_i)_{i\in\mathbb{N}}$ could be any positive integers).

¹corresponding author

²⁰²⁰ Mathematics Subject Classification. 11J81, 11D88, 11A55, 68R15.

Key words and phrases. Transcendence, Thue-Morse sequences, *p*-adic number, Schneider continued fractions.

Submitted: 07.04.2021; Accepted: 26.04.2021; Published: 25.05.2021.

Moreover, he proved the convergence in \mathbb{Q}_p for all sequences of $(\alpha_i)_{i \in \mathbb{N}}$. However, he failed to prove a similar theorem for the convergence in \mathbb{R} .

In our paper, we first generalize its convergence result in \mathbb{R} , easily to bounded sequences of $(\alpha_i)_{i \in \mathbb{N}}$ (see theorem 2.1) and with much more tedious method to more general sequences (see theorem 2.2 up to theorem 2.5). Furthermore, we prove transcendence results concerning the limits in \mathbb{Q}_p and in \mathbb{R} , when the sequence $(a_i)_{i \in \mathbb{N}}$ is a Thue-Morse sequence (see Main Theorem 1.1). The method is based on Schlickewei theorem [8] providing a suffisant condition of transcendence.

To state our results, we will recall some definitions and basic facts from padic numbers and words. Throughout, p is a prime number, \mathbb{Q} is the field of rational numbers, \mathbb{Q}^* is the field of nonzero rational numbers and \mathbb{R} is the field of real numbers. We use |.| to denote the ordinary absolute value, v_p the p-adic valuation, $|.|_p$ the p-adic absolute value. The field of p-adic numbers \mathbb{Q}_p is the completion of \mathbb{Q} with respect to the p-adic absolute value.

Let us introduce the combinatorics to be used in the sequel: Let the word $W = w_1 w_2 \dots w_{m-1} w_m$ be on the alphabet A, we denote |W| the length m of W. The mirror of W is the word $\overline{W} = w_m w_{m-1} \dots w_2 w_1$. We say that W is a palindrome if $\overline{W} = W$.

A Thue-Morse sequence $(t_n)_{n \in \mathbb{N}}$ with values in a two elements set $\{\alpha; \beta\}$ is defined by $t_n = \alpha$ (resp. β) if the binary expansion of n has an even (resp. odd) number of digits 1. We shall identify a sequence $(a_k)_{k \in \mathbb{N}}$ of elements of a given set A with an infinite word $a_0a_1 \dots a_k \dots$ in A^* . A Thue-Morse sequence has numerous properties (see [2]). In the sequel, the following are used:

Theorem 1.1. Let $(t_n)_{n \in \mathbb{N}}$ be a Thue-Morse sequence. Then the word $t_0t_1 \dots t_{4^k-1}$ is a palindrome and the two letters of the alphabet have the same number of occurrences.

The transcendence method of Adamczewski and Bugeaud [1] is based on the Schmidt's subspace theorem. We make use the *p*-adic version of this theorem (see [8]). Let $\nu \ge 2$ be an integer, $\mathbf{x} = (x_1, \dots, x_{\nu})$ a ν -tuple of rational numbers. We put $|\mathbf{x}|_{\infty} = \max\{|x_i|; 1 \le i \le \nu\}$ and $|\mathbf{x}|_p = Max\{|x_i|_p; 1 \le i \le \nu\}$.

Theorem 1.2 (Schlickewei). Let p be a prime number, $L_{1,\infty}, \ldots, L_{\nu,\infty}$ be ν linearly independent forms with variable \mathbf{x} and algebraic real coefficients, $L_{1,p}, \ldots, L_{\nu,p}$ be ν linearly independent forms with algebraic p-adic coefficients and same variables

and $\delta > 0$ a real number. Then, the set of solutions x in $\mathbb{Z}^{\nu}/\{0\}$ of the inequality

$$\prod_{i=1}^{\nu} \left(\left| L_{i,\infty}(\mathbf{x}) \right| \cdot \left| L_{i,p}(\mathbf{x}) \right|_{p} \right) \le |\mathbf{x}|_{\infty}^{-\delta}$$

is contained in the union of a finite number of proper subspaces of \mathbb{Q}^{ν} .

11

In [3], we have studied the periodicity of rational number given by its *p*-adic expansion. So, in [4], we have studied the transcendence of a p-adic number given by its Ruban continued fractions, such that the sequence of partial quetients is of Thue-Morse.

Theorem 1.3. Let p be a prime odd positive integer. Let $\alpha = \frac{\alpha_1}{\alpha_2}$ and $\beta = \frac{\beta_1}{\beta_2}$ be two rational numbers in $\mathbb{Z}\begin{bmatrix}\frac{1}{p}\end{bmatrix} \cap (0;p)$ such that $v_p(\alpha_1) = v_p(\beta_1) = 0$ and $v_p(\alpha_2) \ge v_p(\beta_2) \ge 1$. Let θ be defined in \mathbb{Q}_p as the limit of $[0; a_1, a_2, \ldots]$ where $a_i \in \{\alpha, \beta\}$. Suppose that the sequence of partial quotients $(a_i)_{i\ge 1}$ is a Thue-Morse word. Let us denote $\Xi = Max\{\alpha; \beta\}$. If

$$p^{\frac{5v_p(\beta_2)-v_p(\alpha_2)}{6}} > Max\{\alpha_2;\beta_2\} \times \frac{\Xi + \sqrt{\Xi^2 + 4}}{2}$$

then, the *p*-adic number θ is either transcendental or quadratic.

Using the *p*-adic version of the subspace theorem, we give sufficient conditions for a number defined through a Schneider continued fraction to be quadratic or transcendental.

Main Theorem 1.1. Let p be a prime odd positive integer. Let $((a_i, \alpha_i))_{i \in \mathbb{N}}$ with values in $\{1, \ldots, p-1\} \times \mathbb{N}^*$. We suppose the sequence $((\alpha_i))_{i \in \mathbb{N}}$ is bounded, and let $A = \max\{\alpha_i; i \in \mathbb{N}\}$. Let θ be defined in \mathbb{Q}_p as the limit of

$$a_0 + \frac{p^{\alpha_0}}{a_1 + \frac{p^{\alpha_1}}{a_2 + \dots + \frac{p^{\alpha_{n-1}}}{a_n \dots + \frac{p^{\alpha_{n-1}}}{\alpha_n \dots +$$

Suppose that the sequence of partial quotients $(a_i)_{i\geq 1}$ is a Thue-Morse word. then θ is either transcendental or quadratic.

2. CONTINUED FRACTIONS

Definitions and results of this section are well known (see [6] for the real case and [5,9] for the *p*-adic case), so we just sketch the proofs.

Definition 2.1. From a sequence $((a_i, \alpha_i))_{i \in \mathbb{N}}$ with values in $\{1, \ldots, p-1\} \times \mathbb{N}^*$, we define a sequence of homographic functions of a field $\mathbb{K} = \mathbb{R}$ or \mathbb{Q}_p by

$$[(a,\alpha);x] = a + \frac{p^{\alpha}}{x}$$

and

$$[(a_0, \alpha_0), (a_1, \alpha_1), \dots, (a_n, \alpha_n); x] = [(a_0, \alpha_0), \dots, (a_{n-1}, \alpha_{n-1}); [(a_n, \alpha_n); x]]$$

We call $[(a_0, \alpha_0), (a_1, \alpha_1), \ldots, (a_{n-1}, \alpha_{n-1}); a_n]$ the n - th convergent of this sequence.

A matrix of the homographic function $a_k + \frac{p^{\alpha_k}}{x}$ is $\begin{pmatrix} a_k & p^{\alpha_k} \\ 1 & 0 \end{pmatrix}$. Hence, a matrix of the homographic function $[(a_0, \alpha_0), (a_1, \alpha_1), \dots, (a_n, \alpha_n); x]$ is

$$\begin{pmatrix} a_0 & p^{\alpha_0} \\ 1 & 0 \end{pmatrix} \begin{pmatrix} a_1 & p^{\alpha_1} \\ 1 & 0 \end{pmatrix} \cdots \begin{pmatrix} a_n & p^{\alpha_n} \\ 1 & 0 \end{pmatrix}.$$

Let us denote it $\begin{pmatrix} p_n & p'_n \\ q_n & q'_n \end{pmatrix}$. We have
$$a_0 + \frac{p^{\alpha_0}}{a_1 + \frac{p^{\alpha_1}}{a_2 + \cdots \frac{p^{\alpha_{n-1}}}{a_n + \frac{p^{\alpha_n}}{x}}} = [(a_0, \alpha_0), (a_1, \alpha_1), \dots, (a_n, \alpha_n); x] = \frac{p_n x + p'_n}{q_n x + q'_n}.$$

The sequences $(p_n)_{n \in \mathbb{N}}$ and $(q_n)_{n \in \mathbb{N}}$ satisfy both the following recurrence relation:

$$u_{n+2} = a_{n+2}u_{n+1} + u_n p^{\alpha_{n+1}},$$

with $p_{-1} = 1$, $p_0 = a_0$ and $q_{-1} = 0$, $q_0 = 1$. Moreover, we have $p'_{n+1} = p_n p^{\alpha_{n+1}}$ and $q'_{n+1} = q_n p^{\alpha_{n+1}}$. Hence we have:

$$a_{0} + \frac{p^{\alpha_{0}}}{a_{1} + \frac{p^{\alpha_{1}}}{a_{2} + \dots + \frac{p^{\alpha_{n-1}}}{a_{n}}}} = \frac{p_{n-1}a_{n} + p'_{n-1}}{q_{n-1}a_{n} + q'_{n-1}} = \frac{p_{n}}{q_{n}}.$$

Given a *p*-adic number α , a question is to find a sequence $((a_i, \alpha_i))_{i \in \mathbb{N}}$ with values in $\{1, \ldots, p - 1\} \times \mathbb{N}^*$ such that the sequence $([(a_0, \alpha_0), (a_1, \alpha_1), \ldots, (a_{n-1}, \alpha_{n-1}); a_n])_{n \in \mathbb{N}}$ converges to α in \mathbb{Q}_p , with a unique solution. We shall concurrently consider the convergence of this sequence in \mathbb{R} .

Let us consider the series $\sum_{i=1}^{i=n} \left(\frac{p_i}{q_i} - \frac{p_{i-1}}{q_{i-1}} \right)$. Using the easy to check property

$$p_i q_{i-1} - q_i p_{i-1} = (-1)^{i+1} \prod_{k=0}^{k=i-1} p^{\alpha_k}$$

it comes

$$\frac{p_n}{q_n} = \frac{p_0}{q_0} + \sum_{i=1}^{i=n} \frac{(-1)^{i+1} \prod_{k=0}^{k=i-1} p^{\alpha_k}}{q_i q_{i-1}}$$

Lemma 2.1. For all positive n, we have: $q_n \ge p^{\frac{n}{2}}$, et $p_n \ge p^{\frac{n}{2}}$

Proof. Easy recursion on n.

2.1. Convergence in \mathbb{R} .

Theorem 2.1. If the set $\{\alpha_i; i \in \mathbb{N}\}$ is bounded, the sequence defined by

$$[(a_0, \alpha_0), (a_1, \alpha_1), \dots, (a_{i-1}, \alpha_{i-1}); a_i]$$

converges in \mathbb{R} .

Proof. We shall use the following notation

$$u_{i} = \frac{\prod_{k=0}^{k=i-1} p^{\alpha_{k}}}{q_{i}q_{i-1}}$$

Let us use Leibniz criterium for alternating series. We have

$$\frac{u_i}{u_{i+1}} - 1 = \frac{a_{i+1}q_i}{p^{\alpha_i}q_{i-1}} > 0.$$

Suppose that $A = \max\{\alpha_i; i \in \mathbb{N}\}$. Then $\frac{u_i}{u_{i+1}} - 1 \ge \frac{1}{p^A} > 0$ and the proof is complete.

In the sequel, we need the following lemma, this subsection we provide some insight convergence in other uses:

Lemma 2.2. Let the sequence $(v_n)_{n \in \mathbb{N}}$ be defined by $v_{n+1} = ka^n v_n + v_{n-1}$ with $0 < a \leq 1$ and $0 < k \leq 1$. If $a < \frac{2}{k+\sqrt{k^2+4}}$, then the sequences v_{2n} and v_{2n+1} converge, and their limits are different.

Proof. To show the convergence, let the sequence $(F_n)_{n \in \mathbb{N}}$ defined by

$$F_{n+1} = kF_n + F_{n-1}$$

with $F_0 = v_0$ et $F_1 = v_1$. Then, F_n is given by the formula

$$F_n = \frac{1}{2} \left(v_0 + \frac{2v_1 - kv_0}{\sqrt{k^2 + 4}} \right) \Phi_k^n + \frac{1}{2} \left(v_0 - \frac{2v_1 - kv_0}{\sqrt{k^2 + 4}} \right) \left(\frac{-1}{\Phi_k} \right)^n,$$

with $\Phi_k = \frac{k+\sqrt{k^2+4}}{2}$. It is easy to show by induction that $v_n \leq F_n$. In the other hand, we have $v_{n-1} \leq v_{n+1} \leq ka^n F_n + v_{n-1}$ and

$$ka^{n}F_{n} \sim \frac{k}{2}(u_{0} + \frac{2u_{1} - ku_{0}}{\sqrt{k^{2} + 4}})(a\Phi_{k})^{n}.$$

The proof is complete where $\Phi_k < \frac{1}{a}$.

To show that the two limits are different, suppose that v_{2n} converg to ℓ and v_{2n+1} converg to ℓ' , we have

$$F_{2n} = \frac{1}{2} \left(v_0 + \frac{2v_1 - kv_0}{\sqrt{k^2 + 4}} \right) \Phi_k^{2n} + \frac{1}{2} \left(v_0 - \frac{2v_1 - kv_0}{\sqrt{k^2 + 4}} \right) \left(\frac{1}{\Phi_k} \right)^{2n}$$

and

$$F_{2n+1} = \frac{1}{2} \left(v_0 + \frac{2v_1 - kv_0}{\sqrt{k^2 + 4}} \right) \Phi_k^{2n+1} - \frac{1}{2} \left(v_0 - \frac{2v_1 - kv_0}{\sqrt{k^2 + 4}} \right) \left(\frac{1}{\Phi_k} \right)^{2n+1}.$$

Then, for $\lambda = \frac{2v_1 - kv_0}{\sqrt{k^2 + 4}}$ we have

$$v_{2n} < \frac{1}{2}(v_0 + \lambda)\Phi_k^{2n} + \frac{1}{2}(v_0 - \lambda)(\frac{1}{\Phi_k})^{2n}$$

and

$$v_{2n+1} < \frac{1}{2}(v_0 + \lambda)\Phi_k^{2n+1} - \frac{1}{2}(v_0 - \lambda)(\frac{1}{\Phi_k})^{2n+1}.$$

It follows that

$$\frac{v_{2n}}{v_{2n+1}} < \Phi_k \frac{(v_0 + \lambda)\Phi_k^{4n} + (v_0 - \lambda)}{(v_0 + \lambda)\Phi_k^{4n+2} + (v_0 - \lambda)}$$

Passing to the limit, we obtain $\ell < \frac{1}{\Phi_k} \ell' < \ell'$.

Example 1. Suppose that for all i, $a_i = 1$ and $\alpha_i = i$. Then the sequence defined by $[(a_0, \alpha_0), (a_1, \alpha_1), \dots, (a_{i-1}, \alpha_{i-1}); a_i]$ does not converge in \mathbb{R} .

Proof. We put $q'_i = \frac{q_i}{p^{\frac{1}{4}}}$, therefore $q'_{i+1} = ka^i q'_i + q'_{i-1}$, with $a = \frac{1}{p^{\frac{1}{2}}}$ and $k = \frac{1}{p^{\frac{3}{4}}}$, so with the previous lemma the sequence $(q'_{2i})_i$ converge to the limit ℓ and the

2586

sequence $(q'_{2i-1})_i$ converge to the limits ℓ' , that is to say that for all given $\epsilon > 0$ from a certain rank we have

$$q_{2i} \le (\ell + \epsilon) p^{\frac{(2i)^2}{4}} \text{ and } q_{2i-1} \le (\ell' + \epsilon) p^{\frac{(2i-1)^2}{4}}$$

Then

$$u_{2i} = \frac{p^{\frac{2i(2i-1)}{2}}}{q_{2i}q_{2i-1}} \ge \frac{p^{\frac{1}{4}}}{(\ell+\epsilon)(\ell'+\epsilon)}$$

thus u_{2i} do not converge to 0.

In the sequel, we shall use this notation:

$$A_{2n} = \alpha_1 + \alpha_3 + \dots + \alpha_{2n-1}$$
$$A_{2n+1} = \alpha_0 + \alpha_2 + \dots + \alpha_{2n}$$
$$q'_i = \frac{q_i}{p^{A_i}}.$$

Hence we have obviously $u_i = \frac{1}{q'_i q'_{i-1}}$, $A_{i+2} - A_i = \alpha_{i+1}$, $q'_0 = 1$, $q'_1 = a_1$, and

$$q_{i+2}' = a_{i+2} \frac{q_{i+1}'}{p^{A_{i+2}-A_{i+1}}} + q_i'.$$

Theorem 2.2. Suppose that for all *i*, a_i in $\{1, \ldots, p-1\}$ and $\alpha_i = i$. Then the sequence $[(a_0, \alpha_0), (a_1, \alpha_1), \ldots, (a_{i-1}, \alpha_{i-1}); a_i]$ does not converges in \mathbb{R} .

Proof. We have $A_{2n} = 1 + 3 + \dots + (2n - 1) = n^2$, $A_{2n+1} = 2 + 4 + \dots + (2n) = n(n + 1)$, $A_{i+2} - A_i = i + 1$ and we have $A_{i+2} - A_{i+1} = \frac{i}{2} + 1$ if *i* is even, and $A_{i+2} - A_{i+1} = \frac{i+1}{2} + 1$ if *i* is odd. It is easy to prove that $q'_i \le F_i$ where F_i is the sequence defined by: $F_{n+2} = \frac{p-1}{p}F_{n+1} + F_n$ with $F_0 = 1$ and $F_1 = a_1$.

In the other hand we have

$$0 \le q'_{i+2} - q'_i \le \frac{p-1}{p^{A_{i+2} - A_{i+1} + 1}} F_{i+1}.$$

So, for i even, we have

$$0 \le q_{i+2}' - q_i' \le \frac{p-1}{p^{\frac{i}{2}+1}} F_{i+1} \sim \frac{p-1}{\sqrt{p}} \left(\frac{1}{\sqrt{p}} \Phi_{\frac{p-1}{p}}\right)^n.$$

Theorem 2.3. Suppose that for all $i, a_i \in \{1, \ldots, p-1\}$, $\alpha_{2j} = 1$ for i = 2j, and $\alpha_{2j+1} = (j+1)^2$ for i = 2j + 1. Then the sequence $[(a_0, \alpha_0), (a_1, \alpha_1), \ldots, (a_{i-1}, \alpha_{i-1}); a_i]$ converges in \mathbb{R} .

2587

Proof. We have

$$A_{2j} = 1 + 4 + \dots + (2j)^2 = \frac{1}{6}j(j+1)(2j+1), A_{2j+1} = j+1.$$

It is easy to prove that $A_{2j+1} - A_{2j} = \frac{j+1}{6}(-2j^2 - j + 6)$. Then, we have

$$q'_{2j+1} \le p^{\frac{j+1}{6}(-2j^2-j+6)}.$$

Finally, we makes j tend to infinity.

More generally, it is possible to prove in the same way the following results.

Theorem 2.4. *If for same* $\epsilon > 0$ *we have*

$$A_{i+2} - A_{i+1} > i(\epsilon + \log_p(\Phi_{\frac{p-1}{p}}))$$

Then the sequence $(\frac{p_i}{q_i})_{i \in \mathbb{N}}$ does not converge in \mathbb{R} .

Theorem 2.5. If we have $A_{i+2} - A_{i+1} \leq \log_p(i)$ Then the sequence $(\frac{p_i}{q_i})_{i \in \mathbb{N}}$ converge in \mathbb{R} .

Conjecture 2.1. We conjecture that: For $\alpha_i = \lfloor \sqrt{i} \rfloor$, the sequence $(\frac{p_i}{q_i})_{i \in \mathbb{N}}$ does not converge in \mathbb{R} . For $\alpha_i = k \lfloor \log_p(i) \rfloor$, with $k \geq 1$, the sequence $(\frac{p_i}{q_i})_{i \in \mathbb{N}}$ converge in \mathbb{R} .

In all the sequel, we denote $\theta_{\mathbb{R}}$ the limit in \mathbb{R} . In the proof of the transcendence theorem, we shall need the following lemma.

Lemma 2.3. Under the hypothesis of the previous theorem, we have:

$$|q_n\theta_{\mathbb{R}} - p_n| \le \frac{\prod_{j=0}^{j=n-1} p^{\alpha_j}}{q_{n-1}}$$

Proof. From the Leibniz criterium for alternating series, we have

$$\left|\theta_{\mathbb{R}} - \frac{p_n}{q_n}\right| \le \left|\frac{p_{n-1}}{q_{n-1}} - \frac{p_n}{q_n}\right|$$

2.2. Convergence in \mathbb{Q}_p .

Theorem 2.6. The sequence $[(a_0, \alpha_0), (a_1, \alpha_1), \dots, (a_{n-1}, \alpha_{n-1}); a_n]$ converges in \mathbb{Q}_p .

2588

Proof. An easy recursion on n shows that $val_p(q_n) = 0$. Hence, the series

$$\sum_{i=1}^{i=k} \frac{(-1)^{i+1} \prod_{k=0}^{k=i-1} p^{\alpha_k}}{q_i q_{i-1}},$$

have a limit in \mathbb{Q}_p .

In all the sequel, we denote $\theta_{\mathbb{Q}_p}$ the limit in \mathbb{Q}_p . In the proof of the transcendence theorem, we shall need the following lemmas:

Lemma 2.4. Under the hypothesis of the previous proposition, we have:

$$\left|q_k\theta_{\mathbb{Q}_p}-p_k\right|_p=\frac{1}{p^{\alpha_0+\cdots+\alpha_k}}.$$

Proof. Suppose k < n, we have

$$\frac{p_n}{q_n} - \frac{p_k}{q_k} = \sum_{i=k}^{i=n-1} \frac{p_{i+1}}{q_{i+1}} - \frac{p_i}{q_i} = \sum_{i=k}^{i=n-1} \frac{(-1)^{i+2} \prod_{j=0}^{j=i} p^{\alpha_j}}{q_i q_{i+1}}$$

Hence we have

$$\left|\frac{p_n}{q_n} - \frac{p_k}{q_k}\right|_p = \frac{1}{p^{\alpha_0 + \dots + \alpha_k}} \le \frac{1}{p^{k+1}}.$$

Then take the limit when n goes to infinity to get

$$\left|\theta - \frac{p_k}{q_k}\right|_p = \left|q_k\theta - p_k\right|_p = \frac{1}{p^{\alpha_0 + \dots + \alpha_k}}.$$

3. PROOF OF MAIN THEOREM

Suppose θ is algebraic. Consider now the following linear forms with variable $\mathbf{x} = (x_1, x_2, x_3)$ and algebraic coefficients.

$$L_{1,\infty}(\mathbf{x}) = \theta_{\mathbb{R}} \cdot x_1 - x_3, \quad L_{2,\infty}(\mathbf{x}) = \theta_{\mathbb{R}} \cdot x_3 - x_2, \quad L_{3,\infty}(\mathbf{x}) = x_3,$$
$$L_{1,p}(\mathbf{x}) = \theta_{\mathbb{Q}_p} \cdot x_1 - x_3, \quad L_{2,p}(\mathbf{x}) = \theta_{\mathbb{Q}_p} \cdot x_3 - x_2, \quad L_{3,p}(\mathbf{x}) = x_1.$$

Evaluating them on the triple $\mathbf{x_n} = (q_n, p_{n-1}, p_n)$, with $n = 4^k - 1$. We get from Lemma 2.3, the inequality

$$|L_{1,\infty}(\mathbf{x}_{\mathbf{n}})| < \frac{p^{\sum_{j=0}^{j=n-1} \alpha_j}}{q_{n-1}},$$

2589

and from Theorem 1.3 and Lemma 2.3, the inequality

$$|L_{2,\infty}(\mathbf{x_n})| < \frac{p^{\sum_{j=0}^{j=n-2} \alpha_j}}{q_{n-2}}.$$

For the p-adic forms, we have from Lemma 2.4

$$\left|L_{1,p}(\mathbf{x_n})\right|_p = \frac{1}{p^{\sum_{j=0}^{j=n} \alpha_j}}$$

and

$$|L_{2,p}(\mathbf{x_n})|_p = \frac{1}{p^{\sum_{j=0}^{j=n-1} \alpha_j}}.$$

From the hypothesis of the theorem, we have A < n then $p_n < p^{n+1}$, for $n = 4^k - 1$ large enough.

$$|\mathbf{x}_{\mathbf{n}}|^{\delta} \prod_{i=1}^{i=3} |L_{i,\infty}(\mathbf{x}_{\mathbf{n}})| \prod_{i=1}^{i=3} |L_{i,p}(\mathbf{x}_{\mathbf{n}})|_{p} < \frac{p_{n}^{\delta}}{p^{\alpha_{n-1}+\alpha_{n}}q_{n-2}} < \frac{p_{n}^{\delta}}{p^{2}q_{n-2}} < \frac{(p^{n+1})^{\delta}}{p^{2+\frac{n}{2}}}$$

converges to 0 for $\delta < \frac{1}{2}$.

Schlickewei's theorem confirms the existence of non-zero rational integers y_1, y_2, y_3 , such that, for an infinite set of n, we have

$$y_1q_n + y_2p_{n-1} + y_3p_n = 0$$
, i.e., $y_1 + y_2\frac{p_{n-1}}{q_n} + y_3\frac{p_n}{q_n} = 0$.
So, $y_1 + y_2\frac{p_{n-1}}{q_{n-1}}\frac{p_n}{q_n} + y_3\frac{p_n}{q_n} = 0$.

Passing to the limit as $n \to +\infty$ (in \mathbb{Q}_p), we obtain $y_2 \theta_{\mathbb{Q}_p}^2 + y_3 \theta_{\mathbb{Q}_p} + y_1 = 0$. So, $\theta_{\mathbb{Q}_p}$ is quadratic.

Passing to the limit as $n \longrightarrow +\infty$ (in \mathbb{R}), we obtain $y_2 \theta_{\mathbb{R}}^2 + y_3 \theta_{\mathbb{R}} + y_1 = 0$. So, $\theta_{\mathbb{R}}$ is quadratic.

ACKNOWLEDGMENT

This paper is supported by the Scientific Research Project C00L03UN1801201 80006, in University Mohammed Seddik Benyahia of Jijel.

References

- [1] B. ADAMCZEWSKI, Y. BUGEAUD: On the complexity of algebraic numbers, II. Continued fractions, Acta Math. **195** (2005), 1–20.
- [2] J.P. ALLOUCHE, J. SHALLIT: Automatic sequences: Theory, Applications, Generalizations, Cambridge University Press., 2003.
- [3] R. BELHADEF, H-A. ESBELIN: On the Periodicity of *p*-adic Expansion of Rational Number, J. Math. Comput. Sci. **11** (2016), 1704–171.
- [4] R. BELHADEF, H-A. ESBELIN, T. ZERZAIHI: Transcendence of Thue-Morse p-Adic Continued Fractions, Mediterr. J. Math. **13**(2016), 1429–1434.
- [5] B. M. M. DE WEGER: Approximation lattices of p-adic numbers, J. Number Theory. 24(1986), 70–88.
- [6] A.Y.A. KHINCHIN: *Continued Fractions*, Phoenix Science Series. The University Of Chicago Press, Chicago, 1964.
- [7] M. KOJIMA: *Continued fractions in p-adic numbers*, Algebraic number theory and related topics, RIMS Bessatsu. **B32** (2012), 239–254.
- [8] H.P. SCHLICKEWEI: On prudects of special linear forms with algebric coefficients, Acta Arith. 31 (1976), 389–398.
- [9] T. SCHNEIDER: Über p-adische Kettenbrüche, Symp. Math. 4 (1969), 181–189.

DEPARTMENT OF MATHEMATICS UNIVERSITY MOHAMMED SEDDIK BENYAHIA OF JIJEL BP 98, OULED AISSA, JIJEL, ALGERIA. Email address: belhadef_rafik@univ-jijel.dz

LIMOS LABORATORY CLERMONT AUVERGNE UNIVERSITY COMPUS DES CEZAUX, AUBIÈRE, FRANCE. Email address: alex.esbelin@math.univ-bpclermont.fr