
ADV  MATH
SCI  JOURNAL

Advances in Mathematics: Scientific Journal 10 (2021), no.5, 2593–2610
ISSN: 1857-8365 (printed); 1857-8438 (electronic)
https://doi.org/10.37418/amsj.10.5.23

FRACTIONAL KINETIC EQUATIONS INVOLVING GENERALIZED
V-FUNCTION VIA LAPLACE TRANSFORM

Wagdi F.S. Ahmed1, D.D. Pawar, and W.D. Patil

ABSTRACT. In this study, a new and further generalized form of the fractional
kinetic equation involving the generalized V−function has been developed. We
have discussed the manifold generality of the generalized V−function in terms
of the solution of the fractional kinetic equation. Also, the graphical interpre-
tation of the solutions by employing MATLAB is given. The results are very
general in nature, and they can be used to generate a large number of known
and novel results.

1. INTRODUCTION AND PRELIMINARIES

Fractional calculus (FC) is regarded as a beneficial tool for studying fractional
order integrals and derivatives. Fractional calculus has been adopted and used
in a variety of scientific and engineering fields. Fractional differential equa-
tions and their applications are very useful in many fields and have played a
very important role in a wide range of applications in applied science, chem-
istry ,physics, engineering and biology. The kinetic equations are a collection of
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differential equations that explain the rate of change in a star’s chemical com-
position for each order in terms of production and destruction reaction rates
Fractional kinetic equations in various forms have been widely and successfully
used to describe and solve a variety of important physics and astrophysics prob-
lems over the last several decades (see, for example, [1–8, 11, 19, 20] and the
references therein).

The special functions and their applications can be found in the solutions of
fractional integral and differential equations, as well as in a variety of other
areas of mathematics and mathematical physics problems. The authors have
developed a generalized form of the fractional kinetic equations as well as the
V-function series in light of the usefulness and significance of the fractional ki-
netic equations in some astrophysical problems. The V-function series’ broad
generality will enable us to deduce several special cases of the main results.

So, we recall the differential fractional equation for the rate of reaction change
M = M(t) ,the destruction rate d = d(M) and the production rate p = p(M)

that given by Haubold and Mathai [12] as the follows

(1.1)
d(M)

dt
= −d(Mt) + p(Mt),

where Mt is the function identified by

(1.2) Mt(t
∗) = M(t− t∗), t∗ > 0.

Neglecting the inhomogeneity in the quantity M(t) that is the equation

(1.3)
dM

dt
= −ciMi(t)

is part of the initial condition Mi(t = 0) = M0 is the number of density of index
ıi at time t = 0.

The equation solution (1.3)is referred as

(1.4) Mi(t) = M0 e
−cit

On the other hand, we can take

(1.5) M(t)−M0 = c0 D
−1
t M(t),

where the 0D
−1
t is the standard fractional integral operator.In addition, the frac-

tional generalization for the standard kinetic equation(1.5) defined by Haubold
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and Mathai [12] as the form

(1.6) M(t)−M0 = cγ 0D
−γ
t M(t),

where 0D
−γ
t is the Riemann-Liouville fractional integral operator expressed as

(see, Samko et al. [17])

(1.7) 0D
−γ
t f(t) =

1

Γ(γ)

∫ t

0

(t− τ)γ−1f(τ)dτ, (t > 0,R(γ) > 0).

Haubold and Mathai [12] provide the equation solution (1.6) in the form:

(1.8) M(t) = M0

∞∑
n=0

(−1)n

Γ(γn+ 1)
(ct)γn.

Further, Saxena and Kalla [18] expressed the following fractional kinetic equa-
tion as the form

(1.9) M(t)−M0f(t) = −cγ (0D
−γ
t M)(t), (R(γ) > 0,

where M(t) denotes the density number of a given species at every time t, M0 =

M(0) is a density number that species at time t = 0, c is a constant and f ∈
L(0,∞).

Now, applying laplace transform in Eq:(1.9), we get
(1.10)

L{M(t); τ} = M0
F (τ)

1 + cγτ−γ
= M0

( ∞∑
n=0

(−cγ)nτ−γn
)
F (τ),

(
n ∈M0,

∣∣∣ c
τ

∣∣∣ < 1
)
,

where the Laplace transform [21] is given by

(1.11) F (τ) = L{M(t); τ} =

∫ ∞
0

e−τtf(t)dt, (R(τ) > 0).

Recently, the V−function is defined by Kumar [14] as follows:

V (t) = V aµ,h,bv
n (p, ξ, ζ, δ, q,Kµ, Av, Bw, α, β, ρ; t)

= =

(
∞∑
n=0

(−p)n
∏j

µ=1

[
(aµ)n+Kµ

]
(h+ αn+ β)−ξ∏i

v=1

[
(bv)n+Av

]∏u
w=1

[
(h)αnρ+Bw

] ) (
t

2

)nζ+hδ+q

,(1.12)

where

(i) p, ζ, δ, q, β, ρ, kµ(µ = 1, 2, . . . , j), Av(v = 1, 2, . . . , i), Bw(w = 1, 2, . . . , u)

are real numbers;
(ii) i, j, and u are natural numbers;

(iii) aµ, bv ≥ 1(µ = 1, 2, . . . , j; v = 1, 2, . . . , i);
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(iv) α > 0,<(ξ) > 0,<(h) > 0, t is a complex variable and = is an arbitrary
constant;

(v) the series on the RHS of (1.12) converges absolutely if j < i or j = i

with | p(t/2)ζ |≤ 1.

2. SOLUTION OF GENERALIZED FRACTIONAL KINETIC EQUATIONS

In this section, we use the technique of Laplace transform to solve the frac-
tional kinetic equation associated with the generalized V−function.

Remark 2.1. In this section, solutions for fractional kinetic equations are obtained
in terms of the generalized Mittag-Leffler Function Eα,h(z) (see [15], which is de-
scribed as the form:

(2.1) Eα,h(z) =
∞∑
n=0

zn

Γ(αn+ h)
, <(α) > 0, <(h) > 0.

Theorem 2.1. let R(γ) > 0, d > 0; p, ξ, ζ, δ, q,Kµ, Av, Bw ∈ <; b, i, j, u ∈ N, aµ,
bv ≥ 1, α > 0,R(ξ) > 0,R(h) > 0, t > 0, and = > 0 is an arbitrary constant;
(µ = 1, . . . , j), (v = 1, . . . , i), (w = 1, . . . , u) then the following equation:

(2.2) N(t)−N0

(
V aµ,h,bv
n (p, ξ, ζ, δ, q,Kµ, Av, Bw, α, β, ρ; t)

)
= −dγ 0D

−γ
t N(t)

has a solution given by

N(t) = = N0

(
∞∑
n=0

(−p)n
∏j

µ=1

[
(aµ)n+Kµ

]
(h+ αn+ β)−ξ∏i

v=1

[
(bv)n+Av

]∏u
w=1

[
(h)αnρ+Bw

] ) (
t

2

)nζ+hδ+q

(2.3)

× Γ(nζ + hδ + q + 1) Eγ,(nζ+hδ+q+1) (−dγtγ).

Proof. The Laplace transform of Riemann- Liouville fractional integral operator
is presented as

(2.4) L {0D
−γ
t f(t); τ)} = (τ)−γF (τ),

where F (τ) is define in (1.11).
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Now, after we apply the Laplace transform to both sides of equation (2.2) and
using (2.4) we have

L

(
N(t); τ

)
= N0 L

(
V aµ,h,bv
n (p, ξ, ζ, δ, q,Kµ, Av, Bw, α, β, ρ; t)

)

− dγ L
(

0D
−γ
t N(t); τ

)
,

(2.5)

that is

N(τ) = = N0

∫ ∞
0

e−τt

(
∞∑
n=0

(−p)n
∏j

µ=1

[
(aµ)n+Kµ

]
(h+ αn+ β)−ξ∏i

v=1

[
(bv)n+Av

]∏u
w=1

[
(h)αnρ+Bw

] )
(
t

2

)nζ+hδ+q

dt− dγ(τ)−γN(τ).

(2.6)

By interchanging the order of integration and summation in the equation (2.6),
we obtain

N(τ)
[
1 + dγ(τ)−γ

]
(2.7)

= = N0

(
∞∑
n=0

(−p)n
∏j

µ=1

[
(aµ)n+Kµ

]
(h+ αn+ β)−ξ∏i

v=1

[
(bv)n+Av

]∏u
w=1

[
(h)αnρ+Bw

] ) (
1

2

)nζ+hδ+q

×
∫ ∞

0

e−τttnζ+hδ+qdt.

Equation (2.7) leads to

N(τ)
[
1 + dγ(τ)−γ

]
(2.8)

= = N0

(
∞∑
n=0

(−p)n
∏j

µ=1

[
(aµ)n+Kµ

]
(h+ αn+ β)−ξ∏i

v=1

[
(bv)n+Av

]∏u
w=1

[
(h)αnρ+Bw

] ) (
1

2

)nζ+hδ+q

× Γ(nζ + hδ + q + 1)

τnζ+hδ+q+1

Equation (2.8) leads to

N(τ) = = N0

(
∞∑
n=0

(−p)n
∏j

µ=1

[
(aµ)n+Kµ

]
(h+ αn+ β)−ξ∏i

v=1

[
(bv)n+Av

]∏u
w=1

[
(h)αnρ+Bw

] ) (
1

2

)nζ+hδ+q

(2.9)

× Γ(nζ + hδ + q + 1)
{
τ−(nζ+hδ+q+1)

∞∑
s=0

[
−
(τ
d

)−γ]s}
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Now, taking inverse Laplace transform on both sides of the equation (2.9), and
using

(2.10) L−1{τ−γ; t} =
tγ−1

Γ(γ)
, (R(γ) > 0)

we have

L−1{N(τ)}

= = N0

(
∞∑
n=0

(−p)n
∏j

µ=1

[
(aµ)n+Kµ

]
(h+ αn+ β)−ξ∏i

v=1

[
(bv)n+Av

]∏u
w=1

[
(h)αnρ+Bw

] ) (
1

2

)nζ+hδ+q

(2.11)

× Γ(nζ + hδ + q + 1) L−1

(
∞∑
s=0

(−1)s(d)γs(τ−(nζ+hδ+q+γs+1)

)
,

that is

N(t) = = N0

(
∞∑
n=0

(−p)n
∏j

µ=1

[
(aµ)n+Kµ

]
(h+ αn+ β)−ξ∏i

v=1

[
(bv)n+Av

]∏u
w=1

[
(h)αnρ+Bw

] ) (
1

2

)nζ+hδ+q

× Γ(nζ + hδ + q + 1)

(
∞∑
s=0

(−1)s(d)γs
t(nζ+hδ+q+γs)

Γ(γs+ nζ + hδ + q + 1)

)
(2.12)

N(t) = = N0

(
∞∑
n=0

(−p)nprodjµ=1

[
(aµ)n+Kµ

]
(h+ αn+ β)−ξ∏i

v=1

[
(bv)n+Av

]∏u
w=1

[
(h)αnρ+Bw

] ) (
t

2

)nζ+hδ+q

× Γ(nζ + hδ +m+ 1)

(
∞∑
s=0

(−1)s
(tγdγ)s

Γ(γs+ nζ + hδ + q + 1)

)
.(2.13)

Now, we can Written equation (2.13) as

N(t) = = N0

(
∞∑
n=0

(−p)n
∏j

µ=1

[
(aµ)n+Kµ

]
(h+ αn+ β)−ξ∏i

v=1

[
(bv)n+Av

]∏u
w=1

[
(h)αnρ+Bw

] ) (
t

2

)nζ+hδ+q

× Γ(nζ + hδ + q + 1) Eγ,(nζ+hδ+q+1) (−dγtγ).(2.14)

�

Theorem 2.2. Let R(γ) > 0, d > 0; p, ξ, ζ, δ, q,Kµ, Av, Bw ∈ <; b, i, j, u ∈ N,
aµ, bv ≥ 1, α > 0,R(ξ) > 0,R(h) > 0, t > 0, and = > 0 is an arbitrary constant;
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(µ = 1, . . . , j), (v = 1, . . . , i), (w = 1, . . . , u) then the following equation:

N(t)−N0

(
V aµ,h,bv
n (p, ξ, ζ, δ, q,Kµ, Av, Bw, α, β, ρ; dγtγ)

)
=− dγ 0D

−γ
t N(t)

(2.15)

has a solution given by

N(t) = = N0

(
∞∑
n=0

(−p)n
∏j

µ=1

[
(aµ)n+Kµ

]
(h+ αn+ β)−ξ∏i

v=1

[
(bv)n+Av

]∏u
w=1

[
(h)αnρ+Bw

] ) (
dγtγ

2

)nζ+hδ+q

× Γ(nζγ + hδγ + γq + 1) Eγ,(nζ+hδ+q)γ+1 (−dγtγ).(2.16)

Theorem 2.3. Let R(γ) > 0, c > 0, d > 0, c 6= d; p, ξ, ζ, δ, q,Kµ, Av, Bw ∈ <; b, i,
j, u ∈ N, aµ, bv ≥ 1, α > 0,R(ξ) > 0,R(h) > 0, t > 0, and = > 0 is an arbitrary
constant; (µ = 1, . . . , j), (v = 1, . . . , i), (w = 1, . . . , u) then the following equation:

N(t)−N0

(
V aµ,h,bv
n (p, ξ, ζ, δ, q,Kµ, Av, Bw, α, β, ρ; dγtγ)

)
=− cγ 0D

−γ
t N(t)

(2.17)

has a solution given by

N(t) = = N0

(
∞∑
n=0

(−p)n
∏j

µ=1

[
(aµ)n+Kµ

]
(h+ αn+ β)−ξ∏i

v=1

[
(bv)n+Av

]∏u
w=1

[
(h)αnρ+Bw

] ) (
dγtγ

2

)nζ+hδ+q

× Γ(nζγ + hδγ + γq + 1) Eγ,(nζ+hδ+q)γ+1 (−cγtγ).(2.18)

Proof. Proof of Theorems 2.2 and 2.3 are similar to the proof of Theorem 2.1 so
it is omitted here. �

3. SPECIAL CASES

(i) If we choose µ = 1, v = 2, w = 1, a1 = 1, b1 = 1, b2 = 1, p = 1, ξ = 1, ζ =

2, δ = 1, q = 0, k1 = 0, A1 = 0, A2 = 0, B1 = 0, α = 1, β = 0, ρ = 1 and = = 1
Γ(h)

,

then the Theorems 1, 2 and 3 are reduces to the following form including the
Bessel function Jh(t) (see, eg, [10]).
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Corollary 3.1. Let R(γ) > 0, d > 0; p, ξ, ζ, δ, q,Kµ, Av, Bw ∈ <; b, i, j, u ∈ N, aµ,
bv ≥ 1, α > 0,R(ξ) > 0,R(h) > 0, t > 0, and = > 0 is an arbitrary constant;
(µ = 1, . . . , j), (v = 1, . . . , i), (w = 1, . . . , u) then the following equation:

N(t)−N0

(
V 1,h,1,1
n (1, 1, 2, 1, 0, 0, 0, 0, 0, 1, 0, 1; t)

)
= −dγ 0D

−γ
t N(t)

has a solution given by

N(t) = N0

(
∞∑
n=0

(−1)n

n!Γ(n+ h+ 1)

) (
t

2

)2n+h

× Γ(2n+ h+ 1) Eγ,(2n+h+1) (−dγtγ)

Corollary 3.2. Let R(γ) > 0, d > 0; p, ξ, ζ, δ, q,Kµ, Av, Bw ∈ <; b, i, j, u ∈ N, aµ,
bv ≥ 1, α > 0,R(ξ) > 0,R(h) > 0, t > 0, and = > 0 is an arbitrary constant;
(µ = 1, . . . , j), (v = 1, . . . , i), (w = 1, . . . , u) then the following equation:

N(t)−N0

(
V 1,h,1,1
n (1, 1, 2, 1, 0, 0, 0, 0, 0, 1, 0, 1; dγtγ)

)
= −dγ 0D

−γ
t N(t)

has a solution given by

N(t) = N0

(
∞∑
n=0

(−1)n

n!Γ(n+ h+ 1)

) (
dγtγ

2

)2n+h

× Γ(2nγ + hγ + 1) Eγ,(2n+h)γ+1 (−dγtγ).

Corollary 3.3. Let R(γ) > 0, c > 0, d > 0, c 6= d; p, ξ, ζ, δ, q,Kµ, Av, Bw ∈ <; b, i,

j, u ∈ N, aµ, bv ≥ 1, α > 0,R(ξ) > 0,R(h) > 0, t > 0, and = > 0 is an arbitrary
constant; (µ = 1, . . . , j), (v = 1, . . . , i), (w = 1, . . . , u) then the following equation:

N(t)−N0

(
V 1,h,1,1
n (1, 1, 2, 1, 0, 0, 0, 0, 0, 1, 0, 1; dγtγ)

)
= −cγ 0D

−γ
t N(t)

has a solution given by

N(t) = N0

(
∞∑
n=0

(−1)n

n!Γ(n+ h+ 1)

) (
dγtγ

2

)2n+h

× Γ(2nγ + hγ + 1) Eγ,(2n+h)γ+1 (−cγtγ).
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(ii) If we choose µ = 1, v = 2, w = 1, a1 = 1, b1 = 3/2, b2 = 1, p = 1, ξ =

1, ζ = 2, δ = 1, q = 1, k1 = 0, A1 = 0, A2 = 0, B1 = 1/2, α = 1, β = 1/2, ρ =

1 and = = 1
Γ(h)Γ(3/2)

, then the Theorems 1, 2 and 3 are reduces to the following
form including the Struve function Hh(t)(see, e.g., [10]).

Corollary 3.4. Let R(γ) > 0, d > 0; p, ξ, ζ, δ, q,Kµ, Av, Bw ∈ <; b, i, j, u ∈ N, aµ,
bv ≥ 1, α > 0,R(ξ) > 0,R(h) > 0, t > 0, and = > 0 is an arbitrary constant;
(µ = 1, . . . , j), (v = 1, . . . , i), (w = 1, . . . , u) then the following equation:

N(t)−N0

(
V 1,h,3/2,1
n (1, 1, 2, 1, 1, 0, 0, 0, 1/2, 1, 1/2, 1; t)

)
= −dγ 0D

−γ
t N(t)

has a solution given by

N(t) = N0

(
∞∑
n=0

(−1)n

Γ(n+ 3
2
)Γ(n+ h+ 3

2
)

) (
t

2

)2n+h+1

× Γ(2n+ h+ 2) Eγ,(2n+h+2) (−dγtγ).

Corollary 3.5. Let R(γ) > 0, d > 0; p, ξ, ζ, δ, q,Kµ, Av, Bw ∈ <; b, i, j, u ∈ N, aµ,
bv ≥ 1, α > 0,R(ξ) > 0,R(h) > 0, t > 0, and = > 0 is an arbitrary constant;
(µ = 1, . . . , j), (v = 1, . . . , i), (w = 1, . . . , u) then the following equation:

N(t)−N0

(
V 1,h,3/2,1
n (1, 1, 2, 1, 1, 0, 0, 0, 1/2, 1, 1/2, 1; dγtγ)

)
= −dγ 0D

−γ
t N(t)

has a solution given by

N(t) = N0

(
∞∑
n=0

(−1)n

Γ(n+ 3
2
)Γ(n+ h+ 3

2
)

) (
dγtγ

2

)2n+h+1

× Γ(2nγ + hγ + γ + 1) Eγ,(2n+h+1)γ+1 (−dγtγ).

Corollary 3.6. Let R(γ) > 0, c > 0, d > 0, c 6= d; p, ξ, ζ, δ, q,Kµ, Av, Bw ∈ <; b, i,
j, u ∈ N, aµ, bv ≥ 1, α > 0,R(ξ) > 0,R(h) > 0, t > 0, and = > 0 is an arbitrary
constant; (µ = 1, . . . , j), (v = 1, . . . , i), (w = 1, . . . , u) then the following equation:

N(t)−N0

(
V 1,h,3/2,1
n (1, 1, 2, 1, 1, 0, 0, 0, 1/2, 1, 1/2, 1; dγtγ)

)
= −cγ 0D

−γ
t N(t)
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has a solution given by

N(t) = N0

(
∞∑
n=0

(−1)n

Γ(n+ 3
2
)Γ(n+ h+ 3

2
)

) (
dγtγ

2

)2n+h+1

× Γ(2nγ + hγ + γ + 1) Eγ,(2n+h+1)γ+1 (−cγtγ).

(iii) If we choose w = 1, h = 1, j = J, i = I, p = −2, ξ = 1, ζ = 1, δ = 0, q =

0, kµ = 0, Av = 0, B1 = −1, α = 1, β = −1, ρ = 1 and = = 1, then the Theorems
1, 2 and 3 are reduces to the following form including generalized hypergeo-
metric function (see, e.g., [9]),

Corollary 3.7. Let R(γ) > 0, d > 0; p, ξ, ζ, δ, q,Kµ, Av, Bw ∈ <; b, i, j, u ∈ N, aµ,
bv ≥ 1, α > 0,R(ξ) > 0,R(h) > 0, t > 0, and = > 0 is an arbitrary constant;
(µ = 1, . . . , j), (v = 1, . . . , i), (w = 1, . . . , u) then the following equation:

V aµ,1,bv
n (−2, 1, 1, 0, 0, 0, 0,−1, 1,−1, 1; t) = −dγ 0D

−γ
t N(t)

has a solution given by

N(t) = N0

(
∞∑
n=0

(a1)n, . . . , (aj)n
(b1)n, . . . , (bi)n

) (
t

n!

)n

× Γ(n+ 1) Eγ,(n+1) (−dγtγ).

Corollary 3.8. Let R(γ) > 0, d > 0; p, ξ, ζ, δ, q,Kµ, Av, Bw ∈ <; b, i, j, u ∈ N, aµ,
bv ≥ 1, α > 0,R(ξ) > 0,R(h) > 0, t > 0, and = > 0 is an arbitrary constant;
(µ = 1, . . . , j), (v = 1, . . . , i), (w = 1, . . . , u) then the following equation:

V aµ,1,bv
n (−2, 1, 1, 0, 0, 0, 0,−1, 1,−1, 1; dγtγ) = −dγ 0D

−γ
t N(t)

has a solution given by

N(t) = N0

(
∞∑
n=0

(a1)n, . . . , (aj)n
(b1)n, . . . , (bi)n

) (
dγtγ

n!

)n

×Γ(γn+ 1) Eγ,(γn+1) (−dγtγ).

Corollary 3.9. Let R(γ) > 0, c > 0, d > 0, c 6= d; p, ξ, ζ, δ, q,Kµ, Av, Bw ∈ <; b, i,
j, u ∈ N, aµ, bv ≥ 1, α > 0,R(ξ) > 0,R(h) > 0, t > 0, and = > 0 is an arbitrary
constant; (µ = 1, . . . , j), (v = 1, . . . , i), (w = 1, . . . , u) then the following equation:

V aµ,1,bv
n (−2, 1, 1, 0, 0, 0, 0,−1, 1,−1, 1; dγtγ) = −cγ 0D

−γ
t N(t)
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has a solution given by

N(t) = N0

(
∞∑
n=0

(a1)n, . . . , (aj)n
(b1)n, . . . , (bi)n

) (
dγtγ

n!

)n

×Γ(γn+ 1) Eγ,(γn+1) (−cγtγ).

(iv) If we choose µ = 1, v = 2, w = 1, a1 = 1, b1 = 1, b2 = 1, p = 2, ξ = 1, ζ =

1, δ = 1, q = 0, k1 = 0, A1 = 0, A2 = 0, B1 = 0, β = 0, ρ = 1 and = = 1
Γ(h)

, then
the V−function (13) turns into the Wright generalized Bessel function (see,
e.g., [10]),

V 1,h,1,1
n (2, 1, 1, 1, 0, 0, 0, 0, 0, α, 0, 1; t) = Jαh (t).

(v) If we choose µ = 1, v = 1, w = 1, a1 = 1, b1 = 1, p = −2, ξ = 1, ζ =

1, δ = 0, q = 0, k1 = 0, A1 = 0, B1 = −1, β = −1, ρ = 1 and = = 1
Γ(h)

, then the
V−function (13) turns into the Mittag-Leffler function (see, e.g., [13,16]),

V 1,h,1
n (−2, 1, 1, 0, 0, 0, 0,−1, α,−1, 1; t) = Eα,h(t).

(vi) If we choose µ = 1, v = 2, w = 1, a1 = 1, b1 = (τ + ε + 3)/2, b2 = (τ − ε +

3)/2, p = 1, ξ = 1, h = 1, ζ = 2, δ = τ, q = 0, k1 = 0, A1 = 0, A2 = 0, B1 = −1, α =

1, β = −1, ρ = 1 and = = 2τ+1/{(τ + ε+ 1)(τ − ε+ 1)},then the V−function (13)
turns into the Lommel function (see, e.g., [10]),

V 1,1,(τ+ε+3)/2,(τ−ε+3)/2
n (1, 1, 2, τ, 1, 0, 0, 0,−1, 1,−1, 1; t) = Sτ,ε(t).

4. GRAPHICAL INTERPRETATION

In this part, we plot the graphs of our kinetic equation solutions, which are es-
tablished in Eqs. (2.3), (2.16) and (2.18). In each graph, we give four solutions
of the results on the basis of assigning different values to the parameters, where
values of the parameters are given as µ = w = a1 = b1 = b2 = p = ξ = δ =

α = d = c = ρ = 1, q = k1 = A1 = A2 = B1 = β = 0, v = ζ = 2,= = 1
Γ(h)

, γ =

1.25, 1.5, 1.75, 2 for solution of the Eq. (2.3) we plot four graphs of the Eq. (2.3)
in figures 1234. Similarly, we plot the graph of the solution given in Eq. (2.16),
which are in figure 5 and also give graph of the solution of Eq. (2.18) in figure
6.

Where values of the parameters are given as µ = w = a1 = b2 = p = ξ = δ =

q = d = c = ρ = h = α = 1, k1 = A1 = A2 = 0, B1 = β = 1/2, v = ζ = 2, b1 =

3/2, and v = = 1
Γ(3/2)

, for solutions of the Eqs. (2.3),(2.16) and (2.18) plotted
in Figs. 789 respectively.
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FIGURE 1. The Solution of (2.3) for N(t) and h = 1, γ = 1.25, 1.5, 1.75, 2

FIGURE 2. The Solution of (2.3) for N(t) and h = 2, γ = 1.25, 1.5, 1.75, 2
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FIGURE 3. The Solution of (2.3) for N(t) and h = 3, γ = 1.25, 1.5, 1.75, 2

FIGURE 4. The Solution of (2.3) for N(t) and h = 4, γ = 1.25, 1.5, 1.75, 2



2606 Wagdi F.S. Ahmed, D.D. Pawar, and W.D. Patil

FIGURE 5. The Solution of (2.16) for N(t) and h = 1, γ = 1.25, 1.5, 1.75, 2

FIGURE 6. The Solution of (2.18) for N(t) and h = 1, γ = 1.25, 1.5, 1.75, 2
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FIGURE 7. The Solution of (2.3) for N(t) and h = 1, γ = 1.25, 1.5, 1.75, 2

FIGURE 8. The Solution of (2.16) for N(t) and h = 1, γ = 1.25, 1.5, 1.75, 2
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FIGURE 9. The Solution of (2.18) for N(t) and h = 1, γ = 1.25, 1.5, 1.75, 2

5. CONCLUSION

We present a new fractional generalization of the standard kinetic equation
as well as derive a solution for it in this paper. We can easily create various
new and known fractional kinetic equations using the close relationship of the
generalized V−function with several special functions. We also deduced from
the graphical interpretation that the solutions to all three Eqs. (2.3), (2.16)
and (2.18) for all positive values of the parameters N(t) are Non-negative and
N(t) > 0
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