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NONLINEAR DIFFUSION EQUATION WITH A PERTURBED
CONVECTIONTERM: POTENTIAL SYMMETRIES WITH RESPECT TO THE

SECOND CONSERVATION LAW

Ojen Kumar Narain1 and Fazal Mahmood Mahomed

ABSTRACT. We consider the nonlinear diffusion equation with a perturbed con-
vection term. The potential symmetries for the exact equation with respect to
the second conservation law are classified. It is found that these exist only in
the linear case. It is further shown that no nontrivial approximate potential
symmetries of order one exists for the perturbed equation with respect to the
other conservation law.

1. INTRODUCTION

Certain nonlinear PDEs that arise in applications depend on a small param-
eter. Thus it is of importance to find approximate solutions. Baikov et al
( [1], [2], [3]) developed the theory and applications of the approximate sym-
metry group method to find approximate invariant solutions of DEs amongst
other things.
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We consider the nonlinear diffusion equation with a perturbed convection
term, viz.,

(1.1) ut = (k(u)ux)x + ε(f(u))x,

where k and f are as yet arbitrary functions of u. This equation arises in several
applications, e.g. in the modelling of the evolution of thermal waves in plasma
[7].

The approximate potential symmetries with respect to the usual conservation
law of equation (1.1) are obtained in Kara et al [6] and the corresponding ap-
proximate group-invariant solutions are also derived in the reference just cited.

Firstly, we investigate the conservation laws of equation (1.1) and this in turn
is utilised to study the approximate potential symmetries of equation (1.1) with
respect to the second conservation law.

2. CONSERVATION LAWS

We use the direct method (see e.g. Kara and Mahomed [5]) to derive the
conservation laws of the perturbed equation (1.1). To that end, equation (1.1)
has an obvious conserved vector T with components

T 1 = u, T 2 = −k(u)ux − εf(u).

The other first-order in the derivatives conservation laws are determined from
DtT

1 +DxT
2 = 0 which upon expansion and separation gives
T 1 = A(t, x)u+B(t, x),
T 2 = −k(u)uxA(t, x) − εf(u)A(t, x) + Ax

∫
k(u)du + C(t, x), where

A,B and C satisfy

Atu− εf(u)Ax + Axx

∫
k(u)du+Bt + Cx = 0.

An additional conservation law arises in the following cases:

(a) k(u) 6= const., f(u) = f1u+ f2,
T 1 = (x+ εf1t)u,
T 2 = (−k(u)ux − εf1u− εf2)(x+ εf1t) +

∫
k(u)du+ εf2x,

(b) k(u) 6= const., f(u) = f1
∫
k(u)du+ f2u+ f3, f1 6= 0

T 1 = u exp(εf1x+ ε2f1f2t),
T 2 = (−k(u)ux − εf2u) exp(εf1x+ ε2f1f2t),
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(c) linear case, k(u) = k0, f(u) = f1u+ f2

T 1 = Au+B,
T 2 = −k0uxA− ε(f1u+ f2)A+ k0Axu+ C,

where A, B and C are constrained by

At − εf1Ax + k0Axx = 0,

−εf2Ax +Bt + Cx = 0.

3. POTENTIAL SYMMETRIES WITH RESPECT TO THE SECOND CONSERVATION LAW

We calculate the potential symmetries with respect to the second conservation
law of the unperturbed equation of equation (1.1), viz.,

(3.1) ut = (k(u)ux)x.

The potential symmetries of equation (3.1) with respect to the usual conser-
vation law are given in [4]. We use the results of the previous section. Equation
(3.1) written in terms of the Case (a) conservation law of Section 2 is (take
ε = 0) DtT

1 +DxT
2 = 0, where

T 1 = xu,

T 2 = −k(u)xux +

∫
k(u)du.

The associated auxiliary system S{x, t, u, v} is given by

vx = xu,

vt = xk(u)ux −
∫
k(u)du.(3.2)

Suppose S{x, t, u, v} admits a local Lie group of transformations with infini-
tesimal generator

X = ξ1(t, x, u, v)
∂

∂t
+ ξ2(t, x, u, v)

∂

∂x
+ η1(t, x, u, v)

∂

∂u
+ η2(t, x, u, v)

∂

∂v

and in the extended form

X [1] = X + ς1t
∂
∂ut

+ ς1x
∂
∂ux

+ ς2t
∂
∂vt

+ ς2x
∂
∂vx

= ξ1 ∂
∂t

+ ξ2 ∂
∂x

+ η1 ∂
∂u

+ η2 ∂
∂v

+ ς1t
∂
∂ut

+ ς1x
∂
∂ux

+ ς2t
∂
∂vt

+ ς2x
∂
∂vx
,
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where the coefficients are given by

(3.3)
ς1t = Dtη

1 − utDtξ
1 − uxDtξ

2

= η1t + utη
1
u + vtη

1
v − utξ1t − (ut)

2 ξ1u − utvtξ1v − uxξ2t
−uxutξ2u − uxvtξ2v ,

(3.4)
ς1x = Dxη

1 − utDxξ
1 − uxDxξ

2

= η1x + uxη
1
u + vxη

1
v − utξ1x − utuxξ1u − utvxξ1v − uxξ2x

− (ux)
2 ξ2u − uxvxξ2v ,

(3.5)
ς2t = Dtη

2 − vtDtξ
1 − vxDtξ

2

= η2t + utη
2
u + vtη

2
v − vtξ1t − vtutξ1u − (vt)

2 ξ1v − vxξ2t
−vxutξ2u − vxvtξ2v ,

(3.6)
ς2x = Dxη

2 − vtDxξ
1 − vxDxξ

2

= η2x + uxη
2
u + vxη

2
v − vtξ1x − vtuxξ1u − vtvxξ1v − vxξ2x

−vxuxξ2u − (vx)
2 ξ2v .

We have the following invariance criterion

X [1] (vx − xu)
∣∣
{vx=xu,vt=xk(u)ux−∫ k(u)du} = 0,

(3.7) X [1]

(
vt − xk(u)ux +

∫
k(u)du

)∣∣∣∣
{vx=xu,vt=xk(u)ux−∫ k(u)du} = 0.

Equations (3.7) give rise to the system of determining equations

(3.8) ς2x − ξ2u− xη1 = 0,

and

(3.9) ς2t − ξ2k(u)ux − xη1k′(u)ux + k(u)η1 − xk(u)ς1x = 0,

on the solutions of (3.1). These equations (3.8) and (3.9) give rise to the system

ξ1u = 0,

ξ2u − xk(u)ξ1v = 0,

η2u − xk(u)ξ1x − x2uk(u)ξ1v − xuξ2u = 0,

η2u + xk(u)ξ1x + x2uk(u)ξ1v − xuξ2u = 0,
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η2x + xuη2v + ξ1x

∫
k(u)du+ xuξ1v

∫
k(u)du− xuξ2x

−x2u2ξ2v − ξ2u− xη1 = 0,

xk(u)η2v − xk(u)ξ1t + 2xk(u)ξ1v

∫
k(u)du− k(u)ξ2

−xk′(u)η1 − xk(u)η1u + xk(u)ξ2x = 0,

η2t − η2v
∫
k(u)du+ ξ1t

∫
k(u)du− ξ1v(

∫
k(u)du)2 − xuξ2t

+xuξ2v

∫
k(u)du+ k(u)η1 − xk(u)η1x − x2uk(u)η2v = 0.(3.10)

The solution of the first four equations of (3.10) is straightforward and yields

ξ1 = α(t),

ξ2 = β(t, x, v),

η2 = γ(t, x, v).(3.11)

The substitution of (3.11) into the fifth equation of (3.10) results in

(3.12) η1 = x−1γx + uγv − uβx − xu2βv − x−1βu.

The sixth and seventh equations of (3.10), taking into account (3.11) and
(3.12), then gives

k(u)[2xβx − xα̇ + 2x2uβv]

+k′(u)[−γx − xuγv + xuβx + uβ + x2u2βv] = 0,(3.13)

γt − γv
∫
k(u)du+ α̇

∫
k(u)du− xuβt + xuβv

∫
k(u)du

+k(u)[2x−1γx + uγv − γxx − 2uxγxv + xuβxx − 2x−1uβ(3.14)

+2x2u2βxv − x2u2γvv + x3u3βvv + xu2βv] = 0.

For arbitrary k(u), the principal Lie algebra of the potential system (3.2) is ob-
tained by analysing equations (3.13) and (3.14). Equation (3.13), for arbitrary
k(u), gives

β =
α̇

2
x, γ = α̇v + b1(t)
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and (3.14) further results in

α = a1t+ a2,

β =
a1
2
x,

γ = a1v + a3,

where the ais are constants. Thus, the principal algebra is spanned by

X1 =
∂

∂t
,

X2 =
∂

∂v
,

X3 = 2t
∂

∂t
+ x

∂

∂x
+ 2v

∂

∂v
(3.15)

and is hence three-dimensional. We now investigate when the principal algebra
extends. An extension of this algebra occurs if k(u) satisfies

(3.16) k(u)(a+ 2bu) + k′(u)(c+ du+ bu2) = 0,

where a to d are constants not all zero. In order to obtain further simplification
of (3.16) we look at equivalence transformations of equation (3.1).

4. EQUIVALENCE TRANSFORMATIONS

We write equation (3.1) as the system

(4.1) ut = kuu
2
x + kuxx,

(4.2) kt = kx = 0,

in which u and k are dependent variables in the (t, x) and (t, x, u) spaces respec-
tively. The generator of the group of equivalence transformations is

Y = ξ1
∂

∂t
+ ξ2

∂

∂x
+ η

∂

∂u
+ ςt

∂

∂ut
+ ςx

∂

∂ux

+ µ
∂

∂k
+ µu

∂

∂ku
+ µt

∂

∂kt
+ µx

∂

∂kx
,(4.3)
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where ςt and ςx are the usual prolongations as before and (we have set kt = kx =

0)

µt = D̃tµ− kuD̃tη,

µx = D̃xµ− kuD̃xη,

µu = D̃uµ− kuD̃uη,(4.4)

with the total derivatives given by

D̃t =
∂

∂t
+ kt

∂

∂k
+ · · · ,

D̃x =
∂

∂x
+ kx

∂

∂k
+ · · · ,

D̃u =
∂

∂u
+ ku

∂

∂k
+ · · · .(4.5)

The application of Y on (4.2) (subject to (4.1) and (4.2)) yields

µt − kuηt = 0,

µx − kuηx = 0.

These relations imply that

(4.6) µ = µ(u, k), η = η(u).

The action of Y on equation (4.1), taking into account conditions (4.6), gives
rise to the determining equation

ηuut − ξ1t ut − ξ1uu2t − ξ2t ux − ξ2uutux − u2x(µu + kuµk − kuηu)

− 2kuux(ηuux − ξ1xut − ξ1uutux − ξ2xux − ξ2uu2x)− µuxx(4.7)

− k[ηuuu
2
x + ηuuxx − ξ1xxut − 2ξ1xuutux − ξ1uuutu2x − ξ1uutuxx − ξ2xxux − 2ξ2xuu

2
x

− ξ2uuu
3
x − ξ2uuxuxx − 2ξ1xutx − 2ξ1uuxutx − 2ξ2xuxx − 2ξ2uuxuxx] = 0.

The substitution of equation (4.1) into equation (4.7) and separation results
in the following system of equations
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ξ1x = ξ1u = 0,

ξ2u = 0,

µ+ kξ1t − 2kξ2x = 0,

2ξ2x − ξ1t − µk = 0,

µu + kηuu = 0,

−ξ2t + kξ2xx = 0.(4.8)

The solution of system (4.8) is

ξ1 = c1 + c2t,

ξ2 = c3 + c4x,

η = c5 + c6u,

µ = k(2c4 − c2),(4.9)

where the cis are constants. Hence, the generators of the equivalence group are

Y1 =
∂

∂t
,

Y2 =
∂

∂x
,

Y3 = t
∂

∂t
− k ∂

∂k
,

Y4 = x
∂

∂x
+ 2k

∂

∂k
,

Y5 =
∂

∂u
,

Y6 = u
∂

∂u
.(4.10)

The one-parameter groups corresponding to each Yi are (ais are the group pa-
rameters)



PERTURBED DIFFUSION EQUATION: SECOND CONVERSATION LAW 2619

t̄ = t+ a1, x̄ = x, ū = u, k̄ = k,

t̄ = t, x̄ = x+ a2, ū = u, k̄ = k,

t̄ = t, x̄ = x, ū = u+ a3, k̄ = k,

t̄ = t, x̄ = x, ū = u exp a4, k̄ = k,

t̄ = t exp a5, x̄ = x, ū = u, k̄ = k exp(−a5),

t̄ = t, x̄ = x exp a6, ū = u, k̄ = k exp(2a6).(4.11)

The composition of the one-parameter groups (4.11) is the six-parameter equiv-
alence group:

t̄ = t exp a5 + a1, x̄ = x exp a6 + a2,

ū = u exp a4 + a3, k̄ = k exp(2a6 − a5).(4.12)

5. CLASSIFICATION

Under the equivalence transformations (4.12), equation (3.16) has the same
differential structure, where the coefficients ā to d̄ are connected with a to d by
the relations

ā = (a+ 2ba3) exp a4,

b̄ = b exp(2a4),

c̄ = c+ da3 + ba23,(5.1)

d̄ = (d+ 2ba3) exp a4.

Relations (5.1) are used to obtain non-equivalent forms of k. Two cases arise.
We consider each in turn.

1) b 6= 0

(i) If d− a = 0, then equation (3.16) takes the form

(5.2) 2ku+ ku(δ + u2) = 0, δ = ±1.

(ii) If d− a 6= 0, then equation (3.16) has the form

(5.3) 2k + ku(δ + u) = 0, δ = ±1,
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or

(5.4) 2ku+ ku(ν + δu+ u2) = 0, δ = ±1, ν = const. 6= 0.

(2) b = 0

(i) If d 6= 0, then equation (3.16) has the form

(5.5) uku − νk = 0, ν = const.

(ii) If d = 0, c 6= 0, then equation (3.16) takes the form

(5.6) ku − δk = 0, δ = ±1.

Thus, there are five forms for k each obtained by solving equations (5.2) to
(5.6). In fact, we have the following:

(1) k(u) = k1(δ + u2)−1,

(2) k(u) = k1(δ + u)−2,

(3) k(u) = k1 exp[−
∫

2u

ν + δu+ u2
du], ν = const. 6= 0,

(4) k(u) = k1u
ν , ν = const.,

(5) k(u) = k1 exp(δu),

where k1 is a nonzero constant and δ = ±1. We substitute each of the ks above
into equations (3.13) and (3.14) to obtain an extension of the three-dimensional
principal Lie algebra.

For Case (1), we do not obtain an extension of the principal algebra. Indeed
if we substitute k(u) of Case (1) into (3.13) we get

(δ + u2)[2xβx − xα̇ + 2x2uβv]− 2u[−γx − xuγv + xuβx + uβ + x2u2βv] = 0.

Separation and solution of the resultant equations give

β =
α̇

2
x, γ = α̇v + a(t).

Then equation (3.14) constrains α and a to be

α = c1t+ c2, a = c3.
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Hence,
ξ1 = c1t+ c2,

ξ2 = c1
2
x,

η1 = 0,

η2 = c1v + c3,

which yields the operators for the principal algebra. Likewise Cases (2) and (3)
also yield the principal algebra.

Extensions of the principal algebra occurs for Cases (4) and (5). We provide
the extensions.
(4)

(i) k = k1

X4 = u
∂

∂u
+ v

∂

∂v
,

X5 = 4k1t
2 ∂

∂t
+ 4txk1

∂

∂x
− (2v + x2u)

∂

∂u
− (x2 − 2tk1)

∂

∂v
,

Xc = x−1cx
∂

∂u
+ c

∂

∂v
,

ct + 2x−1k1cx − k1cxx = 0.

(ii) k = k1u
−2

X4 = x
∂

∂x
− u ∂

∂u
+ v

∂

∂v
.

(iii) k = k1u
−1

X4 =
−x
2

∂

∂x
+ u

∂

∂u
− k1t

∂

∂v
.

(iv) k = k1u
−4/3

X4 = 4t
∂

∂t
+ 3u

∂

∂u
+ 3v

∂

∂v
,

X5 = x2
∂

∂x
− 3xu

∂

∂u
.

(v) k = k1u
ν , ν 6= 0,−1,−2,−4/3

X4 = −νt ∂
∂t

+ u
∂

∂u
+ v

∂

∂v
.
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(5) k = k1 exp(δu)

X4 = δt
∂

∂t
− ∂

∂u
− x2

2

∂

∂v
.

Only for Case 4(i) which corresponds to the linear case do we obtain a non-
trivial potential symmetry, viz., X5. All the other symmetries in all the other
cases give trivial potential symmetries.

In view of the preceding discussion, we have the following theorem.

Theorem 5.1. Equation (3.1), with respect to the second conservation law, has
nontrivial potential symmetry only for the linear case.

The above results are quite different from those in [4].

6. APPROXIMATE POTENTIAL SYMMETRY WITH RESPECT TO THE SECOND

CONSERVATION LAW

We now investigate the approximate potential symmetries of (1.1) with re-
spect to the second conservation law given in Section 2. There are three cases
to consider since there are three cases of conservation laws (see Section 2) for
different ks and fs. We write the corresponding auxiliary system for each case.

(a) k(u) 6= const., f(u) = f1u+ f2,

vx = (x+ εf1t)u,

vt = (k(u)ux + εf1u+ εf2)(x+ εf1t)−
∫
k(u)du− εf2x.

(b) k(u) 6= const., f(u) = f1
∫
k(u)du+ f2u+ f3, f1 6= 0

vx = u exp(εf1x+ ε2f1f2t),

vt = (k(u)ux + εf2u) exp(εf1x+ ε2f1f2t),

(c) linear case, k(u) = k0, f(u) = f1u+ f2

vx = Au+B,

vt = k0uxA+ ε(f1u+ f2)A− k0Axu− C,
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where A and B are constrained by

At − εf1Ax + k0Axx = 0,

−εf2Ax +Bt + Cx = 0.

In Cases (a) and (b), it is clear that there is no nontrivial first-order approxi-
mate symmetry as the potential systems in each of these cases is of higher order
than ε.

In Case (c), we choose the simplest system, viz. we set k0 = 1, f1 = 1, f2 = 0

and A = A(x). We find that

vx = exp(εx)u,

vt = (ux + εu) exp(εx) + εu exp(εx).

This potential system also has higher than one ε terms. In fact, in general,
Case (c) gives potential systems which are of higher order than ε. Hence, in
Case (c) there is no nontrivial first-order approximate potential symmetry.

The results obtained here are distinct from those that appear in [6].

In view of our discussions, we can state the following result.

Theorem 6.1. The perturbed equation (1.1), with respect to the second conserva-
tion law, has no nontrivial first-order approximate potential symmetry.

7. CONCLUDING REMARKS

We have shown that the exact equation (3.1) with respect to the second con-
servation law has no nontrivial potential symmetry except in the linear case.
This is quite distinct from the potential symmetries obtained for the same equa-
tion in [4] with respect to the usual conservation law. Then finally, we showed
that no first-order approximate symmetry for equation (1.1) with respect to the
second conservation law exists. This can easily be contrasted with the results
obtained in [6] - they are distinct.
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