ADV MATH SCI JOURNAL Advances in Mathematics: Scientific Journal **10** (2021), no.5, 2625–2630 ISSN: 1857-8365 (printed); 1857-8438 (electronic) https://doi.org/10.37418/amsj.10.5.25

EXCELLENCE ON NEIGHBORHOOD DISTINGUISHING COLORING

R. Ramar

ABSTRACT. Given a simple graph G, a Neighborhood distinguishing coloring (ND-coloring) [4] is a proper coloring of vertices such that the codes for the vertices determined by the color partition are distinct for distinct vertices. Let $\pi = \{V_1, V_2, \ldots, V_k\}$ be a proper color partition of a simple graph G. Fixing this order of π , for each $u \in V(G)$, we assign a code denoted by C(u) (or $C_{\pi}(u)$) as $C(u) = \{|N(u) \cap V_i|, i = 1, 2, \ldots, k\}$. Then π is called a Neighborhood Distinguishing Coloring partition (abbreviated as NDC-partition) if $C(u) \neq C(v)$ for all distinct $u, v \in V$. Also, the Graph G is called a Neighborhood Distinguishing Coloring partition of a graph G is called "Neighborhood Distinguishing coloring partition of a graph G is called "Neighborhood Distinguishing Coloring Number of G" and it is denoted by $\chi_{NDC}(G)$. In this papar the Excellence of Neighborhood distinguishing coloring graphs has been studied.

1. INTRODUCTION

Irregular coloring(ir-coloring) has been introduced by Mary Radcliffe and Ping Zhang in [2, 3]. If $c: V(G) \rightarrow \{1, 2, ..., k\}$ is a proper coloring of a graph G where k is a positive integer, then the color code of vertex v of G with respect to c is the ordered $(k + 1) - tuple = (a_0, a_1, a_2, ..., a_k)$ where a_0 is the color

²⁰²⁰ Mathematics Subject Classification. 05C15.

Key words and phrases. Neighborhood distinguishing coloring, Neighborhood distinguishing color code, Neighborhood distinguishing coloring number, Excellence of NDC-graph.

R. Ramar

assigned to v (ie., c(v)) and a_i is the number of vertices adjacent to v which are colored with $i, 1 \le i \le k$. c is called irregular coloring if distinct vertices have distinct color codes with respect to c. The irregular chromatic number denoted by $\chi_{ir}(G)$ is the minimum positive integer k for which G has an irregular k - coloring. For any simple graph G, ir-coloring exists but ND-coloring is not guaranteed. For example, $K_{1,n}$ does not admit ND-coloring. It has been proved in [4] that ND-coloring exists in a graph G if and only if the neighborhoods of any two non-adjacent vertices of G are distinct.

2. MAIN RESULTS

Definition 2.1. *Excellent NDC-Graphs* Let G be a simple graph. A vertex $u \in V(G)$ is said to be χ_{NDC} - good if there exists a χ_{NDC} - partition π such that $\{u\} \in \pi$. Otherewise, u is said to be χ_{NDC} - bad. G is said to be χ_{NDC} - excellent if every vertex of G is χ_{NDC} - good.

Example 1. (i) K_n is χ_{NDC} -excellent.

- (ii) nK_2 is χ_{NDC} excellent.
- (iii) K_{r,sK_2} is χ_{NDC} excellent.
- (iv) Consider C_9 . Let $\pi = \{\{1,3\}, \{2,4\}, \{5,7\}, \{6,8\}, \{9\}\}\}$. Then π is a χ_{NDC} -partition of C_9 . Since C_9 is regular, we can obtain χ_{NDC} -partitions with any vertex appearing as a singleton. Hence C_9 is χ_{NDC} -excellent.
- (v) C_5 is χ_{NDC} -excellent, since $\pi = \{\{1,3\},\{2,4\},\{5\}\}$ is a χ_{NDC} -partition of C_5 and it is regular.
- (vi) There are values for n such that C_n is not χ_{NDC} excellent. For example, C_{16}, C_{20} are not χ_{NDC} excellent.
- (vii) Let G =

 $\pi_1 = \{\{1,5\},\{2,3\},\{4\}\} \text{ and } \pi_2 = \{\{1,4\},\{3,5\},\{2\}\} \text{ are NDC-partitions of } V(G).$ Therefore, $\chi_{NDC}(G) \leq 3$. $\chi_{NDC}(G)$ is always greater than

2626

or equal to 2. If $\chi_{NDC}(G) = 2$ then G is bipartite. Here, G is not bipartite as G contains a triangle. Therefore, $\chi_{NDC}(G) = 3$. There is no χ_{NDC} -partition containing {3}, since the possible partitions containing {3} are {{1,5}, {2,4}, {3}} and {{1,4}, {2,5}, {3}}. Both are not χ_{NDC} partitions. Therefore, G is not χ_{NDC} - excellent.

Theorem 2.1. Let $G(\neq K_2)$ be a graph with $\chi_{NDC}(G) = 2$. Then G is not χ_{NDC} - excellent.

Proof. Since $\chi_{NDC}(G) = 2$, *G* is bipartite and either the partite sets are equal or they differ in cardinality exactly by 1.

Case (i): Let V_1 and V_2 be the partite sets of G. Let $|V_1| = |V_2|$. If $|V(G)| \ge 4$ then any χ_{NDC} - partition of V(G) contains an element of cardinality n - 1(n > 4) if that partition contains a singleton. This is not possible since any n - 1 element set of V(G) is not independent. Therefore, $|V(G)| \le 2$. Since V(G) is even, $|V_1| = |V_2| = 1$, $G = K_2$, a contradiction. **Case (ii):** Let $|V_2| = |V_1|+1$. Then V_2 contains an isolate and every element u_i of V_1 as well as v_j of V_2 , $1 \le i, j \le k$ has k - i + 1 neighbors. Since $\chi_{NDC}(G) = 2$, any χ_{NDC} - partition of V(G) containing a singleton will contain an elements of cardinality $n-1(n \ge 2)$. If $n \ge 3$ then the isolated vertex cannot appear as a singleton.

Therefore, from case(i) and case(ii) G is not χ_{NDC} - excellent if $G \neq K_2$.

Remark 2.1.

- (i) χ_{NDC} excellent graphs have no isolates.
- (ii) Let T be a tree such that each support vertex has exactly one pendant vertex. Then, T is not χ_{NDC} – excellent.

Proof. Let *T* be a tree satisfying the coditions of hypothesis. Let *v* be a pendant vertex of *u* in *T*. Let *w* be adjacent with *u*. Since *w* is not a pendant vertex, *w* is adjacent with some vertex say $y \neq v$ in *T*. Let $\pi = \{\{v, w\}, \{u\}, \{y\}, \ldots\}$. The codes of *u*, *v* and *w* with respect to π are,

$$C_{\pi}(u) = (2, 0, 0, \ldots),$$

 $C_{\pi}(v) = (0, 1, 0, \ldots),$
 $C_{\pi}(w) = (0, 1, 1, \ldots).$

Let z be any vertex. Since w is not a pendant vertex of u, w is adjacent with some vertex say y. Therefore, w has a 1 in some place of π . The code of z with

R. Ramar

respect to $\{v, w\}$ is either 1 or 0 according as z is adjacent with w or not. If z is adjacent with w then the code of z with respect to $\{v, w\}$ is 1 and hence different from the code of u, v and w with respect to $\{v, w\}$. If z is not adjacent with w, then the code of z with respec to $\{v, w\}$ is 0. If z is adjacent with u then z has code 1 with respect to $\{u\}$ and hence different from the codes of u, v and w with respect to first two places. If z is not adjacent with u, then the code of z in the first two places are 0 and hence different from u, v and w. Thus, if there exists a NDC-partition in which $\{v\}$ appears then there exists another NDC-partition with lesser cardinality in which v is combined with some other vertex. Thus in any χ_{NDC} -partition of T, v does not belong to the partition as a singleton. Therefore, T is not χ_{NDC} -excellent.

Remark 2.2. Let $G = tK_2$, $t \ge 2$. Then G is χ_{NDC} – excellent and $\delta(G) = 1$. There also exist connected graphs like P_5 , P_9 and P_{13} which are χ_{NDC} – excellent and in these graphs $\delta(G) = 1$.

Theorem 2.2. Suppose G_1 and G_2 are two graphs such that $\chi_{NDC}(G_1 \cup G_2) = Max\{\chi_{NDC}(G_1), \chi_{NDC}(G_2)\}$. Then, $G_1 \cup G_2$ is not $\chi_{NDC} - excellent$.

Proof. Suppose $G_1 \cup G_2$ is $\chi_{NDC} - excellent$. Let $v \in V(G_1)$. Then, there exists a $\chi_{NDC} - partition$ of $G_1 \cup G_2$ such that $\{v\}$ is an element of that partition. Let $\pi = \{\{v\}, V_2, \ldots, V_k\}$ be a $\chi_{NDC} - partition$ of $G_1 \cup G_2$ where $k = \chi_{NDC}(G_1 \cup G_2) = \chi_{NDC}(G_2)(say)$. Let $\pi_2 = \{V_2 - V(G_1), \ldots, V_k - V(G_1)\}$. Then π_2 is a $\chi_{NDC} - partition$ of G_2 , a contradiction, since $\chi_{NDC}(G_2) = k$. Therefore, $G_1 \cup G_2$ is not $\chi_{NDC} - excellent$.

Conjecture 1. P_n is $\chi_{NDC} - excellent$ for $n \ge 5$.

Remark 2.3. Let G be a graph with $\chi_{NDC}(G) > \frac{n}{2}$. Then any χ_{NDC} -partition of G contains a singleton element.

Proof. Given $\chi_{NDC}(G) > \frac{n}{2}$. If each element of a χ_{NDC} -partition contains atleast 2 elements, then the total number of vertices is greater than n, a contradiction.

Theorem 2.3. Let G be a vertex transitive graph with $\chi_{NDC}(G) > \frac{n}{2}$. Then G is $\chi_{NDC} - excellent$.

Proof. From the previous remark, there exists a χ_{NDC} -partition containing a singleton say $\{u\}$. since G is vertex transitive, for any v in V(G) there exists a

2628

 χ_{NDC} -partition such that $\{v\}$ is an element of that partition. Hence the theorem.

Theorem 2.4. If $\chi_{NDC}(G) = n$ then G as well as $\mu(G)$ are $\chi_{NDC} - excellent$.

Proof. Since $\chi_{NDC}(G) = n$, every vertex is a singleton in the unique χ_{NDC} partition of G. Since $\chi_{NDC}(\mu(G)) = n + 1$, any vertex u' as well as v in $\mu(G)$ can
be made to lie as a singlton in a χ_{NDC} -partition of $\mu(G)$.

Remark 2.4. Since $\chi_{NDC}(K_n)$, $\chi_{NDC}(nK_2)$ and $\chi_{NDC}(K_{r,sK_2})$ are equal to the order of the respective graphs, $\chi_{NDC}(\mu(G))$ is χ_{NDC} -excellent when G is any one of these graphs.

Theorem 2.5. Let G be a graph of order $n \ge 2$ admitting NDC. Then, G^+ is not $\chi_{NDC} - excellent$.

Proof. Let $V(G) = \{v_1, v_2, \ldots, v_n\}$ and $V(G^+) = \{v_1, v_2, \ldots, v_n, v'_1, v'_2, \ldots, v'_n\}$. Suppose v'_i appears as a singleton in a χ_{NDC} -partition of G. For any v_j, v_k , $\{v_j, v_k\}$ cannot appear in any χ_{NDC} -partition of G^+ , since in that case v'_j and v'_k will have the same code. Hence no χ_{NDC} -partition can contain v'_i as a singleton. Thus, G^+ is not χ_{NDC} - excellent.

Theorem 2.6. $K_{m,m} - 1F$ is $\chi_{NDC} - excellent$.

Proof. Let $G = K_{m,m} - 1F$. Let $V(G) = \{u_1, u_2, \dots, u_m, v_1, v_2, \dots, v_m\}$ and $E(G) = \{u_i v_j, 1 \le i, j \le m\} - \{u_i v_i, 1 \le i \le m\}$. We know that, $\chi_{NDC}(G) = m + 2$, theorem 3.3.1. Let $\pi = \{\{u_1, v_1\}, \{u_2, v_2\}, \dots, \{u_{m-2}, v_{m-2}\}, \{u_{m-1}\}, \}$

 $\{v_{m-1}\}, \{u_m\}, \{v_m\}\}$. Then, π is a χ_{NDC} -partition of G. Hence u_{m-1}, u_m, v_{m-1} and v_m are χ_{NDC} -good vertices in G. Since G is symmetric, it follows that every vertex of G is χ_{NDC} -good. Therefore, G is χ_{NDC} -excellent.

Theorem 2.7. Let $m \ge 4$. H_m is not χ_{NDC} -excellent.

Proof: Let H_m be the graph obtained by $Haj\delta s$ construction from two copies of K_m . Let the vertex set of one of the copies be $\{u_1, u_2, \ldots, u_m\}$ and that of the other be $\{v_1, v_2, \ldots, v_m\}$. Let u_1 and v_1 be identified. Remove u_1u_m and v_1v_m . Join u_m and v_m . Give color C_1 to u_1 and u_m , color C_i to u_i , $2 \le i \le m - 1$. Give the colors C_2 to C_m to v_2 to v_m . Let $\pi = \{\{u_1\}, \{u_2, v_2\}, \{u_3, v_3\}, \ldots, \{u_{m-1}, v_m\}, \{u_m, v_{m-1}\}\}$ be a partition of $V(H_m)$. Let u_1 be adjacent with u_3 and v_3 (without loss of generality). Consider $\{u_3, v_3\}$. $C_{\pi}(u_3) = (1, 1, 0, 1, \ldots, 1, 1) = C_{\pi}(v_3)$.

R. Ramar

Hence π is not a NDC-partition. Therefore, identified vertex can not appear as a singleton in a NDC-partition of H_m . Therefore, H_m is not χ_{NDC} -excellent.

Remark 2.5. H_3 is C_5 and H_2 is K_2 which are χ_{NDC} -excellent.

REFERENCES

- [1] R. DIESTEL: *Graph Theory*, Graduate Texts in Mathematics, **173** (2006), (3rd ed.), Springer-Verlag.
- [2] M. RADCLIFFE, P. ZHANG: Irregular colorings of graphs, Bull. Inst. Combin. Appl., 49 (2007), 41–59.
- [3] M. RADCLIFFE, P. ZHANG: On Irregular Colorings of Graphs, AKCE J.Graphs. Combin., 3, No.2 (2006), 175–191.
- [4] R. RAMAR, V. SWAMINATHAN: *Neighborhood Distinguishing Coloring in Graphs*, Innovations in Incidence Geometry, **13** (2013), 135–140.
- [5] R. RAMAR, V. SWAMINATHAN: *Neighborhood Distinguishing Coloring number of Graphs*, Global journal of Pure and Applied Mathematics, **10-1** (2014), 29–34.
- [6] R. RAMAR: On Neighborhood Distinguishing Colorings of Graphs, Journal of Physics Conference Series, 1597 (2020), art.id.012025.
- [7] SR. I.K. MUDARTHA, V. SWAMINATHAN: A study on partition graphs coloring and excellence, Ph.D Thesis, Madurai Kamaraj University, 2011.

MATHEMATICS UNIT,

UNIVERSITY OF TECHNOLOGY AND APPLIED SCIENCES,

SOHAR, OMAN.

Email address: ramarr.soh@cas.edu.om and rramarmathematics@gmail.com

2630