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ALEXANDROFF SPACES AND GRAPHIC TOPOLOGY

Hanan Omer Zomam, Hakeem A. Othman1, and Makkia Dammak

ABSTRACT. This work studies and gives some conditions for an Alexandroff
space to be graphic topological space by using some basic properties of graphic
topology such as locally finitely property. That is, we offer some answer for the
open problem which is recalled in [3] (Problem 2 page 658).

1. INTRODUCTION

Topologies for discrete set attracted many attentions since the paper of Golomb
[2]. In [4, 6], it was introduced an Alexandroff topology on some graphs, this
means a topology satisfying any intersection of open sets is an open set. The
authors take account that a graph G = (V,E) is connected if and only if it is
connected as topological space. After that, Jafarian Amiri et al. introduce a
topology τG in every locally finite graph G = (V,E), i.e. each vertex in V is
adjacent to a finite number of vertices. The topology τG is an Alexandroff topol-
ogy but mainly the graph G is connected, the topological space (G, τG) can be
disconnected as the complete graph Kn and the cycle graph Cn of size n, for
n ≥ 2.
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The topology τG is defined as follows:
Let G = (V,E) is a simple undirected locally finite graph and with no isolated

vertices, that is for each x ∈ V , there exist y ∈ V such that the edge {x, y} ∈ E,
this means x and y are adjacent (x ∼ y).

Let

N (x) = {y ∈ V ; {x, y} ∈ E}

be the neighborhood of x. Its cardinality is denoted by dG(x) or d(x).
The topology τG on the set V is the topology which has the collection NG as a
subbasis, where NG = {N (x) : x ∈ V }.
We say the pair (G, τG) is a graphic topological space or (G, τG) is topological
graph.

After that, this definition is generalized as follows: A space (X,T ) is said
graphic topological space if there exists a graph G = (X,E) such that T = τG.
The fact that (V, τG) is an Alexandroff space give rise to this open problem, [3]:
are there some conditions for an Alexandroff space to be graphic?

In section 3, we give one answer to the above problem by using subbasis [5].
The organization of this paper is as follows: In section 2 we recall some basic

definitions, notations and preliminaries results. Then, section 3 contains some
examples of graphic topological spaces and one answer to the problem recalled
in [3].

2. BASIC CONCEPTS

In what follows, (X,T ) or X denotes a topological space and G = (V,E) a
simple locally finite graph without isolated vertex. We have the graphic topology
on V and the most interesting property of this topology is that it is an Alexan-
droff topology.

Definition 2.1. A topological space is called Alexandroff space if any intersection
of open sets is also an open set.

Theorem 2.1. [3] Let G be a locally finite graph without isolated vertex and vertex
set V . Then, the topological space (V, τG) is an Alexandroff space.

Definition 2.2. [3] Let (X,T ) be a topological space. X is called graphic, if there
exists a subset E of X ×X such that τG = T , where G = (X,E).
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Since a graphic space has to be Alexandroff space, we begin by recalling some
facts about such topological spaces that will be used later.

A topological space X is an Alexandroff space if and only if each point of X
has a minimal open neighborhood S(x). In this case, S(x) is the intersection of
all open subset containing x. It is shown in [7] that the study of an Alexandroff
space is based on the study of the minimal open neighborhoods and {S(x);x ∈
X} is a minimal basis for T . Also, if two minimal basis are equal for a space X,
then the corresponding topologies coincide.

We recall also the following interesting results.

Theorem 2.2. [7] Suppose that B is a collection of subsets ofX and for any x ∈ X,
there exists a minimal set m(x) ∈ B which contains x. Then, B is a basis for an
Alexandroff topology on X. Also, the minimal open neighborhood of x ∈ X is
m(x).

Now, set V a vertex set of a graph G equipped with the graphic topology τG.
For each x ∈ V , we denote O(x) the minimal open subset containing x and

αG = {O(y) | y ∈ V }

a basis of the space (V, τG). In fact, it is the minimal one.

Proposition 2.1. [3] Assume that G = (V,E) is a locally finite graph without
isolated vertex. Then, for all x ∈ V ,

O(x) = ∩y∼xN (y).

And so O(x) is finite, for all x ∈ V .

For completeness we recall the following corollary and give its proof.

Corollary 2.1. If we consider G = (V,E) a locally finite graph without isolated
vertex. Then, for all x, y ∈ V , y ∈ O(x) if and only if N (x) ⊆ N (y).

Proof. From Proposition 2.1, y ∈ O(x) equivalent to y ∈ ∩z∼xN (z), that is y ∈
N (z) for all z ∈ N (x).

So, y ∈ O(x) if and only if for all z ∈ N (x), z ∈ N (y) and the corollary
follows. �
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Proposition 2.2. [3] For any G = (V,E) a locally finite graph without isolated
vertex and z ∈ V . Then

O(z) ⊆ {z} ∪ {y ∈ V ; d(z, y) = 2}

and so

(i) O(z) ∩N (z) = ∅.
(ii) N (z) ⊆ O(z)c.
(ii) If z ∼ y, then O(z) ∩ O(y) = ∅.

Example 1. Consider the following graph G1 = (V,E1).

FIGURE 1.

In this graph, NG1 = {{2, 3}, {1, 3}, {1, 2, 4}, {3}}, the minimal basis is αG1 =

{{1}, {2}, {3}, {1, 2, 4}} and

τG1 = {∅, {1}, {2}, {3}, {1, 2, 4}, {2, 4}, {2, 3}, {3, 4}, {1, 2, 3}, V }.

Example 2. Consider the following graph G2 = (V,E2).

FIGURE 2.
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In this graph, NG2 = {{2, 3, 4}, {1, 3, 4}, {1, 2, 4}, {2, 3}} and the minimal basis
is αG2 = {{1, 4}, {2}, {3}, {4}}. So,

τG2 = {∅, {2}, {3}, {4}, {1, 4}, {2, 3}, {3, 4}, {2, 4}, {1, 2, 4}, {1, 3, 4}, {2, 3, 4}, V }.

Example 3. Consider the following graph G3 = (V,E3).

FIGURE 3.

NG1 = {{2}, {1, 3, 4}, {2, 4}, {2, 3}} and the minimal basis is

αG3 = {{1, 3, 4}, {2}, {3}, {4}},

τG3 = {∅, {2}, {3}, {4}, {1, 3, 4}, {2, 4}, {2, 3}, {3, 4}, {2, 3, 4}, V }.

We remark that there is a bijective correspondence between τG1 and τG3 and
this is due to the fact that there is an isomorphism between the two graphs.

Definition 2.3. Two graphs G1 = (V1, E1) and G2 = (V2, E2) are said isomorphic
if there exists a bijection ψ : V1 → V2 with {x, y} ∈ E1 if, and only if {ψ(x), ψ(y)} ∈
E2.

Definition 2.4. Let (X1, T1) and (X2, T2) be two topological spaces. X1 and X2

are called homeomorphic if there exists a bijection ψ : X1 → X2 with ψ and its
inverse ψ−1 are continuous.

When two graphs are isomorphic, the graphic topological spaces are homeo-
morphic. But two homeomorphic graphic space can be not isomorphic. As exam-
ple, The graphic graphG = (V,E) where V = {1, 2, 3, 4} and E = {{1, 2}, {3, 4}}
is homeomorphic to the graphic complete graph of order 4, K4 but they are not
isomorphic.
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3. GRAPHIC SPACES

In this section, we investigate some necessary or sufficient condition for an
Alexandroff space to be graphic.

For (V, T ) an Alexandroff space, β = {S(x);x ∈ V } denotes its minimal basis.
From the Proposition 2.1, we have to suppose that S(x) is finite for all x ∈ V .

When V is finite, we have the following sufficient condition result.

Theorem 3.1. [3] Suppose that (V, T ) is a finite Alexandroff space and for x, y ∈
V ,

S(x) = S(y) or S(x) ∩ S(y) = ∅.
Then, (V, T ) is a graphic space and the neighborhood of an element x is given by

N (x) = {y ∈ V ;S(x) ∩ S(y) = ∅}.

Remark 3.1. In the Theorem 3.1, T = τG and so

αG = B = {S(x);x ∈ V },

since the minimal basis is unique for an Alexandroff space.

Remark 3.2. The Theorem 3.1 still true if we consider (V, T ) an Alexandroff space,
where S(x) is finite for all x ∈ V .

The Theorem 3.1 guides us to recall the following definition introduced in [7].

Definition 3.1. The minimal open neighborhood S(x) in an Alexandroff space is
called irreducible if S(y) = S(x) whenever S(y) ⊂ S(x).

Theorem 3.2. Let (V, T ) be nontrivial Alexandroff space. If for all x ∈ V , S(x) is
finite and irreducible, then (V, T ) is a graphic.

Proof. Let x and y two elements of V . Suppose that S(x) ∩ S(y) 6= ∅ and let
z ∈ S(x)∩S(y). Then, S(z) ⊆ S(x) and S(z) ⊆ S(y) and so S(z) = S(x) = S(y).
From Theorem 3.1 and the Remark 3.2, we conclude that (V, T ) is a graphic
space. �

Example 4. Let (V, T ) be an Alexandroff space such that V = {1, 2, 3, 4, 5, 6} and

τ = {∅, V, {2}, {3}, {2, 3}, {1, 3}, {1, 2, 3}, {2, 4, 5, 6}, {2, 3, 4, 5, 6}}.

Not that (V, T ) is graphic topological space which it coincides with a graphic topo-
logical space (V, TG) with the graph G = (V,E).
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FIGURE 4.

Also not that S(1) = {1, 3}, S(2) = {2}, S(3) = {3} and S(4) = S(5) = S(6) =

{2, 4, 5, 6}.
We observe that (V, T ) is graphic but S(6) is not irreducible, since S(2) ⊂ S(6)

but S(2) 6= S(6).

Remark 3.3.

• In any trivial topological space (V, T ) with finite set V we have that for all
x ∈ V, S(x) is finite and irreducible, since S(x) = V for all x ∈ V .
• Any discrete space (V, T ) with finite set V is graphic, since it will be coincide

with the complete graph K = (V,E)

To study the typical topological spaces, we begin by the following result.

Theorem 3.3. Suppose that (V, T ) is a finite space of order n, n ≥ 2. If there exists
x ∈ V such that |S(x)| = n, then (V, T ) is not a graphic space.

Proof. Suppose that (V, T ) is a graphic space. Then, N (x) ⊆ S(x)c = (V )c = φ,
that is, N (x) = φ. This implies that x is an isolated vertex and this contradicts
with graphically of V . �

Corollary 3.1. Any finite trivial topological space (V, T ) is not a graphic. However,
if (V, T ) is a discrete space, then it is graphic and the graph G can be the complete
graph of order n and vertex set V .

Another interesting type of topological spaces, those which are called Haus-
dorff spaces.

Definition 3.2. A topological space (V, T ) is called Hausdorff space if for any two
elements x, y ∈ V , there exist two disjoint open sets O1 and O2 such that x ∈ O1

and y ∈ O2.
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Theorem 3.4.

(i) If (V, T ) is a finite Hausdorff Alexandroff space, then (V, T ) is graphic
space.

(ii) A finite graphic space (V, τG) is Hausdorff space if, and only if, τG is the
discrete topology on V .

Proof.
(i) Let (V, T ) be a finite Hausdorff Alexandroff space. For all x, y ∈ V , x = y

or x 6= y.
If x 6= y, then there exists two open sets Ox and Oy such that x ∈ Ox, y ∈ Oy

andOx∩Oy = φ. Suppose that S(x) 6= S(y). Since S(x) and S(y) are the minimal
open sets containing x and y, respectfully, then S(x) ⊆ Ox and S(y) ⊆ Oy.
Hence, S(x) ∩ S(y) ⊆ Ox ∩ Oy = ∅ and so S(x) ∩ S(y) = ∅. Therefore, by
Theorem 3.1 (V, T ) is a graphic space.

(ii) Let (V, τG) be a Hausdorff space. We will prove that for all x ∈ V , {x} is
open set, that is S(x) = {x}. Suppose that y ∈ S(x) and x 6= y. Since (V, τG)

is Hausdorff space, then there exists two open set Ox and Oy such that x ∈ Ox,
y ∈ Oy and Ox∩Oy = ∅. Then, S(x)∩S(y) ⊆ Ox∩Oy = ∅, that is, S(x)∩S(y) = ∅.
But this is contradiction, because y ∈ S(y) and y ∈ S(x). Hence, S(x) = {x}
that is, τG is discrete topology.

The converse is trivial. �

Theorem 3.5. Assume that (V, T ) is a finite Alexandroff topological space and
B = {S(x);x ∈ V } its minimal basis. (V, T ) is graphic space if, and only if, there
exists a subbasis N = {Nx;x ∈ V } of β satisfying

(i) For all x ∈ V , x /∈ Nx and Nx 6= ∅.
(ii) x ∈ Ny ⇔ y ∈ Nx.

Proof. Suppose that (V, T ) is a graphic space. Then, there exists a simple graph
G = (V,E) with vertices set V and without isolated point such that τG = T .
Take N = {Nx; x ∈ V }, where Nx = N (x) the neighborhood of x in G. N is a
subbasis of τG by definition of τG. We get

(i) For all x ∈ V , x /∈ N (x) since the graph G is simple and then no loops. G
without isolated node, so Nx 6= ∅, ∀x ∈ V .
(ii) For all x, y ∈ V , x ∼ y equivalent to y ∼ x, that is x ∈ Ny ⇔ y ∈ Nx.
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Conversely, suppose N = {Nx : x ∈ V } is a subbasis of β such that

(i) For all x ∈ V , x /∈ Nx and Nx 6= ∅.
(ii) x ∈ Ny ⇔ y ∈ Nx.

We define G = (V,E) by {x, y} ∈ E if and only if x ∈ Ny. Then,

N (x) = {y ∈ V ; {x, y} ∈ E} = {y ∈ V : y ∈ Nx},

that is N (x) = Nx.
From the hypothesis (i), the graph G is simple and without isolated nodes. As

it is proved in [3], N = {N (x); x ∈ V } is a subbasis of the minimal basis αG

inducing τG. But N is a subbasis of β and so αG = β and so, T = τG and (V, T )

is a graphic space. �

Theorem 3.6. Assume (V, T ) is an Alexandroff space such that S(x) is finite for
all x ∈ V . If for all x 6= y ∈ V, y /∈ S(x) or x /∈ S(y), then (V, T ) is graphic.

Proof. Let x, y ∈ V be two distinct elements of V . We have y /∈ S(x) or x /∈ S(y).
Since y and x play symmetric roles, we can suppose that y /∈ S(x). Then,
y ∈ S(x)

c
.

Therefore, S(x)
c

is open set containing y and so S(y) ⊆ S(x)
c
. Hence,

S(x) ∩ S(y) ⊆ S(x) ∩ S(x)
c
⊆ S(x) ∩ S(x)c = ∅.

That is, S(x) ∩ S(y) = ∅. From Theorem 3.1, (V, T ) is a graphic space. �

4. CONCLUSION

In this paper, we recall some properties of graphic topological spaces and we
give some conditions on a topological space in order to get a graphic topology.
Also, necessary and sufficient conditions on the minimal basis of an Alexandroff
space are given in order to be graphic. That is, we give some answer for the
open problem which is recalled in [3] (Problem 2 page 658).
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