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EXISTENCE OF SOLUTION FOR A VOLTERRA TYPE INTEGRAL EQUATION
USING DARBO-TYPE F-CONTRACTION

Francis Akutsah, Akindele Adebayo Mebawondu, and Ojen Kumar Narain1

ABSTRACT. In this paper, we provide some generalizations of the Darbo’s fixed
point theorem and further develop the notion of F -contraction introduced by
Wardowski in ( [22], D. Wardowski, Fixed points of a new type of contractive
mappings in complete metric spaces, Fixed Point Theory and Appl., 94, (2012)).
To achieve this, we introduce the notion of Darbo-type F -contraction, cyclic
(α, β)-admissible operator and we also establish some fixed point and common
fixed point results for this class of mappings in the framework of Banach spaces.
In addition, we apply our fixed point results to establish the existence of solu-
tion to a Volterra type integral equation.

1. INTRODUCTION AND PRELIMINARIES

The theory of fixed points plays an important role in nonlinear functional
analysis and it is known to be very useful in establishing the existence and
uniqueness theorems of nonlinear differential and integral equations. Banach
[2] in 1922 proved the well celebrated Banach contraction principle in the frame
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work of metric spaces. The importance of the Banach contraction principle can-
not be over emphasized in the study of fixed point theory and its applications.
Due to its importance and fruitful applications, many authors have general-
ized this result by considering classes of nonlinear mappings which are more
general than contraction mappings and in other classical and important spaces
(see [1,12–15,17,20,21] and the references therein). In 2012, Wardowski [22]
introduced a class of mappings called the F -contractions. This class of mappings
is defined as follows:

Definition 1.1. Let (X, d) be a metric space. A mapping T : X → X is said to be
an F -contraction if there exists τ > 0 such that for all x, y ∈ X;

d(Tx, Ty) > 0⇒ τ + F (d(Tx, Ty)) ≤ F (d(x, y)),(1.1)

where F : R+ → R is a mapping satisfying the following conditions:

(F1) F is strictly increasing;
(F2) for all sequences {αn} ⊆ R+, limn→∞ αn = 0 if and only if limn→∞ F (αn) =

−∞;

(F3) there exists k ∈ (0, 1) such that limα→0+ α
kF (α) = 0.

He also established the following result:

Theorem 1.1. Let (X, d) be a complete metric space and T : X → X be an F -
contraction. Then T has a unique fixed point x∗ ∈ X and for each x0 ∈ X, the
sequence {T nx0} converges to x∗.

Remark 1.1. [22] If we suppose that F (t) = ln t, then an F -contraction mapping
becomes the Banach contraction mapping.

It is also worth mentioning that if F (t) = ln t ∀ t ∈ R+, it is easy to see
that conditions (F1) − (F3) are satisfied. On the other hand, if we take F (t) =
−1

t
, ∀ t ∈ R+. It is easy to see that F satisfies conditions (F1) and (F2). We

therefore denote the family of functions that satisfy condition (F1) and (F2) by
F which is lager than the class of functions satisfying (F1)− (F3).

In 2016, Chandok et al. [5] introduced another class of mappings, called the
TAC-contractive and established some fixed point results in the frame work of
complete metric spaces.
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Definition 1.2. Let T : X → X be a mapping and let α, β : X → R+ be two
functions. Then T is called a cyclic (α, β)-admissible mapping, if

(1) α(x) ≥ 1 for some x ∈ X implies that β(Tx) ≥ 1,

(2) β(x) ≥ 1 for some x ∈ X implies that α(Tx) ≥ 1.

Definition 1.3. Let (X, d) be a metric space and let α, β : X → [0,∞) be two
mappings. We say that T is a TAC-contractive mapping, if for all x, y ∈ X,

α(x)β(y) ≥ 1⇒ ψ(d(Tx, Ty)) ≤ f(ψ(d(x, y)), φ(d(x, y))),

where ψ is a continuous and nondecreasing function with ψ(t) = 0 if and only if
t = 0, φ is continuous with limn→∞ φ(tn) = 0⇒ limn→∞ tn = 0 and f : [0,∞)2 →
R is continuous, f(a, t) ≤ a and f(a, t) = a⇒ a = 0 or t = 0 for all s, t ∈ [0,∞).

Theorem 1.2. Let (X, d) be a complete metric space and let T : X → X be a cyclic
(α, β)-admissible mapping. Suppose that T is a TAC contraction mapping. Assume
that there exists x0 ∈ X such that α(x0) ≥ 1, β(x0) ≥ 1 and either of the following
conditions hold:

(1) T is continuous,
(2) if for any sequence {xn} in X with β(xn) ≥ 1, for all n ≥ 0 and xn → x as

n→∞, then β(x) ≥ 1.

In addition, if α(x) ≥ 1 and β(y) ≥ 1 for all x, y ∈ F (T ) (where F (T ) denotes the
set of fixed points of T ), then T has a unique fixed point.

Definition 1.4. A mapping T of a convex set X is said to be affine if it satisfies the
inequality

T (αx+ (1− α)y) ≤ αTx+ (1− α)Ty,
where, x, y ∈ X and 0 < α < 1.

In 1930, Kuratowski [11] introduced the notion of measure of noncompact-
ness. This concept has been used by researchers around the world to establish
the fixed point results for single and multivalued mappings in different abstract
spaces. The notion of noncompactness gives the degree of noncompactness for
bounded sets. It worth mentioning that the concept of noncompactness with
some algebraic concept is useful in establishing the existence of solutions to
some nonlinear problems under some favorable conditions. For example, it is
well-known in the literature that the notion of noncompactness is the very tool
used in establishing the Darbo’s fixed point theorem for noncompact operators.
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The Darbo’s fixed point theorem generalizes the well-known Schauder’s fixed
point theorem. In what follows, we give the axiomatic way of defining the mea-
sure of noncompactness. Suppose thatX is a Banach space and Y any nonempty
subset of X. We use the standard notion αY and Y + Z, with Z ⊂ X to denote
the algebraic operations on sets. More so, the symbol Y , coY and coY denote the
closure, convex hull and convex hull closure of Y respectively. Also, we denote
MX by the family of all nonempty bounded subsets of the space X and by NX
the family of all relatively compact subsets of X.

Definition 1.5. Let MX be the set of all bounded subset of a Banach space X. A
mapping φ : MX → R+ is said to be a measure of noncompactness in X if the
following conditions are satisfied:

(1) The family kerφ = {A ∈ MX : φ(A) = 0} is a nonempty set and kerφ ⊂
NX ;

(2) A ⊂ B ⇒ φ(A) ≤ φ(B);

(3) φ(A) = φ(A);

(4) φ(coA) = φ(A);

(5) For any α ∈ (0, 1), φ(αA+ (1− α)B) ≤ αφ(A) + (1− α)φ(B);

(6) If An is a sequence of closed set from MX such that An+1 ⊂ An for all
n ∈ N and the limn→∞ φ(An) = 0, then A∞ = ∩∞n=1An is nonempty.

Remark 1.2. We note that A∞ = ∩∞n=1An is an element of the family of kerφ, as
such φ(A∞) ≤ φ(An) for all n ∈ N, using this fact, we have that φ(A∞) = 0. It
therefore follows that A∞ ∈ kerφ.

Definition 1.6. An operator T : X → Y is said to be compact if T (Z) is relatively
compact in a Banach space Y for any bounded subset Z in a Banach space X.

Theorem 1.3. Let Y be a nonempty, bounded, closed and convex subset of a Ba-
nach space X and T be a continuous compact self operator on Y. Then T has a
fixed point in the set Y.

The next result is the Darbo’s fixed point theorem which is a generalization of
Theorem 1.3 using the notion of measure of noncompactness.

Theorem 1.4. Let Y be a nonempty, bounded, closed and convex subset of a Ba-
nach space X and T be a continuous self operator on Y. Suppose that there exists
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a constant k ∈ (0, 1) such that

φ(TZ) ≤ kφ(Z)(1.2)

for any nonempty Z ⊂ Y, where φ is a measure of noncompactness define in X.

Then T has a fixed point in the set Y.

Hajji in [8] established a common fixed point result for commuting operator.
His result generalizes and extends the Darbo’s fixed point result.

Theorem 1.5. Let C be a nonempty, bounded, closed and convex subset of a Ba-
nach space E and suppose that S, T : C → C are continuous operators such that

(1) ST = TS;

(2) T is affine;
(3) for any X ⊂ C, and 0 < k < 1, we have

φ(ST (X)) ≤ kφ(X).(1.3)

Then the set {x ∈ C : Tx = Sx = x} is nonempty and compact.

Remark 1.3. It is easy to see that if Tx = Ix = x, we obtain the Darbo’s fixed
point theorem.

Motivated by the above facts it is our intention to further develop the notion
of F -contraction, cyclic (α, β)-admissible mapping and generalize the Darbo’s
fixed point thoerem by introducing the notion of Darbo-type F -contraction and
cyclic (α, β) admissible operator. We also establish some fixed point results for
this class of mappings. In addition, we apply our fixed point results to establish
the existence of solution to a Volterra type integral equation.

2. MAIN RESULT

In this section, we introduce the notion of Darbo-type F -contraction and cyclic
(α, β)-admissible operator. In addition, we also establish some fixed point results
for this class of mappings.

Definition 2.1. Let E be a Banach space and let T : E → E be a given operator.
We say that T is a Darbo-type-I- F -contraction if there exist functions β, α : E →
[0,∞), F ∈ F and τ > 0 such that

τ + F (α(x)β(Tx)φ(TY )) ≤ F (φ(Y ))(2.1)
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for any bounded subset Y and x ∈ Y with φ an arbitrary measure of noncompact-
ness and that φ(Y ), α(x)β(Tx)φ(TY ) > 0.

Remark 2.1.

(1) If α(x) = β(Tx) = 1, we obtain

τ + F (φ(TY )) ≤ F (φ(Y )),(2.2)

which is the well-known F contraction associated with the measure of non-
compactness.

(2) If F (x) = ln(x), we have that

α(x)β(Tx)φ(TY ) ≤ e−τφ(Y ).(2.3)

In addition, if α(x)β(Tx) = 1, we obtain

φ(TY ) ≤ e−τφ(Y ),(2.4)

where e−τ ∈ (0, 1).

Definition 2.2. Let E be a Banach space and let T : E → E be a given operator.
We say that T is a Darbo-type-II- F -contraction if there exist functions β, α : E →
[0,∞), F ∈ F and τ > 0 such that

α(x)β(Tx) > 0⇒ τ + F (φ(TY )) ≤ F (φ(Y ))(2.5)

for any bounded subset Y and x ∈ Y with φ an arbitrary measure of noncompact-
ness and that φ(Y ), φ(TY ) > 0.

Theorem 2.1. Let C be a nonempty, bounded, closed and convex subset of a Ba-
nach space E and suppose that T : C → C is a continuous, cyclic (α, β) admissible
and Darbo-type-I-F -contraction such that there exist closed and convex X0 ⊆ C

and x0 ∈ X0 with TX0 ⊆ X0, α(x0) ≥ 1 and β(x0) ≥ 1, where φ is an arbitrary
measure of noncompactness. Then T has a fixed point in set C.

Proof. We define the sequence of the set {Xn} and element {xn} as follows:

Xn = co(Txn−1) and xn = Txn−1 ∀ n ∈ N.

From our hypothesis, since TX0 ⊆ X0, we have

X1 = co(Tx0) ⊆ X0,

X2 = co(Tx1) ⊆ co(Tx0) = X1,

X3 = co(Tx2) ⊆ co(Tx1) = X2,
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continuing the process, we have that

X0 ⊇ X1 ⊇ X2 ⊇ · · · ⊇ Xn ⊇ Xn+1 ⊇ · · ·

and that
TXn ⊆ TXn−1 ⊆ co(TXn−1) = Xn.

In what follows, we consider two cases in establishing our result based on the
value of the measure of noncompactness.

Case 1. Suppose that there exists an integer N > 0 such that φ(XN) = 0, then
XN is a relatively compact set and also TXN ⊆ XN . Since T is a continuous self
operator on C, then by Theorem 1.3 we conclude that T has a fixed point.

Case 2. Suppose that there exists and integer n ∈ N such that φ(Xn) > 0 for
all n ∈ N. From our hypothesis, there exists x0 ∈ X0 such that α(x0) ≥ 1 and
β(x0) ≥ 1. Since T is cyclic (α, β) admissible mapping and α(x0) ≥ 1, we have
β(x1) = β(Tx0) ≥ 1 and this implies that α(x2) = α(Tx1) ≥ 1, continuing this
process, we have that

α(x2k) ≥ 1 and β(x2k+1) ≥ 1 ∀ k ∈ k ∈ N ∪ {0}.(2.6)

Using similar argument, we have that

β(x2k) ≥ 1 and α(x2k+1) ≥ 1 ∀ k ∈ k ∈ N ∪ {0}.(2.7)

It follow from (2.6) and (2.7) that α(xn) ≥ 1, β(xn) ≥ 1, α(xn+1) = α(Txn) ≥ 1

and β(xn+1) = β(Txn) ≥ 1. We therefore have that

τ + F (φ(Xn+1)) ≤ τ + F (α(xn)β(xn+1)φ(Xn+1))

= τ + F (α(xn)β(Txn)φ(co(TXn)))(2.8)

= τ + F (α(xn)β(Txn)φ(TXn))

≤ F (φ(Xn)).

This implies that
F (φ(Xn+1)) ≤ F (φ(Xn))− τ,

inductively, we have that

F (φ(Xn+1)) ≤ F (φ(X0))− nτ.

Since F ∈ F , taking limit as n→∞, we have that

lim
n→∞

F (φ(Xn+1)) = −∞,
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using (F2), we have that

lim
n→∞

φ(Xn+1) = 0.

Now, using the fact that {Xn} is nested and from (6) of Definition 1.5, we have
that the set X∞ = ∩∞n=1Xn 6= ∅, closed and convex subset of the set X0. In
addition, φ(X∞) ≤ φ(Xn) for all n ∈ N, which implies that φ(X∞) = 0. Thus, we
have that X∞ is an element of kerφ, which follows that X∞ is compact. More
so, we have that X∞ ⊂ Xn and T (Xn) ⊂ Xn for all n ∈ N. Therefore, we have
that T : X∞ → X∞ is well defined , and for any bounded Y ⊂ X∞, we have that
T (Y ) ⊂ X∞ and T (Y ) is a compact subsets of X∞, implies that T is a compact
operator. Therefore using Theorem 1.3, we have that T has a fixed point. �

Theorem 2.2. Let C be a nonempty, bounded, closed and convex subset of a Ba-
nach space E and suppose that T : C → C is a continuous, cyclic (α, β) admissible
and Darbo-type-II-F -contraction such that there exist closed and convex X0 ⊆ C

and x0 ∈ X0 with TX0 ⊆ X0, α(x0) ≥ 1 and β(x0) ≥ 1, where φ is an arbitrary
measure of noncompactness. Then T has a fixed point in set C.

Proof. The prove follows similar approach as in Theorem 2.1, as such we omit
it. �

Remark 2.2. Using Remark 2.1 and applying similar approach as in Theorem 2.1,
we obtain similar results as in Theorem 2.1 for (2.2) and (2.3).

Using Theorem 2.1, we establish the following results to the classical metric
fixed point theory.

Corollary 2.1. Let C be a nonempty, bounded, closed and convex subset of a Ba-
nach space E and suppose that T : C → C is a continuous, cyclic (α, β) admissible
mapping satisfying the following:

(1) for all X ∈MC , τ > 0 and x, y,∈ X, we have that

τ + F (α(x)β(Tx)‖Tx− Ty‖) ≤ F (‖x− y‖),(2.9)

such that α(x)β(Tx)‖Tx− Ty‖ > 0 and ‖x− y‖ > 0,

(2) there exist closed and convex X0 ⊆ C and x0 ∈ X0 such that TX0 ⊆
X0, α(x0) ≥ 1 and β(x0) ≥ 1.

Then T has a fixed point in set C.
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Proof. Let φ :ME → R+ be define as

φ(X) = diam X,

where diam X = sup{‖x− y‖ : x, y ∈ X} stand for the diameter of X. It is well-
known that φ is a measure of noncompactness in the space E. Using similar
approach as in Theorem 2.1 it is easy to see that α(x)β(Tx) ≥ 1. Now applying
the definition of φ to (2.9), we have that

τ + F (α(x)β(Tx) sup
x,y∈X

‖Tx− Ty‖) ≤ F ( sup
x,y∈X

‖x− y‖),

which implies that

τ + F (α(x)β(Tx)φ(TX)) ≤ F (φ(X)),

so from Theorem 2.1, we get the desired result. �

Corollary 2.2. Let C be a nonempty, bounded, closed and convex subset of a Ba-
nach space E and suppose that T : C → C is a continuous, cyclic (α, β) admissible
mapping satisfying the following:

(1) for all τ > 0 and x, y,∈ X, we have that

‖Tx− Ty‖ > 0⇒ τ + F (‖Tx− Ty‖) ≤ F (‖x− y‖)

(2) there exists closed and convex X0 ⊆ C and x0 ∈ X0 such that TX0 ⊆
X0, α(x0) ≥ 1 and β(x0) ≥ 1.

Then T has a fixed point in set C.

Corollary 2.3. Let C be a nonempty, bounded, closed and convex subset of a Ba-
nach space E and suppose that T : C → C is a continuous, cyclic (α, β) admissible
mapping satisfying the following:

(1) for all τ > 0 and x, y,∈ X, we have that

α(x)β(Tx) > 0⇒ τ + F (‖Tx− Ty‖) ≤ F (‖x− y‖),

such that ‖Tx− Ty‖ > 0 and ‖x− y‖ > 0,

(2) there exists closed and convex X0 ⊆ C and x0 ∈ X0 such that TX0 ⊆
X0, α(x0) ≥ 1 and β(x0) ≥ 1.

Then T has a fixed point in set C.

Proposition 2.1. Suppose that α(x), β(Tx) ≥ 1 for all x ∈ E, then the set of all
fixed point of T in Theorem 2.1 is a compact set.
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Proof. By definition F (T ) = {x ∈ C : Tx = x} is the set of fixed point of T and
φ(F (T )) 6= ∅, then by definition and using the fact that TF (T ) = F (T ), we have
that

F (φ(F (T ))) = F (φ(TF (T ))) < τ + F (α(x)β(Tx)φ(TF (T ))) ≤ F (φ(F (T ))),

which is a contradiction.. We therefore have it that F (T ) is a relatively compact
set. Now, for any convergent sequence {xn} ⊂ F (T ) such that xn → x∗, it is
easy to see that x∗ ∈ C due to the fact that C is closed. In addition, using the
continuity of T, we have that

Tx∗ = T lim
n→∞

xn = lim
n→∞

Txn = lim
n→∞

xn+1 = x∗ ⇒ Tx∗ = x∗,

it follows that x∗ ∈ F (T ), as such F (T ) is a compact set. �

Definition 2.3. Let T : E → E be mapping and α, β : 2E → [0,∞) be two
functions. We say that T is a cyclic (α, β) admissible operator if

(1) α(Y ) ≥ 1 for every Y ∈ 2E implies β(co(TY )) ≥ 1,

(2) β(Y ) ≥ 1 for every Y ∈ 2E implies α(co(TY )) ≥ 1.

Remark 2.3. If α(Y ) = β(Y ), we have that β(Y ) ≥ 1 for every Y ∈ 2E implies
β(co(TY )) ≥ 1, as such we obtain β-admissible as defined in [7].

Definition 2.4. Let E be a Banach space and let T : E → E be a given operator.
We say that T is a Darbo-type-III-F -contraction if there exist functions β, α : 2E →
[0,∞), F ∈ F and τ > 0 such that

τ + F (α(Y )β(Y )φ(TY )) ≤ F (φ(Y ))(2.10)

for any bounded subset Y ⊂ E with φ an arbitrary measure of noncompactness
and that φ(Y ), α(Y )β(Y )φ(TY ) > 0.

Remark 2.4.

(1) If α(Y ) = β(Y ) = 1, we obtain

τ + F (φ(TY )) ≤ F (φ(Y )),(2.11)

which usual F contraction in the sense of measure of noncompactness.
(2) If F (x) = ln(x), we have that

α(Y )β(Y )φ(TY ) ≤ e−τφ(Y ).
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In addition, if α(Y ) = β(Y ) = 1, we obtain

φ(TY ) ≤ e−τφ(Y ),

where e−τ ∈ (0, 1).

Definition 2.5. Let E be a Banach space and let T : E → E be a given operator.
We say that T is a Darbo-type-IV-F -contraction if there exist functions β, α : 2E →
[0,∞), F ∈ F and τ > 0 such that

α(Y )β(Y ) > 0⇒ τ + F (φ(TY )) ≤ F (φ(Y ))(2.12)

for any bounded subset Y ⊂ E with φ an arbitrary measure of noncompactness
and that φ(Y ), φ(TY ) > 0.

Definition 2.6. Let E be a Banach space and let T : E → E be a given operator.
We say that T is a Darbo-type-V-F -contraction if there exist functions β : 2E →
[0,∞), F ∈ F and τ > 0 such that

τ + F (β(Y )φ(TY )) ≤ F (φ(Y ))(2.13)

for any bounded subset Y ⊂ E with φ an arbitrary measure of noncompactness
and that φ(Y ), β(Y )φ(TY ) > 0.

Theorem 2.3. Let C be a nonempty, bounded, closed and convex subset of a Ba-
nach space E and suppose that T : C → C is a continuous, cyclic (α, β) admissible
operator and Darbo type-III-F -contraction such that there exists closed and convex
X0 ⊆ C such that TX0 ⊆ X0, α(X0) ≥ 1 and β(X0) ≥ 1, where φ is an arbitrary
measure of noncompactness. Then T has a fixed point in set C.

Proof. We define the sequence of the set {Xn} as follows:

Xn = co(TXn−1) ∀ n ∈ N.

From our hypothesis, since TX0 ⊆ X0, we have

X1 = co(Tx0) ⊆ X0,

X2 = co(Tx1) ⊆ co(Tx0) = X1,

X3 = co(Tx2) ⊆ co(Tx1) = X2,

continuing the process, we have that

X0 ⊇ X1 ⊇ X2 ⊇ · · · ⊇ Xn ⊇ Xn+1 ⊇ · · ·
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and that
TXn ⊆ TXn−1 ⊆ co(TXn−1) = Xn.

In what follows, we consider two cases in establishing our result based on the
value of the measure of noncompactness.

Case 1. Suppose that there exists an integer N > 0 such that φ(XN) = 0, then
XN is a relatively compact set and also TXN ⊆ XN . Since T is a continuous self
operator on C, then by Theorem 1.3 we conclude that T has a fixed point.

Case 2. Suppose that there exists and integer n ∈ N such that φ(Xn) > 0

for all n ∈ N. From our hypothesis, there exists X0 ∈ C such that α(X0) ≥ 1

and β(X0) ≥ 1. Since T is cyclic (α, β) admissible operator and α(X0) ≥ 1,

we have β(X1) = β(co(TX0)) = β(φ(TX0)) ≥ 1 and this implies that α(X2) =

α(co(TX1)) = α(φ(TX1)) ≥ 1, continuing this process, we have that

α(X2k) and β(X2k+1) ∀ k ∈ k ∈ N ∪ {0}.(2.14)

Using similar argument, we have that

β(X2k) and α(X2k+1) ∀ k ∈ k ∈ N ∪ {0}.(2.15)

It follow from (2.14) and (2.15) that α(Xn) ≥ 1, β(Xn) ≥ 1, α(Xn+1) =

α(φ(TXn)) ≥ 1 and β(Xn+1) = β(φ(TXn)) ≥ 1. It follows that

τ + F (φ(Xn+1)) ≤ τ + F (α(Xn)β(Xn)φ(Xn+1))

= τ + F (α(Xn)β(Xn)φ(co(TXn)))(2.16)

= τ + F (α(Xn)β(Xn)φ(TXn))

≤ F (φ(Xn)).

This implies that
F (φ(Xn+1)) ≤ F (φ(Xn))− τ,

inductively, we have that

F (φ(Xn+1)) ≤ F (φ(X0))− nτ.

Since F ∈ F , taking limit as n→∞, we have that

lim
n→∞

F (φ(Xn+1)) = −∞,

using (F2), we have that
lim
n→∞

φ(Xn+1) = 0.
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Now, using the fact that {Xn} is nested and from the (6) of Definition 1.5, we
have that the set X∞ = ∩∞n=1Xn 6= ∅, closed and convex subset of the set X0.

Thus, we have thatX∞ is an element of ker φ,which follows thatX∞ is compact.
More so, we have that X∞ ⊂ Xn and TXn ⊂ Xn for all n ∈ N. Therefore, we
have that T : X∞ → X∞ is well defined , and for any bounded Y ⊂ X∞, we
have that T (Y ) ⊂ X∞ and T (Y ) is a compact subsets of X∞, implies that T is
a compact operator. Therefore using Theorem 1.3, we have that T has a fixed
point. �

Theorem 2.4. Let C be a nonempty, bounded, closed and convex subset of a Ba-
nach space E and suppose that T : C → C is a continuous, cyclic (α, β) admissible
operator and Darbo type-IV-F -contraction such that there exists closed and convex
X0 ⊆ C such that TX0 ⊆ X0, α(X0) ≥ 1 and β(X0) ≥ 1, where φ is an arbitrary
measure of noncompactness. Then T has a fixed point in set C.

Proof. The prove follows similar approach as in Theorem 2.3, as such we omit
it. �

Theorem 2.5. Let C be a nonempty, bounded, closed and convex subset of a Ba-
nach space E and suppose that T : C → C is a continuous, cyclic (α, β) admissible
operator and Darbo type-V-F -contraction such that there exists closed and convex
X0 ⊆ C such that TX0 ⊆ X0 and β(X0) ≥ 1, where φ is an arbitrary measure of
noncompactness. Then T has a fixed point in set C.

Proof. The prove follows similar approach as in Theorem 2.3, as such we omit
it. �

Using Theorem 2.3, we establish the following results to the classical metric
fixed point theory.

Corollary 2.4. Let C be a nonempty, bounded, closed and convex subset of a Ba-
nach space E and suppose that T : C → C is a continuous, cyclic (α, β) admissible
operator satisfying the following:

(1) for all X ∈ME, τ > 0 and x, y,∈ X, we have that

τ + F (α(X)β(X)‖Tx− Ty‖) ≤ F (‖x− y‖),

where α(X)β(X)‖Tx− Ty‖ > 0 and ‖x− y‖ > 0,

(2) there exists closed and convex X0 ⊆ C such that TX0 ⊆ X0, α(X0) ≥ 1

and β(X0) ≥ 1.
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Then T has a fixed point in set C.

Proof. let φ :ME → R+ be defined as

φ(X) = diam X,

where diam X = sup{‖x − y‖ : x, y ∈ X} stand for the diameter of X. It is
well-known that φ is a measure of noncompactness in the space E. Therefore,
we have that

τ + F (α(X)β(X) sup
x,y∈X

‖Tx− Ty‖) ≤ F ( sup
x,y∈X

‖x− y‖),

we have
τ + F (α(X)β(X)φ(TX)) ≤ F (φ(X)),

so from Theorem 2.3, we obtain the desired result. �

Corollary 2.5. Let C be a nonempty, bounded, closed and convex subset of a Ba-
nach space E and suppose that T : C → C is a continuous, β admissible operator
satisfying the following:

(1) for all X ∈ME, τ > 0 and x, y,∈ X, we have that

τ + F (β(X)‖Tx− Ty‖) ≤ F (‖x− y‖),

where β(X)‖Tx− Ty‖ > 0 and ‖x− y‖ > 0,

(2) there exists closed and convexX0 ⊆ C such that TX0 ⊆ X0 and α(X0) ≥ 1.

Then T has a fixed point in set C.

Theorem 2.6. Let C be a nonempty, bounded, closed and convex subset of a Ba-
nach space E and suppose that S, T : C → C are continuous operators such that

(1) ST = TS;

(2) for any X ⊂ C, Tco(X) = co(T (X)) and

τ + F (φ(S(X))) ≤ F (φ(T (X))),(2.17)

where τ > 0, F ∈ F and φ an arbitrary measure of noncompactness such
that φ(S(X)) > 0 and phi(T (X)) > 0.

Then,

(1) the set F (S) = {x ∈ C : S(x) = x} is nonempty and compact.
(2) T has a fixed point and the set F (T ) = {x ∈ C : Tx = x} is closed and

invariant by S.



EXISTENCE OF SOLUTION FOR A VOLTERRA TYPE INTEGRAL EQUATION 2701

(3) if T is affine, then S and T have a common fixed point so the set {x ∈ C :

Tx = Sx = x} is compact.

Proof.

(1) We define the sequence of the set {Xn} as Xn = co(S(xn−1)). Using our
hypothesis, we have

TX1 = Tco(S(X0)) ⊂ co(S(T (X0))) ⊂ co(S(X0)) = X1,

TX2 = Tco(S(X1)) ⊂ co(S(T (X1))) ⊂ co(S(X1)) = X2,

TX3 = Tco(S(X2)) ⊂ co(S(T (X2))) ⊂ co(S(X2)) = X3,

continuing the process, we have that

TXn = Tco(S(Xn−1)) ⊂ co(S(T (Xn−1))) ⊂ co(S(Xn−1)) = Xn.

In what follows, we consider two cases in establishing our result based
on the value of the measure of noncompactness.

Case 1. Suppose that there exists an integer N > 0 such that φ(XN) = 0,

then XN is a relatively compact set. Since S is a continuous self operator
on C, then by Theorem 1.3 we conclude that S has a fixed point.

Case 2. Suppose that there exists and integer n ∈ N such that φ(Xn) > 0

for all n ∈ N. We therefore have that

τ + F (φ(Xn+1)) = τ + F (φ(co(S(Xn))))(2.18)

= τ + F (φ(S(Xn)))

≤ F (φ(T (Xn))).

≤ F (φ(Xn)).

This implies that

F (φ(Xn+1)) ≤ F (φ(Xn))− τ,

inductively, we have that

F (φ(Xn+1)) ≤ F (φ(X0))− nτ.

Since F ∈ F , taking limit as n→∞, we have that

lim
n→∞

F (φ(Xn+1)) = −∞,
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using (F2), we have that

lim
n→∞

φ(Xn+1) = 0.

Now, using the fact that {Xn} is nested and from (6) of Definition 1.5,
we have that the set X∞ = ∩∞n=1Xn 6= ∅, closed and convex subset of
the set X0. In addition, φ(X∞) ≤ φ(Xn) for all n ∈ N, which implies
that φ(X∞) = 0. Thus, we have that X∞ is an element of ker φ, which
follows that X∞ is compact. More so, we have that X∞ ⊂ Xn and
S(Xn) ⊂ S(Xn−1) ⊂ co(S(Xn−1)) = Xn for all n ∈ N. Therefore, we
have that S : X∞ → X∞ is well defined , and for any bounded Y ⊂ X∞,

we have that S(Y ) ⊂ X∞ and S(Y ) is a compact subsets of X∞, implies
that S is a compact operator. Therefore using Theorem 1.3, we have that
S has a fixed point. Hence the set F (S) = {x ∈ C : Sx = x} is closed.
Also using the fact that ST = TS, we have that

T (Sx) = S(Tx) = Tx.

Hence T (F (S)) ⊂ F (S) and since

F (φ(F (S))) = F (φ(S(F (S))))

< τ + F (φ(S(F (S))))

≤ F (φ(T (F (S))))

≤ F (φ(F (S))),

which is a contradiction. We therefore have it that F (S) is a relatively
compact set. Now, for any convergent sequence {xn} ⊂ F (S) such that
xn → x∗, it is easy to see that x∗ ∈ C due to the fact that C is closed. In
addition, using the continuity of S, we have that

Sx∗ = S lim
n→∞

xn = lim
n→∞

Sxn = lim
n→∞

xn+1 = x∗ ⇒ Sx∗ = x∗,

it follows that x∗ ∈ F (S), as such F (S) is a compact set.

(2) Using a similar approach as in (1), it is easy to see that T has a fixed
point and that F (T ) = {x ∈ C : Tx = x} is closed. More so, Using the
fact that ST = TS, we also have that Sx is the fixed point of T, thus
F (T ) is invariant by S.
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(3) Using the fact that T is affine, we have that F (T ) is convex. In addition,
we have that S(F (T )) ⊂ F (T ), T (F (T )) ⊂ F (T ) and for any X ⊂ F (T ),

we have that

τ + F (φ(S(X))) ≤ F (φ(T (X))).

It is easy to see from the results of (1) that S has a fixed point in F (T ),

therefore, we have that S and T have a common fixed point. Using the
fact that S is continuous and by hypothesis (2) the set of common fixed
point of S and T is compact.

�

Theorem 2.7. Let C be a nonempty, bounded, closed and convex subset of a Ba-
nach space E and suppose that S, T : C → C are continuous operators such that

(1) ST = TS;

(2) for any X ⊂ C, Tco(X) = co(T (X)), T is affine and

τ + F (φ(ST (X))) ≤ F (φ(T (X))),(2.19)

where τ > 0, F ∈ F and φ an arbitrary measure of noncompactness such
that φ(S(X)) > 0 and phi(T (X)) > 0.

Then S and T have a common fixed point.

Proof. Suppose that U(x) = ST (x). It is easy to see that U : C → C, TU = UT

and U is continuous. Using our hypothesis, we have that

τ + F (φ(U(X))) = τ + F (φ(ST (X))) ≤ F (φ(T (X)))(2.20)

and by Theorem 2.6, we have that U and T have a common fixed point. More
so, the set K = {x ∈ C : Ux = Tx = x} is not empty and compact. Now, observe
that for all x ∈ K, we have that

x = Ux = ST (x) = Sx.

Hence S and T have a common fixed point. �
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3. APPLICATIONS

In this section, we present an application of our fixed point result, that is
Theorem 2.1 to the following Volterra type integral equation

x(t) = f(t, x(t)) +

∫ η(t)

0

G(t, s, x(s))ds, t ∈ R+,(3.1)

where η : R+ → R+ G : R+ × R+ × R→ R and f : R+ × R→ R are continuous
functions. It is well-known that the space of all bounded and continuous real-
valued function BC(R+) defined on R+ with the norm ‖x‖ = sup{|x(t)| : t >
0} is a Banach space. The measure of noncompactness φ on the family of all
nonempty bounded subset of BC(R+) sayMBC(R+) is defined as follows:

φ(X) = ω0(X) + lim sup
t→∞

diam X(t),(3.2)

where diam X(t) = sup{|x(t)− y(t) : x, y ∈ X} and X(t) = {x(t) : x ∈ X}. The
modulus of continuity for any x ∈ X and ε > 0 is given by

ωT (x, ε) = sup{|x(t)− x(s) : t, s ∈ [0, T ], |t− s| ≤ ε},(3.3)

where

ωT (X, ε) = sup{ωT (x, ε) : x ∈ X},

ωT0 (X) = lim
ε→0

ωT (X, ε),

ω0(X) = lim
T→∞

ωT0 (X).

To establish the existence of a solution of the functional integral equation (3.1),
we can consider the operator T defined by

Tx(t) = f(t, x(t)) +

∫ η(t)

0

G(t, s, x(s))ds, t ∈ R+, x ∈ BC(R+).(3.4)

The problem of existence of a solution (3.1) is equivalent to the problem of
existence of a fixed point of (3.4).

Theorem 3.1. Let T be an operator define by (3.4) on BC(R+) and suppose the
following conditions hold:

(1) the function t→ |f(t, 0)| is bounded and a member of BC(R+) that is

M1 = sup{|f(t, 0)| : t ∈ R+} <∞;(3.5)
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(2) there exist τ > 0, α, β : BC(R+)→ R+, such that

|f(t, u)− f(t, v)| ≤ 1

α(x)β(Tx)eτ
|u− v|,(3.6)

where α(x)β(Tx) ≥ 1;

(3) the function G : R+ × R+ × R → R is a continuous function and there
exists positive solution say r0 of the inequality

M1 +
1

α(x)β(Tx)eτ
|r0|+M2 < r0,(3.7)

where M2 is a positive constant defined by the inequality

M2 = sup

{∣∣∣∣ ∫ η(t)

0

G(t, s, x(s))ds

∣∣∣∣, t ∈ R+, x ∈ BC(R+)

}
(3.8)

and

lim
t→∞

∫ η(t)

0

|G(t, s, x(s))−G(t, sy(s))|ds = 0,(3.9)

uniformly with respect to x, y ∈ BC(R+).

Then T has a fixed point in BC(R+).

Proof. To start with, we need to show that the operator T defined on BC(r0) =
{x ∈ BC(R+) : ‖x‖ ≤ r0}. Obviously Tx is continuous for any x ∈ BC(R+). It
follows that

|Tx(t)| =
∣∣∣∣f(t, x(t)) + ∫ η(t)

0

G(t, s, x(s))ds

∣∣∣∣
=

∣∣∣∣f(t, x(t))− f(t, 0) + f(t, 0) +

∫ η(t)

0

G(t, s, x(s))ds

∣∣∣∣(3.10)

≤ |f(t, x(t))− f(t, 0)|+ |f(t, 0)|+
∣∣∣∣ ∫ η(t)

0

G(t, s, x(s))ds

∣∣∣∣
≤ 1

α(x)β(Tx)eτ
|x(t)|+M1 +

∣∣∣∣ ∫ η(t)

0

G(t, s, x(s))ds

∣∣∣∣.
Thus, from the above equation, using (3.7) and (3.8), we have that

‖Tx‖∞ ≤M1 +M2 +
1

α(x)β(Tx)eτ
‖x‖∞ ≤ r0.(3.11)
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Hence T is well-defined and we have that T (B(r0)) ⊂ B(r0). In what follows,
we show that the operator T : B(r0) → B(r0) is continuous. Let x, y ∈ B(r0)

and for any ε > 0, ‖x− y‖B(r0) <
ε
2
, we then have that

|Tx(t)− Ty(t)| =
∣∣∣∣f(t, x(t)) + ∫ η(t)

0

G(t, s, x(s))ds− [f(t, y(t))

+

∫ η(t)

0

G(t, s, y(s))ds]

∣∣∣∣
≤ |f(t, x(t))− f(t, y(t))|

+

∫ η(t)

0

|G(t, s, x(s))−G(t, s, y(s))|ds(3.12)

≤ 1

α(x)β(Tx)eτ
|x(t)− y(t)|

+

∫ η(t)

0

|G(t, s, x(s))−G(t, s, y(s))|ds.

Now using (3.9) there exists T > 0 such that if t > T, we have that∫ η(t)

0

|G(t, s, x(s))−G(t, s, y(s))|ds ≤ ε

2
,(3.13)

for any x, y ∈ BC(R+). We now consider the following cases.

Case 1: Suppose that t > T, using (3.13) and (3.12), we have that

|Tx(t)− Ty(t)| ≤ ε

2α(x)β(Tx)eτ
+
ε

2
< ε.(3.14)

Case 2: Suppose that t ∈ [0, T ], we have that

|Tx(t)− Ty(t)| ≤ ε

2α(x)β(Tx)eτ
+

∫ η(t)

0

|G(t, s, x(s))−G(t, s, y(s))|ds

<
ε

2
+ ηTη(ε),(3.15)

where ηT = sup{η(t) : t ∈ [0, T ]} and

η(ε) = sup{G(t, s, x(s))−G(t, s, y(s)) : t ∈ [0, T ], s ∈ [0, βT ],

x, y ∈ [−r0, r0], ‖x− y‖BC(R+) < ε}.

Therefore, since G is continuous on [0, T ] × [0, ηT ] × [−r0, r0], we have that
η(ε)→ 0 as ε→ 0. Hence, from (3.14)and (3.15) we have that T is a continuous
function on B(r0).
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Now, we establish that T has a fixed point in B(r0). To do this, suppose that
for any T, ε > 0, Y a nonempty subset of B(r0) and for any s1, s2 ∈ [0, T ] with
|s1 − s2| ≤ ε, we obtain that

|Tx(s1)− Tx(s2)| =
∣∣∣∣f(s1, x(s1)) + ∫ η(s1)

0

G(s1, ζ, x(ζ))dζ − [f(s2, x(s2))

+

∫ η(s2)

0

G(s2, ζ, x(ζ))dζ]

∣∣∣∣
≤ |f(s1, x(s1))− f(s2, x(s2))|

+

∣∣∣∣ ∫ η(s1)

0

G(s1, ζ, x(ζ))dζ −
∫ η(s2)

0

G(s2, ζ, x(ζ))dζ]

∣∣∣∣
≤ |f(s1, x(s1))− f(s2, x(s1))|+ |f(s2, x(s1))− f(s2, x(s2))|

+

∫ η(s1)

0

|G(s1, ζ, x(ζ))−G(s2, ζ, x(ζ))|dζ

+

∫ η(s1)

η(s2)

|G(s2, ζ, x(ζ))|dζ(3.16)

≤ ωTr0(f, ε) +
ωT (x, ε)

α(x)β(Tx)eτ
+

∫ η(s1)

0

ωTr0(G, ε)dζ

+

∫ η(s1)

η(s2)

|G(s2, ζ, x(ζ))|dζ

≤ ωTr0(f, ε) +
ωT (x, ε)

α(x)β(Tx)eτ
+ ηTω

T
r0
(G, ε) +KωT (G, ε).

Since x is an arbitrary element in Y , the above inequality becomes

ωT (T (Y ), ε) ≤ ωTr0(f, ε) +
ωT (Y, ε)

α(x)β(Tx)eτ
+ ηTω

T
r0
(G, ε) +KωT (G, ε).(3.17)

More so, using the fact that f on [0, T ]×[−r0, r0] andG on [0, T ]×[0, T ]×[−r0, r0]
is uniformly continuous, we have that ωTr0(f, ε) → 0, ωTr0(G, ε) → 0. Now, taking
limit as ε→ 0 in (3.17), we have that

ωT0 (T (Y )) ≤ ωT0 (Y )

α(x)β(Tx)eτ
⇒ α(x)β(Tx)eτωT0 (T (Y )) ≤ ωT0 (Y )(3.18)

and taking limit as T →∞, we have that

ω0(T (Y )) ≤ ω0(Y )

α(x)β(Tx)eτ
⇒ α(x)β(Tx)eτω0(T (Y )) ≤ ω0(Y ).(3.19)
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It thus follows, for any x, y ∈ Y and t ∈ R+, we have that

|Tx(t)− Ty(t)| =
∣∣∣∣f(t, x(t)) + ∫ η(t)

0

G(t, s, x(s))ds− [f(t, y(t))

+

∫ η(t)

0

G(t, s, y(s))ds]

∣∣∣∣
≤ |f(t, x(t))− f(t, y(t))|

+

∣∣∣∣ ∫ η(t)

0

G(t, s, x(s))ds−
∫ η(t)

0

G(t, s, y(s))ds

∣∣∣∣
≤ 1

α(x)β(Tx)eτ
|x(t)− y(t)|

+

∣∣∣∣ ∫ η(t)

0

G(t, s, x(s))−G(t, s, y(s))ds
∣∣∣∣.

From the above inequality, using the concept of diameter of a set, we have that

diam(TX)(t) ≤ 1

α(x)β(Tx)eτ
diam(Y ) +

∣∣∣∣ ∫ η(t)

0

G(t, s, x(s))−G(t, s, y(s))ds
∣∣∣∣,

taking limit as t→∞ in the above inequality and using (3.9), we have that

lim sup
t→∞

diam(TX)(t) ≤ 1

α(x)β(Tx)eτ
lim sup
t→∞

diam(Y )(t)(3.20)

⇒ α(x)β(Tx)eτ lim sup
t→∞

diam(TX)(t) ≤ lim sup
t→∞

diam(Y )(t),

using (3.2), (3.20) and (3.19), we have that

φ(TY ) ≤ 1

α(x)β(Tx)eτ
φ(Y ) ⇒ eτα(x)β(Tx)φ(TY ) ≤ φ(Y ).

Taking ln of both sides, we have that

τ + ln(α(x)β(Tx)φ(TY )) ≤ ln(φ(Y ))

by definition, taking F (x) = ln(x), we obtain

τ + F (α(x)β(Tx)φ(TY )) ≤ F (φ(Y )).

It follows that T is a Darbo-type-I-F -contraction and conditions of Theorem
2.1 are satisfied, hence T has a fixed point in B(r0), which solves the integral
equation (3.1) in BC(R+). �
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