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ON COMMUTATIVITY OF SEMIRINGS THROUGH IDENTITIES OF
GENERALIZED DERIVATIONS

Liaqat Ali1 and Muhammad Aslam

ABSTRACT. The main purpose of this paper is to investigate the commuting con-
ditions for prime MA-semirings through Jordan ideals and generalized deriva-
tions which are responsible to extend a few results of rings.

1. INTRODUCTION AND PRELIMINARIES

Semirings have notable applications in optimization theory, theory of au-
tomata, and in theoretical computer sciences (see [10, 11, 15]). A group of
Russian mathematicians was able to establish novel probability theory based on
additive inverse semirings, known as idempotent analysis (see [14,16]) having
interesting applications in quantum physics. The notion of Jordan ideals was
introduced by Herstein [12] in rings which is further extended canonically by
Sara [22] for semirings. Several papers have been produced on Jordan ideals,
for reference one can see [5, 7, 17–19]. Javed et al. [13] introduced a special
class of semirings known as MA-Semirings. The class of MA-semirings properly
contains the class of rings and the class of distributive lattices. In fact every ring
is an MA-semiring but the converse may not be true in general, one can find
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examples of MA-semirings in [5,6,13,21]. In this paper we mostly use Lie type
theory of MA-semirings (see [1–3, 6, 13, 21, 22]) that may be helpful to attract
the algebraists to extend some remarkable results in this area.

Now, we present some important definitions and preliminaries. By a semiring
S, we mean a semiring with absorbing zero ’0’ in which addition is commutative.
A semiring S is said to be additive inverse semiring if for each s ∈ S there is a
unique s

′ ∈ S such that s+ s
′
+ s = s and s

′
+ s+ s

′
= s

′, where s
′ denotes the

pseudo inverse of s. An additive inverse semiring S is said to be an MA-Semiring
if it satisfies s + s

′ ∈ Z(S), ∀s ∈ S, where Z(S) is the center of S. Throughout
the paper by semiring S we mean an MA-semiring unless stated otherwise. A
semiring S is prime if aSb = {0} implies that a = 0 or b = 0 and semiprime if
aSa = {0} implies that a = 0. S is 2-torsion free if for s ∈ S, 2s = 0 implies
s = 0. An additive mapping d : S −→ S is a derivation if d(st) = d(s)t + sd(t).
The concept of generalized derivation was studied for MA-semirings in [2]. An
additive mapping Fd : S −→ S is a generalized derivation associated with a
derivation d if Fd(st) = Fd(s)t + sd(t) (see [9]). The commutator is defined as
[s, t] = st + t

′
s. By Jordan product we mean s ◦ t = st + ts for all s, t ∈ S.

A mapping f : S −→ S is commuting if [f(s), s] = 0, ∀s ∈ S. An additive
subsemigroup G of S is called the Jordan ideal if s ◦ j ∈ G for all s ∈ S, j ∈ G.
A mapping f : S −→ S is centralizing if [[f(s), s], r] = 0, ∀s, r ∈ S. We include
some MA-semiring identities useful for the sequel: If d : S → S is derivation and
s, t, z ∈ S, then: [s, st] = s[s, t], [st, z] = s[t, z] + [s, z]t, [s, yz] = [s, t]z + t[s, z],
[s, t] + [t, s] = t(s + s

′
) = s(t + t

′
), (st)

′
= s

′
t = st

′, [s, t]
′
= [s, t

′
] = [s

′
, t],

s◦ (t+z) = s◦ t+s◦z, d(x′
) = (d(x))

′, for more details, one can see [13,21,22].
From the literature, we recall a few results for MA-semirings which are very
useful to establish the main results.

Lemma 1.1. [1] Let G be a Jordan ideal of an MA-semiring S. Then for all j ∈ G

following containments hold:
(a). 2[S, S]G ⊆ G (b). 2G[S, S] ⊆ G (c). 4j2S ⊆ G

(d). 4Sj2 ⊆ G, (e). 4jSj ⊆ G.

Proof. We prove only (c) here, the other inclusions can be followed in the similar
fashion.

For any j ∈ G and s ∈ S, we have [j, s] ∈ S and therefore by the definition of
Jordan ideal j ◦ [j, s] ∈ J . But then by the definition of MA-semiring and using



COMMUTATIVITY OF SEMIRINGS THROUGH GENERALIZED DERIVATIONS 2713

commutator identities

j ◦ [j, s] = j(js+ sj
′
) + (js+ sj

′
)j = j2s+ jsj

′
+ jsj + s(j2)

′

= j2s+ j(s
′
+ s)j + s

′
(j2) = j2s+ (s

′
+ s)j2 + s

′
(j2) = j2s+ s

′
(j2).

This shows that 2(j2s+ s
′
j2) ∈ G. Also since 2j2 ∈ G, 2j2 ◦ s = 2sj2 + 2j2s ∈ G.

Therefore 4j2s = 2j2s+ 2s
′
j2 + 2sj2 + 2j2s ∈ G and hence 4j2S ⊆ G. �

Lemma 1.2. [1] Let S be a 2-torsion free prime MA-semiring and G a Jordan ideal
of S. If aGb = {0} then a = 0 or b = 0.

Remark 1.1. [1]
a) If aG = {0} or Ga = {0}, then a = 0.
b) If S is semiprime and x ∈ Z(S), x2 = 0, then x = 0.

Lemma 1.3. Let G be a Jordan ideal and d be a derivation of a 2-torsion free
prime MA-semiring S such that d(G) = {0}. Then d = 0.

Proof. By Theorem 2.4 of [1], we have either d = 0 or [G,S] = {0}. If [G,S] =

{0}, then for any j ∈ G and s ∈ S, we have 2js = j ◦ s ∈ G. Therefore, by
the 2-torsion freeness, we have 0 = d(js) = d(j)s + jd(s) and using hypothesis
again, we get Gd(s) = 0. By Remark 1.1, we conclude that d = 0. �

Lemma 1.4. [2] Let G be a Jordan ideal and d be a derivation of a 2-torsion free
prime MA-semiring S such that for all u ∈ G, d(u2) = 0. Then d = 0

Lemma 1.5. [6] Let G be a Jordan ideal of a 2-torsion free prime MA-semiring
S. If a ∈ S such that for all v ∈ G, [a, v2] = 0, then [a, S] = {0}. In particular
[u2, v2] = 0.

Lemma 1.6. [6] Let S be a 2-torsion free prime MA-semiring and G a Jordan ideal
of S. If S is non-commutative such that for all u, v ∈ G, and r ∈ S, a[r, uv]b = 0,
then a = 0 or b = 0.

Oukhtite et al [17] proved some results on generalized derivations satisfying
certain identities on Jordan ideals of rings. The main objective of this paper is
to prove some results of [17] for the Jordan ideals of MA-semirings.
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2. MAIN RESULTS

Lemma 2.1. Let G be a nonzero Jordan ideal of a 2-torsion free prime MA-semiring
S and d a nonzero derivation of S. Setting G0 = G. Then for any positive integer
i, the set Gi = {x ∈ Gi−1 : d(x) ∈ Gi−1} nonzero Jordan ideal. Moreover if
G ∩ Z(S) 6= {0}, then Gi ∩ Z(S) 6= {0}.

Proof. Let u, v ∈ G1. Then d(u), d(v) ∈ G0. As G is closed under addition,
u+ v ∈ G such that d(u+ v) = d(u) + d(v) ∈ G. Therefore u+ v ∈ G1. Secondly
for any s ∈ S and u ∈ G1, we have d(u) ∈ G and therefore s ◦ d(u) ∈ G. As
s ◦ u ∈ G, d(s ◦ u) = d(s) ◦ u + s ◦ d(u) ∈ G. Therefore s ◦ d(u) ∈ G1, which
shows that G1 is Jordan ideal. Similarly, we conclude that each Gi is a Jordan
ideal. From the definition, we easily see that Gi ⊆ Gi−1, i = 1, 2, 3, . . ..

Next we show that each Gi is nonzero. Suppose that G0 = G 6= 0. We consider
As d 6= 0, there is at least one 0 6= u ∈ G such that d(u) 6= 0. Therefore G1 6= 0.
Consequently G2 6= 0, G3 6= 0, . . ..

Finally let 0 6= u ∈ G ∩ Z(S) such that d(u) 6= 0. Then u ∈ G1 ∩ Z(S), which
shows that G1 ∩ Z(S) 6= {0}. �

Theorem 2.1. Let G be a nonzero Jordan ideal of a 2-torsion free prime MA-
semiring S and Fd be a generalized derivation associated with a nonzero derivation
d. If Fd satisfies [Fd(uv) + u

′
v, r] = 0 for all u, v ∈ G, then S is commutative.

Proof. By the hypothesis, for all u, v ∈ G, r ∈ S, we have

(2.1) [Fd(uv) + u
′
v, r] = 0.

In (2.1) taking v = u, we get [Fd(u
2) + (u2)

′
, r] = 0 and therefore

(2.2) Fd(u
2) + (u2)

′ ∈ Z(S).

Suppose that G ∩ Z(S) = {0}. By lemma 1.1, replacing u by 2u2 and v by
2[s, jk]v, j, k ∈ G, s ∈ S in (2.1), we get

(2.3) [4Fd(u
2[s, jk]v) + 4(u2)

′
[s, jk]v, r] = 0.

In view of (2.2), using the identities of MA-semirings, we can write 4Fd(u
2[s, jk]v)+

4(u2)
′
[s, jk]v,

= 4[(Fd(u
2) + (u2)

′
)s, jk]v + 4(u2d[s, jk])v + 4u2[s, jk])d(v).
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In view of Lemma 1.1, using 2-torsion free of S, we obtain

Fd(u
2[s, jk]v) + (u2)

′
[s, jk]v ∈ G

and

Fd(u
2[s, jk]v) + (u2)

′
[s, jk]v ∈ Z(S).

But then by the assumption that G
⋂
Z(S) = {0}, we have

(2.4) Fd(u
2[r, jk]v) + (u2)

′
[r, jk]v = 0.

In (2.4) replacing v by 4vw2 and using 2-torsion freeness, we obtain

Fd(u
2[r, jk]v)w2 + u2[r, jk]vd(w2) + (u2)

′
[r, jk]vw2 = 0.

Using (2.4) again, we get u2[r, jk]vd(w2) = 0 and therefore by Lemma 1.6, we
have either u2 = 0 or vd(w2) = 0. As u2 = 0 implies G = {0} which is not
possible, therefore we have Gd(w2) = {0}. By Remark 1.1, we have d(w2) = 0

which by Lemma 1.4, implies that d = 0, a contradiction. Therefore, we must
have G ∩ Z(S) 6= {0}.

In (2.1) replacing v by 4vx2, x ∈ G and using (2.1) again, we obtain (Fd(uv)+

u
′
v)[x2, r] + [uvd(x2), r] = 0. In particular, for r = x2, we have

(2.5) (Fd(uv) + u
′
v)[x2, x2] + [uvd(x2), x2] = 0.

As S is MA-semiring, [x, x] = [x, x]
′
,∀x ∈ S, therefore (Fd(uv) + u

′
v)[x2, x2]

′
+

[uvd(x2), x2] = 0 and hence

(2.6) (Fd(uv) + u
′
v)[x2, x2] = [uvd(x2), x2].

Using (2.6) into (2.5) and then by the 2-torsion freenessof S, we obtain [uvd(x2), x2] =

0, which further implies

(2.7) uv[d(x2), x2] + u[v, x2]d(x2) + [u, x2]vd(x2) = 0.

By the definition of MA-semiring, we have u+ u
′ ∈ Z(S), we obtain

4d(x2)u = 2(d(x) ◦ x) ◦ u+ 2[(d(x) ◦ x), u].

In view of Lemma 2.1, Lemma 1.1 and Remark 1.1, for all u, x ∈ G1, we obtain

4d(x2)u = 2(d(x) ◦ x) ◦ u+ 2[(d(x) ◦ x), u] ∈ G.
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In (2.7) replacing v by v ∈ G1 and u by 4d(x2)u, x, u, we obtain 4d(x2)uv[d(x2), x2]+

4d(x2)u[v, x2]d(x2) + [4d(x2)u, x2]vd(x2) = 0 and by MA-semiring identities and
then rearranging the terms, we have

4d(x2)(uv[d(x2), x2] + u[v, x2]d(x2) + [u, x2]vd(x2)) + [4d(x2), x2]uvd(x2) = 0.

Using (2.7) again and hence using 2-torsion freeness of S, we obtain

(2.8) [d(x2), x2]uvd(x2) = 0,∀x, u, v ∈ G1.

In (2.8) replacing v by 2x2, we obtain

(2.9) [d(x2), x2]uvx2d(x2) = 0,∀x, u, v ∈ G1.

Multiplying (2.8) by (x2)
′ from the right, we obtain

(2.10) [d(x2), x2]uvd(x2)(x2)
′
= 0,∀x, u, v ∈ G1.

Adding (2.9) and (2.10), we obtain [d(x2), x2]uG[d(x2), x2] = 0,∀x, u ∈ G1. In
view of Lemma 1.2, using Remark 1.1, we obtain [d(x2), x2] = 0 and by Lemma
1.5, we further obtain

(2.11) [d(x2), s] = 0 = 0,∀x ∈ G1, s ∈ S.

In (2.11) replacing x by x+ y,∀x ∈ G1 and using it again, we get

(2.12) [d(xy) + d(yx), s] = 0.

�

As G1 ∩ Z(S) 6= {0}, replacing y by z ∈ G1 ∩ Z(S) − {0} and s by x ∈ G1 in
(2.12), we get 2[d(xz), x] = 2[d(x)z + xd(z), x] = 0 and therefore

(2.13) z[d(x), x] + x[d(z), x] = 0.

In (2.13) replacing z by 2z2, we obtain 2z2[d(x), x] + 4zx[d(z), x] = 0 which fur-
ther implies that 2z(z[d(x), x]+x[d(z), x])+2zx[d(z), x] = 0. Using (2.13) again,
we obtain 2zx[d(z), x] = 0 and therefore by the 2-torsion freeness zG[d(z), x] =

{0}. By Lemma 1.2, we conclude that [d(z), x] = 0. Therefore (2.13) becomes
z[d(x), x] = 0 and therefore zS[d(x), x] = {0}. By the primeness of S, we have
[d(x), x] = 0, ∀x ∈ G1. By Theorem 2.2 of [5], S is commutative.

On the similar lines of the proof of Theorem 2.1, we can establish the follow-
ing:
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Theorem 2.2. Let G be a nonzero Jordan ideal of a 2-torsion free prime MA-
semiring S and Fd be a generalized derivation associated with a nonzero derivation
d. If Fd satisfies [Fd(uv) + uv, r] = 0 for all u, v ∈ G, then S is commutative.

Theorem 2.3. Let G be a nonzero Jordan ideal of a 2-torsion free prime MA-
semiring S and Fd be a generalized derivation associated with a nonzero derivation
d. If Fd satisfies [Fd(uv) + vu

′
, r] = 0 for all u, v ∈ G, then S is commutative.

Proof. By the hypothesis, we have for all u, v ∈ G

(2.14) [Fd(uv) + vu
′
, r] = 0.

Suppose that G ∩ Z(S) = {0}. From (2.14) it is quite clear that [Fd(u
2) +

(u2)
′
, r] = 0 and therefore Fd(u

2) + (u2)
′ ∈ Z(S). In (2.14) replacing u by 2u2

and v by 2[s, jk]v where j, k ∈ G, s ∈ S, we obtain

4[Fd(u
2[s, jk]v) + 4[s, jk]v(u2)

′
, r] = 0

and therefore

[Fd(u
2[s, jk])v + u2[s, jk]d(v) + [s, jk]v(u2)

′
, r] = 0.

As S is an MA-semiring, v+v
′ ∈ Z(S) and v+v

′
+v = v, therefore [(Fd(u

2[s, jk])+

[s, jk](u2)
′
)v + u2[s, jk]d(v) + [s, jk][u2, v], r] = 0, which further means that

(Fd(u
2[s, jk]) + [s, jk](u2)

′
)v + u2[s, jk]d(v) + [s, jk][u2, v] ∈ Z(S).

In view of Lemma 1.1, following the similar arguments used in the proof of
Theorem 2.1, we infer

(Fd(u
2[s, jk]) + [s, jk](u2)

′
)v + u2[s, jk]d(v) + [s, jk][u2, v] ∈ G.

By our assumption G ∩ Z(S) = {0}, we have

(2.15) (Fd(u
2[s, jk]) + [s, jk](u2)

′
)v + u2[s, jk]d(v) + [s, jk][u2, v] = 0.

In (2.15)replacing v by 4vu2 and using 2-torsion freeness, we obtain

(Fd(u
2[s, jk])+[s, jk](u2)

′
)vu2+u2[s, jk]d(v)u2+[s, jk][u2, v]u2+[u2[s, jk]vd(u2) = 0,

which further gives

((Fd(u
2[s, jk])+[s, jk](u2)

′
)v+u2[s, jk]d(v)+[s, jk][u2, v])u2+u2[s, jk]vd(u2) = 0.

Using (2.15) again, we get u2[s, jk]vd(u2) = 0. By Lemma 1.6, we have either
u2 = 0 or Gd(u2) = {0} which further implies by Remark 1.1, G = {0} or
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d(u2) = 0. As G 6= {0}, therefore d(u2) = 0, ∀u ∈ G. By Lemma 1.4, d = 0, a
contradiction. Hence we conclude that G∩Z(S) 6= {0}. In (2.14) replacing v by
4vx2 and r by u2, we get 4[Fd(uvx

2) + vx2u
′
, x2] = 0, which implies [Fd(uv)x

2 +

uvd(x2) + vx2u
′
, x2] = 0 and therefore [Fd(uv), x

2]x2 + [uvd(x2) + vx2u
′
, x2] = 0.

Using (2.14), we obtain [vu, x2]x2 + [uvd(x2) + vx2u
′
, x2] = 0 and therefore

(2.16) [uvd(x2), x2] + [v[u, x2], x2] = 0.

In (2.16) replacing u by 4ux2, we obtain [4ux2vd(x2), x2] + [v[4ux2, x2], x2] = 0

and using MA-semiring commutators identities and 2-torsion freeness, we have

(2.17) [ux2vd(x2), x2] + [v[u, x2], x2]x2 = 0.

Multiplying (2.16) by x2 from the right we get

[uvd(x2), x2]x2 + [v[u, x2], x2]x2 = 0

and hence

(2.18) [v[u, x2], x2]x2 = [uvd(x2), x2](x2)
′
.

Using (2.18) into (2.17), we get

[ux2vd(x2), x2] + [uvd(x2)(x2)
′
, x2] = 0

and therefore

(2.19) [u[x2, vd(x2)], x2] = 0.

On the similar lines of the proof of Theorem 2.1, we infer 4vd(x2)w ∈ G, there-
fore replacing u by 4vd(x2)w in (2.20), we obtain

4[vd(x2)w[x2, vd(x2)], x2] = 0

and using MA-semiring identities, we obtain

[vd(x2), x2]w[x2, vd(x2)] + vd(x2)[w[x2, vd(x2)], x2] = 0.

Using (2.19) again, we obtain [vd(x2), x2]G[vd(x2), x2] = {0}. By the Lemma
1.2, we obtain for all v, x ∈ G

(2.20) [vd(x2), x2] = 0.

By our assumption G∩Z(S) 6= {0}. Replacing v by z ∈ G∩Z(S)−{0}, we have
zS[d(x2), x2] = {0}, which further implies by the primeness [d(x2), x2] = 0 for
all x ∈ G. By Lemma 1.5, [d(x2), s] = 0, for all x ∈ G, s ∈ S, which is equation
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(2.11) of Theorem 2.1, therefore the remaining part is same as the proof of
Theorem 2.1. �

On the same lines of the proof of Theorem 2.3, we can prove the following:

Theorem 2.4. Let G be a nonzero Jordan ideal of a 2-torsion free prime MA-
semiring S and Fd a generalized derivation associated with a nonzero derivation
d. If Fd satisfies [Fd(uv) + vu, r] = 0 for all u, v ∈ G, then S is commutative.

Theorem 2.5. Let G be a nonzero Jordan ideal of a 2-torsion free prime MA-
semiring S and Fd be a generalized derivation associated with a nonzero derivation
d. If Fd satisfies [Fd(u)Fd(v) + u

′
v, r] = 0 for all u, v ∈ G, then S is commutative.

Proof. By the hypothesis, we have

(2.21) [Fd(u)Fd(v) + u
′
v, r] = 0, ∀u, v ∈ G, r ∈ S.

Assume that G ∩ Z(S) = {0}. In (2.21) replacing v by 4v2[s, xy], where s ∈
S, x, y ∈ G and using 2-torsion freeness, we obtain [(Fd(u)Fd(v

2) + u
′
v2)[s, xy] +

Fd(u)v
2d[s, xy], r] = 0, which further gives

(Fd(u)Fd(v
2) + u

′
v2)[s, xy] + Fd(u)v

2d[s, xy] ∈ Z(S).

By definition of G1, x ∈ G1 if d(x) ∈ G. In view of lemma 1.1, we see that for all
x, y, u, v ∈ G1,

8((Fd(u)Fd(v
2) + u

′
v2)[s, xy] + Fd(u)v

2d[s, xy])

= 2(2[s(Fd(u)Fd(2v
2) + u

′
2v2), xy] + 2(Fd(u)(2v)

2d[s, xy]) ∈ G.

In view of our assumption that G ∩ Z(S) = {0}, by the 2-torsion freeness of S,
we have for all x, y, u, v ∈ G1

(2.22) (Fd(u)Fd(v
2) + u

′
v2)[s, xy] + Fd(u)v

2d[s, xy] = 0.

In (2.22) replacing y by 4y2s where y ∈ G1, we get

(Fd(u)Fd(v
2) + u

′
v2)[s, xy2s] + Fd(u)v

2d[s, xy2s] = 0.

Using MA-semiring commutator identities, we further obtain

(Fd(u)Fd(v
2) + u

′
v2)[s, xy2]s+ Fd(u)v

2d[s, xy2]s) = 0

and therefore

(Fd(u)Fd(v
2) + u

′
v2)[s, xy2]s+ Fd(u)v

2d[s, xy2]s+ Fd(u)v
2[s, xy2]d(s) = 0.
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Using (2.22) again, we obtain Fd(u)v
2[s, xy2]d(s) = 0 and hence

(2.23) Fd(u)v
2x[s, y2]d(s) + Fd(u)v

2[s, x]y2d(s) = 0, ∀x, y, u, v ∈ G1, s ∈ S.

As 8Fd(u)v
2[t, xw] = 2(Fd(u)4v

2)[t, xw] ∈ G1, ∀u, v, w, x ∈ G1, t ∈ S, replacing
x by 8Fd(u)v

2[t, xw] in (2.23) and using 2-torsion freeness, for all x, y, u, v, w ∈
G1, s ∈ S, we get

Fd(u)v
2Fd(u)v

2[t, xw][s, y2]d(s) + Fd(u)v
2[s, Fd(u)v

2[t, xw]]y2d(s) = 0

and by using identities, we have
Fd(u)v

2Fd(u)v
2[t, xw][s, y2]d(s) + Fd(u)v

2[s, Fd(u)v
2][t, xw]y2d(s)

+Fd(u)v
2Fd(u)v

2[s, [t, xw]]y2d(s) = 0.

Using 2-torsion freeness and (2.23) again, we obtain

(2.24) Fd(u)v
2[s, Fd(u)v

2][t, xw]y2d(s) = 0.

By lemma 1.6, we obtain either Fd(u)v
2[s, Fd(u)v

2] = 0 or y2d(s) = 0. For the
second possibility, we obtain either G1 = {0} or d = 0 and both contradict the
hypothesis. On the other hand suppose that

(2.25) Fd(u)v
2[s, Fd(u)v

2] = 0

In (2.25) replacing s by st and using (2.25) again, we obtain Fd(u)v
2s[t, Fd(u)v

2]

= 0 and hence by the primeness of S, we have either Fd(u)v
2 = 0 or [t, Fd(u)v

2] =

0. The second one implies that Fd(u)v
2 ∈ Z(S). Also since 4Fd(u)v

2 ∈ G1 and
by assumption G1 ∩ Z(S) = {0}, therefore 4Fd(u)v

2 = 0 which implies by the
2-torsion freeness that Fd(u)v

2 = 0. We conclude that in both the cases

(2.26) Fd(u)v
2 = 0, ∀u, v ∈ G1.

In (2.26) replacing u by 2u2r, we get 2Fd(uw
2)v2 = 0 which implies Fd(u)w

2v2+

ud(w2)v2 = 0. Using (2.26) again and then using Remark1.1, we get d(w2)v2 =

0, which further implies either d = 0 or G1 = {0} which both contradict the
hypothesis. Hence our supposition is wrong and G ∩ Z(S) 6= {0}. For any
z ∈ G ∩ Z(S)− {0}, replacing v by v ◦ z = 2vz in (2.21), we get for all u, v ∈ G,

2[Fd(u)Fd(vz) + u
′
vz, r] = 0,

which implies that

[Fd(u)Fd(v)z + Fd(u)vd(z) + u
′
vz, r] = 0,
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and therefore

z[Fd(u)Fd(v) + u
′
v, r] + [Fd(u)vd(z), r] = 0,

and using (2.21) again, we get

(2.27) [Fd(u)vd(z), r] = 0.

In (2.27) replacing z by 2z2 and using (2.27) again, we get 4Fd(u)vd(z)[z, r] = 0,
and therefore by the 2-torsion freeness, we further get Fd(u)Gd(z)[z, r] = {0}.
By Lemma 1.2 we obtain either Fd(u) = 0 or d(z)[z, r] = 0. If Fd(u) = 0, then
d(u) = 0 and by Lemma 1.3 d = 0, a contradiction. On the other hand if
d(z)[z, r] = 0, then after appropriate replacements we obtain d(z) = 0 or [z, r] =
0 which further implies d(z) = 0 or [d(z), r] = 0. Suppose that [d(z), r] = 0.
Then d(z) ∈ Z(S), therefore (2.27) becomes [Fd(u)v, r]d(z) = 0 which further
implies [Fd(u)v, r]Sd(z) = {0}. By the primeness of S, we have either d(z) = 0

or [Fd(u)v, r] = 0. Suppose that

(2.28) [Fd(u)v, r] = 0.

In (2.28) replacing v by 4v2s, where s ∈ S, we obtain 2[Fd(u)2v
2s, r] = 0. Using

2-torsion freeness and (2.28) again, we obtain

(2.29) Fd(u)v
2[s, r] = 0.

In (2.29) replacing s by ts and using (2.29) again, we obtain Fd(u)v
2S[s, r] =

{0}, which by the primeness of S implies either S is commutative or Fd(u)v
2 = 0.

Suppose that

(2.30) Fd(u)v
2 = 0.

In (2.30) replacing u by 4uw2 and using (2.30) again, we obtain Gd(w2)v2 = 0.
By Remark 1.1, we have

(2.31) d(w2)v2 = 0.

In (2.31) replacing v by u+ v and using (2.31) again, we get

(2.32) d(w2)vu+ d(w2)uv = 0.

In (2.32) replacing u by 2u2 and using (2.32) again, we obtain d(w2)Gu2 = {0}.
By Lemma 1.2, we obtain either d(w2) = 0 or u2 = 0 which respectively imply
either d = 0 or G = {0} and both contradict the hypothesis.
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Now we suppose the case when d(z) = 0, for all z ∈ G ∩ Z(S). In (2.21)
replacing v by 4vx2s, we obtain

4[Fd(u)Fd(vx
2) + u

′
vx2s+ Fd(u)v

2d(x2), r] = 0, ∀u, v, x ∈ G, r ∈ S.

Taking r = x2 and using (2.21) again

(2.33) [Fd(u)vd(x
2), x2] = 0.

In(2.33) replacing u by 4ux2, we obtain

[Fd(u)(4x
2v)d(x2) + 4ud(x2)vd(x2), x2] = 0

and using (2.33) we obtain

(2.34) [ud(x2)vd(x2), x2] = 0.

As above 4d(x2)u ∈ G,∀u, x ∈ G1, Replacing u by 4d(x2)u in (2.34), we obtain
for all u, v, x ∈ G1,

[d(x2), x2]ud(x2)vd(x2) = 0,

and therefore

[d(x2), x2]ud(x2)G1d(x
2) = {0}.

By Lemma 1.2, we obtain either d(x2) = 0 or [d(x2), x2]ud(x2) = 0. If d(x2) = 0,
then d = 0, a contradiction. On the other hand [d(x2), x2]G1d(x

2) = {0} for all
x ∈ G1. As above d(x2) = 0 leads to d = 0, therefore for all x ∈ G1, we have
[d(x2), x2] = 0. Applying Lemma 1.5, we have

(2.35) [d(x2), r] = 0, ∀r ∈ S, x ∈ G1.

In (2.35) replacing x by s ◦ z = 2sz and using the fact that d(z) = 0, we ob-
tain [sd(s) + d(s)s, r] = 0 and replacing s by s2 it further gives d(s2)[s2, r] = 0

and hence d(s2)S[s2, r] = {0}. By the primeness we obtain either d(s2) = 0 or
[s2, r] = 0. If d(s2) = 0, then by Lemma 1.4 d = 0, a contradiction. Secondly if
[s2, r] = 0, then we can easily see that S is commutative. �

On the similar lines of the proof of Theorem 2.5, we can establish the follow-
ing:

Theorem 2.6. Let G be a nonzero Jordan ideal of a 2-torsion free prime MA-
semiring S and Fd be a generalized derivation associated with a nonzero derivation
d. If Fd satisfies [Fd(u)Fd(v) + uv, r] = 0 for all u, v ∈ G, then S is commutative.
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Theorem 2.7. Let G be a nonzero Jordan ideal of a 2-torsion free prime MA-
semiring S and Fd be a generalized derivation associated with a nonzero derivation
d. If Fd satisfies

(2.36) [Fd(u)Fd(v) + vu
′
, r] = 0, for all u, v ∈ G,

then S is commutative.

Proof. Firstly suppose that G∩Z(S) = {0}. In (2.36), replacing v by 4[s, pq][t, xy],
where s, t ∈ S, p, q, x, y ∈ G and then using the definition of MA-semiring, we
obtain

[Fd(u)Fd([s, pq])[t, xy] + [s, pq][t, xy](u
′
+ u+ u

′
) + Fd(u)[s, pq]d([t, xy]), r] = 0.

As u+ u
′ ∈ Z(S), therefore after simplification, we obtain

(Fd(u)Fd([s, pq])+ [s, pq]u
′
)[t, xy]+ [s, pq][u, [t, xy]]+Fd(u)[s, pq]d([t, xy]) ∈ Z(S).

On the other hand, as above we can easily see that for all u, v, x, y ∈ G1, s, t ∈ S,

(Fd(u)Fd([s, pq]) + [s, pq]u
′
)[t, xy] + [s, pq][u, [t, xy]] + Fd(u)[s, pq]d([t, xy]) ∈ G.

By the assumption G ∩ Z(S) = {0}, we have
(2.37)
(Fd(u)Fd([s, pq]) + [s, pq]u

′
)[t, xy] + [s, pq][u, [t, xy]] + Fd(u)[s, pq]d([t, xy]) = 0.

In (2.37) replacing t by txy and using MA-semiring identities, we get
(Fd(u)Fd([s, pq]) + [s, pq]u

′
)[t, xy]xy + [s, pq][u, [t, xy]xy]

+Fd(u)[s, pq]d([t, xy])xy + Fd(u)[s, pq][t, xy]d(xy) = 0.

Using (2.37) again, we obtain

(2.38) [s, pq][t, xy][u, xy] + Fd(u)[s, pq][t, xy]d(xy) = 0.

In (2.38) replacing p by 4sp2, we obtain

(2.39) s[s, p2q][t, xy][u, xy] + Fd(u)s[s, p
2q][t, xy]d(xy) = 0.

Multiplying (2.39) by s from the left, we have

s[s, pq][t, xy][u, xy] + sFd(u)[s, pq][t, xy]d(xy) = 0,

which further implies

(2.40) s[s, pq][t, xy][u, xy] = s
′
Fd(u)[s, pq][t, xy]d(xy).
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Using (2.40) into (2.39), we obtain

(2.41) [Fd(u), s][s, p
2q][t, xy]d(xy) = 0,∀p, q, u, x, y ∈ G1, s, t ∈ S.

In (2.41) replacing t by [Fd(u), s][s, p
2q]t and using (2.41) again, we get

[Fd(u), s][s, p
2q][[Fd(u), s][s, p

2q], xy]Sd(xy) = 0.

As S is prime, we have either d(xy) = 0 or [Fd(u), s][s, p
2q][[Fd(u), s][s, p

2q], xy] =

0. If d(xy) = 0, then by Lemma 1.4, d = 0, a contradiction. On the other hand, if
[Fd(u), s][s, p

2q][[Fd(u), s][s, p
2q], xy] = 0, then by the MA-semiring identities, we

can write
(2.42)
[Fd(u), s][s, p

2q]x[[Fd(u), s][s, p
2q], y] + [Fd(u), s][s, p

2q][[Fd(u), s][s, p
2q], x]y = 0.

In (2.42) replacing y by 2y[t, r], t, r ∈ S,
[Fd(u), s][s, p

2q]x[[Fd(u), s][s, p
2q], y[t, r]]

+[Fd(u), s][s, p
2q][[Fd(u), s][s, p

2q], x]y[t, r] = 0,

and after simplification, it further gives
[Fd(u), s][s, p

2q]x[[Fd(u), s][s, p
2q], y][t, r]

+[Fd(u), s][s, p
2q]xy[[Fd(u), s][s, p

2q], [t, r]] +[Fd(u), s][s, p
2q][[Fd(u), s][s, p

2q], x]y[t, r] =

0.

Using (2.42) again, we obtain

[Fd(u), s][s, p
2q]xG[[Fd(u), s][s, p

2q], [t, r]] = {0}.

By Lemma 1.2 and hence by Remark 1.1, we obtain either [Fd(u), s][s, p
2q] = 0

or [[Fd(u), s][s, p
2q], [t, r]] = 0. Firstly assume that

(2.43) [[Fd(u), s][s, p
2q], [t, r]] = 0.

In (2.43) replacing r by rt, we get

[[Fd(u), s][s, p
2q], [t, r]]t+ [t, r][[Fd(u), s][s, p

2q], t] = 0,

and using (2.43) again, we obtain

(2.44) [t, r][[Fd(u), s][s, p
2q], t] = 0.

In (2.44) replacing r by rm,m ∈ S and using (2.44) again, we obtain

[t, r]S[[Fd(u), s][s, p
2q], t] = {0}
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and taking r = [Fd(u), s][s, p
2q], we can write

[[Fd(u), s][s, p
2q], t]S[[Fd(u), s][s, p

2q], t] = {0}

By the primeness, we get [[Fd(u), s][s, p
2q], t] = 0, which implies

[Fd(u), s][s, p
2q] ∈ Z(S)

and therefore (2.41) becomes

[Fd(u), s][s, p
2q]S[t, xy]d(xy) = {0},

which further gives either S is commutative or [Fd(u), s][s, p
2q] = 0. Assume that

(2.45) [Fd(u), s][s, p
2q] = 0.

In (2.45) replacing q by 2[t, xy]q, we get

2[Fd(u), s]p
2[t, xy][s, q] + [Fd(u), s][s, p

2(2[t, xy])]q = 0,

using (2.45) again and the 2-torsion freeness, we obtain

2[Fd(u), s]p
2[t, xy][s, q] = 0.

Using Lemma 1.6, we have either [Fd(u), s]p
2 = 0 or [S,G1] = {0}. If [S,G1] =

{0}, then by Theorem 2.3 of [1], S is commutative. From the secondly possi-
bility, since G1 6= {0}, we obtain [Fd(u), s] = 0. Therefore the hypothesis be-
comes [Fd(v)Fd(u) + v

′
u, s] = 0,∀u, v ∈ G1, s ∈ S. Therefore for the assumption

G1 ∩ Z(S) = {0}, following the same arguments of the proof of Theorem 2.4,
we obtain d(u2) = 0,∀u ∈ G1 and therefore by the Lemma 1.4, we get d = 0, a
contradiction. Consequently G ∩ Z(S) 6= {0}.

In (2.36) replacing v by 4vx2, we obtain

4[Fd(u)Fd(v)x
2 + Fd(u)vd(x

2) + vx2u
′
, r] = 0, for all u, v ∈ G.

As for each s ∈ S, s+ s
′
+ s = s and s+ s

′ ∈ Z(S), therefore

[Fd(u)Fd(v)x
2 + vu

′
x2 + Fd(u)vd(x

2) + vux2 + vx2u
′
, r] = 0,

which further implies

(2.46) [(Fd(u)Fd(v) + vu
′
)x2 + Fd(u)vd(x

2) + v[u, x2], r] = 0.

In (2.46) replacing r by x2 and using (2.36) again, we find

(2.47) [Fd(u)vd(x
2) + v[u, x2], x2] = 0.
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In (2.47) replacing u by 4ux2, we get

4[Fd(ux
2)vd(x2) + v[ux2, x2], x2] = 0

which further gives

[Fd(u)x
2vd(x2) + ud(x2)vd(x2) + v[u, x2]x2, x2] = 0,

and therefore

(2.48) [(Fd(u)x
2 + ud(x2))vd(x2), x2] + [v[u, x2], x2]x2 = 0.

In (2.47) replacing v by 4x2v, we obtain

[Fd(u)x
2vd(x2), x2] + x2[v[u, x2], x2] = 0,

which further implies

(2.49) [Fd(u)x
2vd(x2), x2] = x2[v

′
[u, x2], x2].

Using (2.49) into (2.48), we obtain

[ud(x2)vd(x2), x2] + [v[u, x2], x2]x2 + x2[v
′
[u, x2], x2] = 0,

and therefore

(2.50) [ud(x2)vd(x2), x2] + [[v[u, x2], x2], x2] = 0.

In (2.50) replacing u by 4ux2 and using 2-torsion freeness, we obtain

[ux2d(x2)vd(x2), x2] + [[v[ux2, x2], x2], x2] = 0,

and therefore

(2.51) [ux2d(x2)vd(x2), x2] + [[v[u, x2], x2], x2]x2 = 0.

Multiplying (2.50) by x2 from the right, we obtain

[ud(x2)vd(x2), x2]x2 + [[v[u, x2], x2], x2]x2 = 0,

which further implies

(2.52) [u
′
d(x2)vd(x2)x2, x2] = [[v[u, x2], x2], x2]x2.

Using (2.52) into (2.51), we obtain

[ux2d(x2)vd(x2), x2] + [u
′
d(x2)vd(x2)x2, x2] = 0,

and therefore

(2.53) [u[x2, d(x2)vd(x2)], x2] = 0.
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By the definition of G and G1, we observe that

4d(x2)vd(x2)u = 4(d(x)◦x)yd(x2)u = 2[d(x)◦x, vd(x2)u]+2(d(x)◦x)◦ (vd(x2)u).

Therefore 4d(x2)vd(x2)u ∈ G, for all u, v, x ∈ G1. In (2.53) replacing u by
4d(x2)vd(x2)u, for all u, x, v ∈ G1 and then using 2-torsion freeness, we obtain

[d(x2)vd(x2), x2]G1[d(x
2)vd(x2), x2] = {0}.

By Lemma 1.2, we obtain

(2.54) [d(x2)vd(x2), x2] = 0.

As above 8wd(x2)v ∈ G, for all w ∈ G, x, v ∈ G1, therefore replacing v by
8wd(x2)v in (2.54) and then by the 2-torsion freeness of S, we obtain

[d(x2)wd(x2)vd(x2), x2] = 0.

Using (2.54) again, we can find [d(x2)w, x2]d(x2)G1d(x
2) = {0}. By Lemma 1.2,

we obtain either [d(x2)w, x2]d(x2) = 0 or d(x2) = 0. If d(x2) = 0, then by Lemma
1.4, d = 0, a contradiction. Therefore we must have

(2.55) [d(x2)w, x2]d(x2) = 0.

From (2.54), using MA-semiring identities, we can write

[d(x2)v, x2]d(x2) + d(x2)v[d(x2), x2] = 0,

and using (2.55) in particular for w = v ∈ G1, we find d(x2)v[d(x2), x2] =

0,∀v, x ∈ G1 and therefore by Lemma 1.2, we have either d(x2) = 0 or [d(x2), x2] =

0. If d(x2) = 0, then d = 0, a contradiction. On the other hand if [d(x2), x2] = 0,
then following the same arguments as above, we conclude the required re-
sult. �

On the similar lines of the proof of Theorem 2.7 we can establish the follow-
ing:

Theorem 2.8. Let G be a nonzero Jordan ideal of a 2-torsion free prime MA-
semiring S and Fd be a generalized derivation associated with a nonzero derivation
d. If Fd satisfies [Fd(u)Fd(v) + vu, r] = 0 for all u, v ∈ G, then S is commutative.
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3. OPEN PROBLEMS

The results of this paper are proved for the generalized derivations satisfying
central identities on Jordan ideals of prime MA-semirings. It would be interest-
ing to investigate the results of this paper for semiprime MA-semirings and for
the Lie ideals instead of Jordan ideals.
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