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ON COMMUTATIVITY OF SEMIRINGS THROUGH IDENTITIES OF
GENERALIZED DERIVATIONS

Liagat Ali' and Muhammad Aslam

ABSTRACT. The main purpose of this paper is to investigate the commuting con-
ditions for prime MA-semirings through Jordan ideals and generalized deriva-
tions which are responsible to extend a few results of rings.

1. INTRODUCTION AND PRELIMINARIES

Semirings have notable applications in optimization theory, theory of au-
tomata, and in theoretical computer sciences (see [|10,|11,/15]). A group of
Russian mathematicians was able to establish novel probability theory based on
additive inverse semirings, known as idempotent analysis (see [14,/16]) having
interesting applications in quantum physics. The notion of Jordan ideals was
introduced by Herstein [12] in rings which is further extended canonically by
Sara [22] for semirings. Several papers have been produced on Jordan ideals,
for reference one can see [5,7,(17-19]]. Javed et al. [13] introduced a special
class of semirings known as MA-Semirings. The class of MA-semirings properly
contains the class of rings and the class of distributive lattices. In fact every ring
is an MA-semiring but the converse may not be true in general, one can find
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examples of MA-semirings in [5,6,/13,21]]. In this paper we mostly use Lie type
theory of MA-semirings (see [1-3,6,(13,21,[22]) that may be helpful to attract
the algebraists to extend some remarkable results in this area.

Now, we present some important definitions and preliminaries. By a semiring
S, we mean a semiring with absorbing zero ’0’ in which addition is commutative.
A semiring S is said to be additive inverse semiring if for each s € S there is a
unique s’ € Ssuchthat s +s +s=sands +s+s = s, where s denotes the
pseudo inverse of s. An additive inverse semiring S is said to be an MA-Semiring
if it satisfies s + s € Z(S),Vs € S, where Z(9) is the center of S. Throughout
the paper by semiring S we mean an MA-semiring unless stated otherwise. A
semiring S is prime if aSb = {0} implies that « = 0 or b = 0 and semiprime if
aSa = {0} implies that « = 0. S is 2-torsion free if for s € S, 2s = 0 implies
s = 0. An additive mapping d : S — S is a derivation if d(st) = d(s)t + sd(t).
The concept of generalized derivation was studied for MA-semirings in [2]. An
additive mapping F; : S — S is a generalized derivation associated with a
derivation d if Fy(st) = Fy(s)t + sd(t) (see [9]). The commutator is defined as
[s,t] = st +t's. By Jordan product we mean s ot = st + ts for all s,¢ € S.
A mapping f : S — S is commuting if [f(s),s] = 0, Vs € S. An additive
subsemigroup G of S is called the Jordan ideal if so j € G forall s € S,j € G.
A mapping f : S — S is centralizing if [[f(s), s],7] = 0, Vs,r € S. We include
some MA-semiring identities useful for the sequel: If d : S — S is derivation and
s,t,z € S, then: [s, st] = s[s,t], [st, z] = s[t, z] + [s, z]t, [s,y2] = [s,t]z + t[s, 2],
[s,t] +[t,8] = t(s +5) = s(t+1), (st) = st =st,[st] =[st] = [s,1],
so(t+z) =sot+soz d(z') = (d(z)), for more details, one can see [13,[21,22].
From the literature, we recall a few results for MA-semirings which are very
useful to establish the main results.

Lemma 1.1. [1] Let G be a Jordan ideal of an MA-semiring S. Then for all j € G
following containments hold:

(). 2[S,S|GC G (b). 2G[S,S]C G (0. 452°SC G

(d). 485> C G, (o). 4555 C G.

Proof. We prove only (c) here, the other inclusions can be followed in the similar
fashion.

For any j € G and s € S, we have [}, s] € S and therefore by the definition of
Jordan ideal j o [j, s] € J. But then by the definition of MA-semiring and using
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commutator identities
jolissl= (s +si)+ (s +s)j = j*s +jsj +jsj + s(j*)
=75 +(s +9)j+5 (%) = s+ (s +5)7° +5 () = Ps + 5 (7).
This shows that 2(j%s + s'j2) € G. Also since 252 € G, 2j% 0 s = 2552 + 2525 € G.
Therefore 45%s = 2j2s + 25 j2 + 2552 + 2j%s € G and hence 4525 C G. O

Lemma 1.2. [1] Let S be a 2-torsion free prime MA-semiring and G a Jordan ideal
of S. If aGb = {0} then a =0 or b = 0.

Remark 1.1. [I]
a) If aG = {0} or Ga = {0}, then a = 0.
b) If S is semiprime and z € Z(S), 2* = 0, then = = 0.

Lemma 1.3. Let G be a Jordan ideal and d be a derivation of a 2-torsion free
prime MA-semiring S such that d(G) = {0}. Then d = 0.

Proof. By Theorem 2.4 of [1], we have either d = 0 or |G, S| = {0}. If [G,S] =
{0}, then for any j € G and s € S, we have 2js = jos € G. Therefore, by
the 2-torsion freeness, we have 0 = d(js) = d(j)s + jd(s) and using hypothesis
again, we get Gd(s) = 0. By Remark[I.1} we conclude that d = 0. g

Lemma 1.4. [2] Let G be a Jordan ideal and d be a derivation of a 2-torsion free
prime MA-semiring S such that for all u € G, d(u?®) = 0. Then d = 0

Lemma 1.5. [|6] Let G be a Jordan ideal of a 2-torsion free prime MA-semiring
S. If a € S such that for all v € G, [a,v?] = 0, then [a, S| = {0}. In particular
[u?,v?] = 0.

Lemma 1.6. [6] Let S be a 2-torsion free prime MA-semiring and G a Jordan ideal
of S. If S is non-commutative such that for all u,v € G, and r € S, a[r,uv]b = 0,
thena=0o0rb=0.

Oukhtite et al [[17] proved some results on generalized derivations satisfying
certain identities on Jordan ideals of rings. The main objective of this paper is
to prove some results of [[17] for the Jordan ideals of MA-semirings.
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2. MAIN RESULTS

Lemma 2.1. Let GG be a nonzero Jordan ideal of a 2-torsion free prime MA-semiring
S and d a nongero derivation of S. Setting Gy = G. Then for any positive integer
i, the set G; = {x € G;_; : d(x) € G;_1} nonzero Jordan ideal. Moreover if
GNZ(S) # {0}, then G; N Z(S) # {0}.

Proof. Let u,v € G;. Then d(u),d(v) € Gy. As G is closed under addition,
u+ v € G such that d(u +v) = d(u) + d(v) € G. Therefore v+ v € G;. Secondly
for any s € S and u € G;, we have d(u) € G and therefore s o d(u) € G. As
sou € G,d(sou) =d(s)ou+ sod(u) € G. Therefore s o d(u) € Gy, which
shows that (7, is Jordan ideal. Similarly, we conclude that each G; is a Jordan
ideal. From the definition, we easily see that G; C G; 1,1 =1,2,3,....

Next we show that each G; is nonzero. Suppose that G, = G # 0. We consider
As d # 0, there is at least one 0 # u € G such that d(u) # 0. Therefore G; # 0.
Consequently G, #£ 0,G35 # 0, .. ..

Finally let 0 # u € G N Z(9S) such that d(u) # 0. Then v € G; N Z(S), which
shows that G; N Z(S) # {0}. O

Theorem 2.1. Let G be a nongzero Jordan ideal of a 2-torsion free prime MA-
semiring S and F; be a generalized derivation associated with a nongero derivation
d. If F; satisfies [Fy(uv) +u'v,7] = 0 for all u,v € G, then S is commutative.

Proof. By the hypothesis, for all u,v € G,r € S, we have

2.1) [Fy(uv) + v, r] = 0.

In (2.1) taking v = u, we get [Fy(u®) + (u?)',r] = 0 and therefore
(2.2) Fy(u?) + (W?) € Z(9).

Suppose that G N Z(S) = {0}. By lemma replacing u by 2u? and v by
2[s, jk]v, i,k € G,s € Sin (2.1)), we get

(2.3) [4F(u?[s, jk]v) + 4(u?)'[s, jk]v, 7] = 0.

In view of (2.2)), using the identities of MA-semirings, we can write 4 F;(u?[s, jk]v)+
4(u?)'[s, jklv,

= 4[(Fy(u®) + (W®))s, jk]v + 4(u?d[s, jk])v + 4u[s, jk])d(v).
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In view of Lemma 1.1} using 2-torsion free of S, we obtain

Fay(u?[s, jkJv) + (u?) [s, jk]v € G
and

Fy(u®[s, jkv) + (u®) [s, jk]v € Z(9).
But then by the assumption that G Z(S) = {0}, we have
(2.4) Fy(u?[r, jk]v) + (u?) [r, jk]v = 0.
In (2.4) replacing v by 4vw? and using 2-torsion freeness, we obtain
Fy(u?[r, jkJv)w? + u*[r, jklvd(w?) + (u?) [r, jk]low? = 0.

Using again, we get u?[r, jkJvd(w?) = 0 and therefore by Lemma we
have either u*> = 0 or vd(w?) = 0. As u?> = 0 implies G = {0} which is not
possible, therefore we have Gd(w?) = {0}. By Remark 1.1} we have d(w?) = 0
which by Lemma implies that d = 0, a contradiction. Therefore, we must
have G N Z(S) # {0}.

In replacing v by 4v2?, z € G and using again, we obtain (Fj(uv)+
u'v)[x?, 7] + [uvd(x?),r] = 0. In particular, for r = z2, we have

(2.5) (Fy(wv) + u'v)[2?, 2°] + [uvd(2?), 2] = 0.

As S is MA-semiring, [z,z] = [z,2],Vx € S, therefore (Fy(uv) + u'v)[x?, 2% +
[uvd(z?), 2%] = 0 and hence

(2.6) (Fy(uv) +u'v)[2?, 2% = [uvd(z?), 27].

Using (2.6) into (2.5) and then by the 2-torsion freenessof S, we obtain [uvd(z?), z*] =
0, which further implies

2.7) wold(z?), 2°] + ulv, 2°]d(2*) + [u, 2*]vd(x*) = 0.
By the definition of MA-semiring, we have v 4+ u" € Z(S), we obtain
4d(22)u = 2(d(z) o ) o u + 2[(d(z) o z), 4.
In view of Lemma Lemma [1.1]and Remark 1.1}, for all u, > € G;, we obtain

4d(z*)u = 2(d(x) o x) o u + 2[(d(z) o x),u] € G.
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In (2.7) replacing v by v € G; and u by 4d(x?)u, x, u, we obtain 4d(x?)uv[d(x?), %]+
4d(x?)ulv, 2?]d(2?) + [4d(2*)u, 2*|vd(z*) = 0 and by MA-semiring identities and
then rearranging the terms, we have

4d(2?) (wo[d(z?), 2% + ulv, 2)d(2?) + [u, 2*|vd(2?)) + [4d(2?), 2*Juvd(x?) = 0.
Using again and hence using 2-torsion freeness of S, we obtain
(2.8) [d(2?), 2°]uvd(2?) = 0,Vz,u,v € G.
In (2.8) replacing v by 222, we obtain
(2.9) [d(2?), 2°]Juva?d(x?) = 0,Vz,u,v € Gy.
Multiplying by (2?)" from the right, we obtain
(2.10) [d(z?), Y uvd(2?)(2?) = 0,Vz,u,v € Gi.

Adding (2.9) and (2.10), we obtain [d(z?), z*|uG[d(z?),2?] = 0,Vz,u € G;. In
view of Lemma using Remark 1.1} we obtain [d(z?), 2% = 0 and by Lemma
we further obtain

(2.11) [d(z?),s] =0 =0,Vr € Gy,s € S.
In (2.11) replacing = by = + y, Vo € GG; and using it again, we get
(2.12) [d(zy) + d(yx), s] = 0.
O
As Gy N Z(S) # {0}, replacing y by z € G; N Z(S) — {0} and s by z € G, in
(2.12), we get 2[d(zz), z] = 2[d(x)z + xd(z), x] = 0 and therefore
(2.13) z[d(z), z] + z[d(z), ] = 0.

In (2.13) replacing z by 222, we obtain 22%[d(x), x| + 4zz[d(z), x] = 0 which fur-
ther implies that 2z(z[d(z), z] + z[d(2), z]) + 2zx[d(z), x] = 0. Using again,
we obtain 2zx[d(z), z] = 0 and therefore by the 2-torsion freeness 2G[d(z), z] =
{0}. By Lemma we conclude that [d(z),z] = 0. Therefore becomes
z[d(x),x] = 0 and therefore zS[d(z),x] = {0}. By the primeness of S, we have
[d(x),x] = 0,Vz € G;. By Theorem 2.2 of [5]], S is commutative.

On the similar lines of the proof of Theorem [2.1, we can establish the follow-
ing:
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Theorem 2.2. Let G be a nongero Jordan ideal of a 2-torsion free prime MA-
semiring S and F, be a generalized derivation associated with a nonzero derivation
d. If Fy satisfies [Fy(uv) 4+ uv,r] = 0 for all u,v € G, then S is commutative.

Theorem 2.3. Let G be a nongero Jordan ideal of a 2-torsion free prime MA-
semiring S and F be a generalized derivation associated with a nonzero derivation
d. If F; satisfies [Fy(uv) +vu', 7] = 0 for all u,v € G, then S is commutative.

Proof. By the hypothesis, we have for all u,v € G
(2.14) [Fy(uv) +vu',r] = 0.

Suppose that G N Z(S) = {0}. From (2.14) it is quite clear that [F,(u?) +
(u?)’,r] = 0 and therefore F;(u?) + (v?)" € Z(S). In (2.14) replacing u by 2u?
and v by 2[s, jk]v where j, k € G, s € S, we obtain

A[Fy(u?[s, jk]v) + 4[s, jk]v(u?) ,r] = 0
and therefore
[Fa(u?[s, jK))v + u®[s, jK]d(v) + [s, jK]o(u®) ] = 0.

As S is an MA-semiring, v+v" € Z(S) and v+v +v = v, therefore [(F;(u?[s, jk])+
(s, k] (u?) Yo + u?[s, jk]d(v) + [s, jk][u?,v],r] = 0, which further means that

(Fy(u?[s, jK]) + [S,jk](u2)/)v + u?[s, jk]d(v) + [s, jK][u?, v] € Z(9).

In view of Lemma following the similar arguments used in the proof of
Theorem |2.1} we infer

(Fa(w?[s, jk]) + [s, k] (u*) o + @*[s, jK]d(v) + [s, jk][u*,0] € G.
By our assumption G N Z(S) = {0}, we have
(2.15) (Fa(w’[s, jk]) + [s, jk)(u*) Jv + @[, jK]d(v) + [s, jk][u®, v] = 0.
In (2.15)replacing v by 4vu? and using 2-torsion freeness, we obtain
(Fula?[s, jk])+[s. k] (w?) You+?[s, jR]d(v)u®+[s, jk)[u?, o] +[u[s, jhJod(u?) = O,
which further gives
((Fy(u®[s, jk])+[s, jk](u?) Yo +u?[s, jk]d(v) +[s, jk][u?, v])u? +u?[s, jk]vd(u?) = 0.

Using (2.15)) again, we get u?[s, jk]vd(u?) = 0. By Lemma we have either
u? = 0 or Gd(u?) = {0} which further implies by Remark G = {0} or
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d(u?) = 0. As G # {0}, therefore d(u®) = 0,Yu € G. By Lemma[l.4 d = 0, a
contradiction. Hence we conclude that GN Z(S) # {0}. In replacing v by
4vr? and r by u?, we get 4[F;(uvr?) + va?u’, 2% = 0, which implies [F(uv)z? +
uvd(x?) + vr?u', 2?] = 0 and therefore [Fy(uv), 22]2® + [uvd(x?) + va?u', 2%] = 0.
Using (2.14), we obtain [vu, 2222 + [uvd(2?) + va*u’, 2?] = 0 and therefore

(2.16) [uvd(2?), 2% + [v[u, 7%], 2%] = 0.

In (2.16) replacing u by 4uz?, we obtain [4ux?vd(x?), 2% + [v[4uz? 2?], 2% = 0
and using MA-semiring commutators identities and 2-torsion freeness, we have

(2.17) [uz?vd(2?), 2% + [v[u, 27], 2*]2* = 0.
Multiplying by z? from the right we get
[uvd(2?), 2°)2* + [v[u, 2%], 2%]2* = 0

and hence
(2.18) [w[u, 2?], 2¥2? = [uvd(z?), 2%)(2?) .
Using into (2.17)), we get

[uz?vd(z?), 2% + [uvd(z?)(2?) , 2% = 0
and therefore
(2.19) [u[2?, vd(x?)], 2°] = 0.

On the similar lines of the proof of Theorem [2.1], we infer 4vd(2?)w € G, there-
fore replacing u by 4vd(z*)w in (2.20), we obtain

Alvd(x*)w[z?, vd(2?)], 7% = 0

and using MA-semiring identities, we obtain

[vd(z?), 2*|w[x?, vd(x?)] + vd(2?)[w([z?, vd(z?)], %] = 0.
Using (2.19) again, we obtain [vd(2?), 2*]G[vd(z?),2%] = {0}. By the Lemma
we obtain for all v,z € G
(2.20) [vd(z?), %] = 0.
By our assumption GN Z(S) # {0}. Replacing v by z € GN Z(S) — {0}, we have
28[d(z?), z?] = {0}, which further implies by the primeness [d(z?),2?] = 0 for
all x € G. By Lemma [1.5] [d(z?),s] = 0, for all z € G, s € S, which is equation
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(2.11) of Theorem therefore the remaining part is same as the proof of
Theorem [2.1] 0

On the same lines of the proof of Theorem we can prove the following:

Theorem 2.4. Let G be a nongero Jordan ideal of a 2-torsion free prime MA-
semiring S and F,; a generalized derivation associated with a nonzero derivation
d. If Fy satisfies [Fy(uv) 4+ vu,r] = 0 for all u,v € G, then S is commutative.

Theorem 2.5. Let G be a nongero Jordan ideal of a 2-torsion free prime MA-
semiring S and F, be a generalized derivation associated with a nonzero derivation
d. If Fy satisfies [Fy(u)Fy(v) +u'v,7] = 0 for all u,v € G, then S is commutative.

Proof. By the hypothesis, we have
(2.21) [Fy(u)Fy(v) +w'v,r] =0, Yu,v € G,r € S.

Assume that G N Z(S) = {0}. In (2.21) replacing v by 4v?[s, zy|, where s €
S,z,y € G and using 2-torsion freeness, we obtain [(F;(u)Fy(v?) 4 u'v?)[s, 2] +
Fy(u)v*d[s, zy],r] = 0, which further gives

(Fa(u) Fy(v®) + u'v?)[s, xy] + Fy(u)v?d[s, zy] € Z(S).

By definition of Gy, « € G, if d(z) € G. In view of lemmal|l.1} we see that for all
T,Y,u,v € Gl;
S((Fa(u) Fafv?) + ' v?)[s, 2] + Fa(w)v?d]s, zy))

= 2(2[s(Fy(u) Fy(20%) + u'20%), zy] + 2(Fy(u)(20)%d[s, zy]) € G.

In view of our assumption that G N Z(S) = {0}, by the 2-torsion freeness of S,
we have for all z,y,u,v € G

(2.22) (Fy(u)Fy(v?) + u'v?)[s, zy] + Fy(u)v?d[s, zy] = 0.
In (2.22) replacing y by 4y%s where y € G, we get
(Fy(u)Fy(v?) 4+ u'v?)[s, zy2s] + Fy(u)v?d[s, xys] = 0.
Using MA-semiring commutator identities, we further obtain
(Fy(u) Fy(v?) 4+ u'v?)[s, zy?]s + Fy(u)v?d[s, zy?])s) = 0
and therefore

(Fy(u)Fy(v?) + u'v?)[s, 2y%]s + Fy(u)vd[s, zy?]s + Fy(u)v?[s, zy?]d(s) = 0.
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Using (2.22) again, we obtain Fj(u)v?[s, xy?]d(s) = 0 and hence
(2.23)  Fy(u)v*x[s,y?]d(s) + Fy(u)v?[s, x]y*d(s) = 0, Va,y,u,v € G1,s € S.

As 8F,(u)v*[t, zw] = 2(Fy(u)4v?)[t, zw] € Gy, Yu,v,w,z € Gy,t € S, replacing
x by 8F;(u)v?[t, zw] in (2.23) and using 2-torsion freeness, for all z,y,u,v,w €
Gi,s € 5, we get

Fy(u)v® Fy(w)o?[t, zw][s, y?)d(s) + Fa(u)v®[s, Fa(u)v?[t, zw]]y*d(s) = 0
and by using identities, we have
Fa(u)v*Fa(u)v?[t, zw][s, y*d(s) + Fa(u)v?[s, Fa(u)v?][t, zw]y’d(s)
+Fy(u)v? Fy(u)v?[s, [t, zw]]y*d(s) = 0.
Using 2-torsion freeness and again, we obtain
(2.24) Fy(u)v?[s, Fy(u)v?][t, vw]y?d(s) = 0.

By lemma we obtain either Fy(u)v?[s, Fy(u)v?] = 0 or y?d(s) = 0. For the
second possibility, we obtain either G; = {0} or d = 0 and both contradict the
hypothesis. On the other hand suppose that

(2.25) Fy(u)v?[s, Fy(u)v?] =0

In replacing s by st and using again, we obtain F;(u)v?s(t, F(u)v?]
= 0 and hence by the primeness of S, we have either Fj;(u)v* = 0 or [t, Fy(u)v?] =
0. The second one implies that F,(u)v? € Z(S). Also since 4F;(u)v? € G and
by assumption G; N Z(S) = {0}, therefore 4F;(u)v? = 0 which implies by the
2-torsion freeness that Fj;(u)v? = 0. We conclude that in both the cases

(2.26) Fy(u)v* =0, Yu,v € G1.

In (2.26) replacing u by 2u?r, we get 2F;(uw?)v? = 0 which implies F;(u)w?v? +

ud(w?)v? = 0. Using (2.26)) again and then using RemarK1.1] we get d(w?)v? =

0, which further implies either d = 0 or G; = {0} which both contradict the

hypothesis. Hence our supposition is wrong and G N Z(S) # {0}. For any

z € GNZ(S) — {0}, replacing v by v o z = 2vz in (2.21]), we get for all u,v € G,
2[Fy(u) Fy(vz) + u'vz, 7] = 0,

which implies that

[Fy(u)Fy(v)z + Fy(u)vd(z) + u'vz, 1] = 0,
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and therefore

2[Fy(u) Fy(v) + v, 7] + [Fy(u)vd(2), 7] = 0,
and using (2.21) again, we get
(2.27) [Fy(u)vd(z),r] = 0.
In (2.27) replacing z by 22 and using (2.27) again, we get 4F,(u)vd(z)[z,r] = 0,
and therefore by the 2-torsion freeness, we further get F,(u)Gd(2)[z,r] = {0}.
By Lemma [1.2) we obtain either F;(u) = 0 or d(z)[z,7] = 0. If Fy(u) = 0, then
d(u) = 0 and by Lemma d = 0, a contradiction. On the other hand if
d(z)[z,7] = 0, then after appropriate replacements we obtain d(z) = 0 or [z,r]| =
0 which further implies d(z) = 0 or [d(z),r] = 0. Suppose that [d(z),r] = 0.
Then d(z) € Z(S), therefore (2.27) becomes [Fy(u)v,r]d(z) = 0 which further
implies [F,;(u)v,r]Sd(z) = {0}. By the primeness of S, we have either d(z) = 0
or [Fy(u)v,r] = 0. Suppose that

(2.28) [Fy(u)v,r] = 0.

In (2.28) replacing v by 4v%s, where s € S, we obtain 2[F;(u)2v%s,r] = 0. Using
2-torsion freeness and (2.28)) again, we obtain

(2.29) Fy(u)v?[s,r] = 0.

In (2.29) replacing s by ¢s and using (2.29) again, we obtain Fj(u)v?S[s,r| =
{0}, which by the primeness of S implies either S is commutative or Fy(u)v? = 0.
Suppose that

(2.30) Fy(u)v? = 0.

In (2.30) replacing u by 4uw? and using (2.30) again, we obtain Gd(w?)v? = 0.
By Remark [I.1] we have

(2.31D) d(w?)v* = 0.
In (2.31) replacing v by u + v and using (2.31) again, we get
(2.32) d(w*)vu + d(w?)uv = 0.

In (2.32)) replacing « by 2u? and using (2.32) again, we obtain d(w?)Gu? = {0}.
By Lemma we obtain either d(w?) = 0 or u> = 0 which respectively imply
either d = 0 or G = {0} and both contradict the hypothesis.
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Now we suppose the case when d(z) = 0, for all z € G N Z(S). In (2.21)
replacing v by 4vx?s, we obtain

A[Fy(u) Fy(va?) + u'va?s + Fy(u)vd(z?),r] = 0, Yu, v,z € G,r € S.
Taking r = 2% and using again
(2.33) [Fy(u)vd(z?), 2% = 0.
In(2.33) replacing u by 4ux?, we obtain
[Fy(u)(4z®v)d(2?) + dud(2?)vd(z?), 2*] = 0

and using (2.33]) we obtain
(2.34) [ud(x?)vd(z?), 2] = 0.

As above 4d(z*)u € G,Vu,z € Gy, Replacing u by 4d(z?)u in (2.34), we obtain
for all u, v,z € Gy,
[d(2?), 2*|ud(x®)vd(2?) = 0,

and therefore

[d(2?), 2°]ud(2*)G 1 d(2*) = {0}.
By Lemma [1.2] we obtain either d(z?) = 0 or [d(2?), z*ud(2*) = 0. If d(2?) = 0,
then d = 0, a contradiction. On the other hand [d(z?), 2%]Gd(x?) = {0} for all
r € Gy. As above d(z?) = 0 leads to d = 0, therefore for all x € G, we have
[d(2%), 2?] = 0. Applying Lemma [1.5], we have

(2.35) [d(z?),7] = 0,Vr € S,z € Gy.

In (2.35) replacing x by s o z = 2sz and using the fact that d(z) = 0, we ob-
tain [sd(s) + d(s)s,r] = 0 and replacing s by s* it further gives d(s?)[s*,7] = 0
and hence d(s*)S[s?,7] = {0}. By the primeness we obtain either d(s*) = 0 or
[s%,r] = 0. If d(s*) = 0, then by Lemma [1.4]d = 0, a contradiction. Secondly if
[s*,7] = 0, then we can easily see that S is commutative. O

On the similar lines of the proof of Theorem we can establish the follow-
ing:

Theorem 2.6. Let G be a nongero Jordan ideal of a 2-torsion free prime MA-
semiring S and F} be a generalized derivation associated with a nonzero derivation
d. If F, satisfies [Fy(u)Fy(v) + uv,r] = 0 for all u,v € G, then S is commutative.



COMMUTATIVITY OF SEMIRINGS THROUGH GENERALIZED DERIVATIONS 2723

Theorem 2.7. Let G be a nongero Jordan ideal of a 2-torsion free prime MA-
semiring S and F, be a generalized derivation associated with a nonzero derivation
d. If F,; satisfies

(2.36) [Fy(u)Fy(v) +vu',r] =0, for all u,v € G,
then S is commutative.

Proof. Firstly suppose that GNZ(S) = {0}. In (2.36)), replacing v by 4[s, pq|[t, zy],
where s,t € S,p,q,z,y € G and then using the definition of MA-semiring, we
obtain

[Faw) Fa([s, pa)) [t 2y] + [s, pallt, 2y] (' + u+u') + Fa(u)[s, pald([t, zy)),r] = 0.
Asu+u' € Z(S), therefore after simplification, we obtain
(Fa(u)Fa([s, pa]) + [s. pau)[t, wy] + [s, pal [u, [t, xy)] + Fa(w)ls, pald([t, 2y]) € Z(S).
On the other hand, as above we can easily see that for all u, v, x,y € Gy, s,t € S,
(Fa(u)Fa([s, pa]) + [, palu)[t, wy] + [s, pal[u, [t, xy]] + Fa(u)[s, pad([t, zy)) € G.

By the assumption G N Z(S) = {0}, we have
(2.37)
(Fa(u)Falls, pa]) + [s, palu)[t, wy] + [s, pal[u, [t, xy]] + Fa(w)ls, pald([t, zy]) = 0.

In (2.37) replacing t by tzy and using MA-semiring identities, we get
(Fa(w) Fal[s. pal) + [s, palu)[t, wylwy + [s, pal[u, [t, zylzy]

+Fa(u)s, pald([t, zy])zy + Fa(u)ls, pq|[t, zy]d(zy) = 0.
Using again, we obtain
(2.38) [s, pa][t, zylu, zy] + Fa(u)]s, pgl[t, zy]d(zy) = 0.
In (2.38) replacing p by 4sp?, we obtain
(2.39) sls, p*q)[t, 2wyl [u, xy] + Fa(u)s]s, pq][t, zyld(zy) = 0.
Multiplying by s from the left, we have
sls, pallt, wyl[u, wy] + sFa(u)]s, pal[t, zyld(zy) = 0,

which further implies

(2.40) sls, pallt, wy)[u, wy] = s Fa(u)[s, pq][t, wyld(zy).
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Using into (2.39), we obtain

(2.41) [Fy(u), s[s, p*q|[t, zyld(zy) = 0,VYp, q,u,x,y € G1,s,t € S.

In (2.41) replacing ¢ by [F,(u), s][s, p*q]t and using again, we get
[Fa(w), s][s, p*ql[[Fa(w), s][s, p*ql, wy] Sd(xy) = 0.

As S is prime, we have either d(xy) = 0 or [Fy(u), s][s, p*q][[Fa(u), s][s, p*q], zy] =
0. If d(zy) = 0, then by Lemma(1.4] d = 0, a contradiction. On the other hand, if
[Fa(u), s][s, p?q][[Fa(u), s][s, p*q|, xy] = 0, then by the MA-semiring identities, we
can write

(2.42)

[Fa(u), slls, p*qla([Fa(w), s][s, pq], y] + [Fa(u), slls, p*ql[[Fu(w), s][s, p*q], z]y = 0.

In (2.42) replacing y by 2y[t, ], t,r € S,
[Faw), s][s, p*qlz[[Fa(w), s|[s, p*q], y[t, ]]

+[Fd(u)v S] [SvaQ]HFd(U)7 S} [S7p2(ﬂ7 $]y[t, T] =0,

and after simplification, it further gives
[Fa(u), sl[s, p*qJx[[Fa(w), s][s, p*q], ][t ]
+[Fu(u), ][, pqley([Fa(u), s]ls, p*q), [t 7] +[Fa(u), s]ls, p*ql[[Fa(w), s][s, p*q), x]y[t, r] =
0

Ijsing again, we obtain
[Fa(u), s][s, p*qJoG[Fu(w), s][s, p*ql, [t, 7] = {0}.

By Lemma [1.2] and hence by Remark we obtain either [Fy(u), s][s, p?q] = 0
or [[Fu(u), s][s, p*q], [t,7]] = 0. Firstly assume that

(2.43) ([Fa(u), slls, p*al, [t, 7] = 0.
In replacing r by rt, we get
[[Fa(w), sl[s, p*q), [t. r]]t + [t, r][[Fu(u), s][s, pq], ] = O,
and using again, we obtain
(2.44) t,7][[Falu). s][s, 5, ] = 0.
In replacing r by rm, m € S and using again, we obtain
[t 7] S[[Fu(u). s][s, p°ql, t] = {0}
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and taking r = [F;(u), s|[s, p*q], we can write
[Fa(u), s][s, p*a), )S[[Fa(u), s][s, p*q], 1] = {0}
By the primeness, we get [[Fy;(u), s][s, p?q], t] = 0, which implies
[Fu(u), s][s.p*q] € Z(S5)
and therefore becomes
[Fa(w), s]ls, p*q] S[t, zyld(zy) = {0},
which further gives either S is commutative or [Fj(u), s|[s, p?q] = 0. Assume that
(2.45) [Fa(u), s][s, p*q) = 0.
In (2.45) replacing ¢ by 2[t, xy]q, we get
2(Fy(u). slp[t, xyl[s, g + [Fa(w), s][s, p*(2[t. zy])lg = 0,
using again and the 2-torsion freeness, we obtain
2(Fy(u), slp*[t, zyl[s, q] = 0.

Using Lemma [1.6] we have either [F;(u), s]p? = 0 or [S,G4] = {0}. If [S,G4] =
{0}, then by Theorem 2.3 of [1]], S is commutative. From the secondly possi-
bility, since G; # {0}, we obtain [F,;(u),s] = 0. Therefore the hypothesis be-
comes [Fy(v)Fy(u) 4+ v'u, s] = 0,Yu,v € Gy, s € S. Therefore for the assumption
G1 N Z(S) = {0}, following the same arguments of the proof of Theorem [2.4,
we obtain d(u?) = 0,Vu € G, and therefore by the Lemma we getd =0, a
contradiction. Consequently G N Z(S) # {0}.
In (2.36) replacing v by 4vx?, we obtain

A[Fy(u) Fy(v)2? + Fy(u)vd(z?) +va?u’ 7] = 0, for all u,v € G.
Asforeachsc S,s+s +s=sands+s € Z(S), therefore
[Fy(u) Fy(v)a? + vu' 22 + Fy(u)vd(x?) + vux? + va?u’,r] = 0,
which further implies
(2.46) [(Fy(u)Fy(v) 4+ vu)2? + Fy(u)vd(z?) + v[u, 2%, 7] = 0.
In (2.46) replacing r by z? and using again, we find
(2.47) [Fy(u)vd(z?) + v[u, 2%], 2%] = 0.
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In replacing u by 4ux?, we get
A[Fy(uz®)vd(2?) + v[ua®, 2%, 2% = 0
which further gives
[Fy(u)r?vd(2?) + ud(x?)vd(2?) + v[u, 2%]2?, 2%] = 0,
and therefore
(2.48) [(Fy(u)2® + ud(2?))vd(2?), %] + [v]u, 2?], 2*]2* = 0.
In (2.47) replacing v by 4z%v, we obtain
[Fy(u)zvd(2?), 2%) + 2°[v[u, 2°], 2%] = 0,
which further implies
(2.49) [Fy(w)x?vd(2?), 2] = 22[v'[u, 27, 27).
Using into (2.48), we obtain
[ud(z®)vd(x?), 2% + [v[u, 2%, 2¥a? + 2 [v [u, 2?], 2%] = 0,

and therefore
(2.50) [ud(x*)vd(z?), 2*] + [[v[u, %], 2%], 2°] = 0.
In (2.50) replacing u by 4uz? and using 2-torsion freeness, we obtain

[uz?d(x?)vd(z?), 2% + [[v[uz?, 2°], %], 2°] = 0,
and therefore
(2.51) [uz?d(z®)vd(z?), 2%] + [[v[u, %], %], 2*]2* = 0.
Multiplying by z? from the right, we obtain

[ud(x*)vd(z?), 2*)2* + [[v]u, 2], 2%], 2%]2* = 0,
which further implies
(2.52) [ d(z?)vd(2?)2?, 2?] = [[v][u, 2?], 2?], 222>
Using into (2.51)), we obtain

[uz?d(z?)vd(2?), 2% + [u d(z*)vd(2*)2?, 2%] = 0,

and therefore

(2.53) [u[z?, d(z*)vd(x?)], 2] = 0.



COMMUTATIVITY OF SEMIRINGS THROUGH GENERALIZED DERIVATIONS 2727
By the definition of G and GG, we observe that
4d(x?*)vd(x*)u = 4(d(x) o x)yd(x?*)u = 2[d(x) oz, vd(x*)u] +2(d(z) o) o (vd(2?)u).

Therefore 4d(z*)vd(z*)u € G, for all u,v,z € G;. In (2.53) replacing u by
4d(z*)vd(x?*)u, for all u, x,v € G; and then using 2-torsion freeness, we obtain

[d(z*)vd(2?), 2% G [d(2?)vd(z?), 2] = {0}.
By Lemma|1.2] we obtain
(2.54) [d(z*)vd(2?), 2% = 0.

As above 8wd(z*)v € G, for all w € G, z,v € G, therefore replacing v by
Swd(x?)v in (2.54) and then by the 2-torsion freeness of S, we obtain

[d(z*)wd(2?)vd(2?),2%] = 0.

Using (2.54) again, we can find [d(2?)w, 2%]d(2?)Gd(2?) =
we obtain either [d(z?)w, z*]d(z?) = 0 or d(z?) = 0. If d(x?)
d = 0, a contradiction. Therefore we must have

{0}. By Lemma[1.2]

0, then by Lernrna

(2.55) [d(2*)w, 2*)d(x*) = 0.
From (2.54), using MA-semiring identities, we can write
[d(2?)v, 2?]d(2?) + d(a)vld(2?), 2%] =0,

and using in particular for w = v € Gy, we find d(2?)v[d(z?),2?] =

0,Vv,x € G; and therefore by Lemmall.2] we have either d(z*) = 0 or [d(2?), z%] =
0. If d(z*) = 0, then d = 0, a contradiction. On the other hand if [d(z?), z*] = 0,
then following the same arguments as above, we conclude the required re-
sult. O

On the similar lines of the proof of Theorem [2.7| we can establish the follow-
ing:

Theorem 2.8. Let G be a nonzero Jordan ideal of a 2-torsion free prime MA-
semiring S and F, be a generalized derivation associated with a nongzero derivation
d. If F, satisfies [Fy(u)Fy(v) + vu,r] = 0 for all u,v € G, then S is commutative.
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3. OPEN PROBLEMS

The results of this paper are proved for the generalized derivations satisfying
central identities on Jordan ideals of prime MA-semirings. It would be interest-
ing to investigate the results of this paper for semiprime MA-semirings and for
the Lie ideals instead of Jordan ideals.
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