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A NUMERICAL STUDY OF A HOMOGENEOUS BEAM WITH A TIP MASS

Yapi S.A. Joresse1, Bomisso G. Jean-Marc, Yoro Gozo, and Touré K. Augustin

ABSTRACT. In this paper, we prove the existence and uniqueness of the weak
solution of a flexible beam that is clamped at one end and free at the other; a
mass is also attached to the free end of the beam. Also, we construct a finite
element method, based on piecewise cubic Hermitian shape functions. Next,
we derive error estimates for the semi-discrete Galerkin approximations. The
results are derived from [2]. Finally, we implement the results of numerical
schemes developed.

1. INTRODUCTION

In this work, we present some sufficient conditions for the existence and
uniqueness of the weak solution and we develop a numerical method for an
Euler-Bernoulli beam equation. The hybrid system submitted to our study con-
sists of a flexible beam that is clamped at one end and free at the other end; a
mass is also attached to the free end. The equations of motion for this system
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are given by:

wtt(x, t) + wxxxx(x, t) = 0, x ∈ (0, 1), t > 0,(1.1)

w(0, t) = wx(0, t) = wxx(1, t) = 0, t ≥ 0,(1.2)

−wxxx(1, t) +mwtt(1, t) = u(t), t ≥ 0,(1.3)

where m > 0 is the tip mass, w is the amplitude of the vibration and u(t) is the
boundary control force applied at the free end of the beam; a subscript letter
denotes the partial derivation with respect to that variable. For simplicity, and
without loss of generality, the length of the beam, the mass per unit length, and
the flexural rigidity of the beam are chosen to be unity. The following linear
feedback control law is proposed in [5]:

u(t) = −αwt(1, t) + βwxxxt(1, t),

t ≥ 0 (α and β are positive constants). Then, the closed-loop system becomes:

wtt(x, t) + wxxxx(x, t) = 0, x ∈ (0, 1), t > 0,(1.4)

w(0, t) = wx(0, t) = wxx(1, t) = 0, t ≥ 0,(1.5)

wxxx(1, t) = mwtt(1, t) + αwt(1, t)− βwxxxt(1, t) t ≥ 0.(1.6)

The total mechanical energy E : R+ −→ R+ to the above system is given by

(1.7) E(t) =
1

2

∫ 1

0

w2
xxdx+

1

2

∫ 1

0

v2dx+
K

2
γ2.

It has been shown in [5] that

d

dt
E(t) = −K

β
w2
xxx(1)− Kmα

β2
v2(1) ≤ 0.(1.8)

The expression (1.8) shows that the energy E(t) decreases over time and there-
fore defines a Lyapunov function.

Following [9,14], for β = 0, it has been shown that the system with this feed-
back law u(t) = −αwt(1, t) leads to an asymptotic stability but not to an expo-
nential stability. In [5] on the other hand, for β a positive constant, the authors
showed that there is uniform stability of the system. To show that the system is
exponentially stable for any positive reals α and β, the energy multiplier method
is used. In addition, they analyzed the spectrum of the system for a special case
where m = αβ and proved that the spectrum determines the exponential decay
rate for the case considered for almost all α > 0. It has been shown in [7] that
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a sequence of generalized eigenfunctions of problem (1.4)–(1.6) forms a Riesz
basis on the suitable Hilbert space.

Our main contribution is, on the one hand, to show the existence, the unique-
ness and the higher regularity of the weak solution of the system after having
formulated it as an evolution problem. To do this, we base ourselves on the
work done in [3,10]. The proof of existence being based on the Faedo-Galerkin
method as well as the proofs of existence developed in Evans [6], Lions [8].
The major challenge of this article is the taking into account of the boundary
condition (1.6) which makes the resolution of the problem more difficult than
the classical cases approached in [3, 10]. We are therefore led to use certain
strategies that will allow us to solve this problem. On the other hand, it is a
question of developing a convergent numerical method, which faithfully repro-
duces certain properties of this problem such as stability and energy decay.

This article is subdivided into five sections. In the section 2 of this paper, we
formulate the system (1.4)–(1.6) as a Cauchy problem and study the stability of
the closed-loop system through Lyapunov method. In section 3, from the weak
formulation, by refering to the properties of existence and uniqueness expressed
in Lions [8] and Temam [15], we show the existence and uniqueness of the weak
solution. In section 4, we define the method to be used, namely the method of
the finite elements of Hermite and we study the error estimates for the semi-
discrete scheme as well as convergence. In the last section, we implement the
results of numerical schemes developed.

2. FORMULATION OF THE SYSTEM IN THE CONTEXT OF THE C0-SEMIGROUP OF

CONTRACTIONS THEORY

2.1. Semigroup formulation. To analyse the system given by (1.4)–(1.6), we
first introduce the following spaces. We introduce the functional space

H2
E(0, 1) = {w ∈ H2(0, 1), w(0) = wx(0) = 0},

where Hm(0, 1) is defined by

Hm(0, 1) = {w : [0, 1] −→ R|w,w1 =
∂w

∂t
, . . . , wm =

∂mw

∂tm
∈ L2(0, 1)},
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we denote by ‖.‖m the associated norm of the space Hm(0, 1), and

L2(0, 1) = {w : [0, 1] −→ R|
∫ 1

0

w2dx <∞}

with ‖.‖ the associated norm of the space. Moreover, we introduce the energy
space:

H := {z = (w, v, γ)T |w ∈ H2
E(0, 1), v ∈ L2(0, 1), γ ∈ R}

= H2
E(0, 1)× L2(0, 1)× R,

(2.1)

the superscript T stands for the transpose.
In the space H, we define the inner-product:

(2.2) < z1, z2 >H=

∫ 1

0

(w1)xx(x)(w2)xx(x)dx+

∫ 1

0

v1(x)v2(x)dx+Kγ1γ2,

where z1 = (w1, v1, γ1)
T ∈ H; z2 = (w2, v2, γ2)

T ∈ H and K =
β2

m+ αβ
> 0.

We denote by ‖.‖H the norm associated to the inner-product in the space H.
D(0, 1) := the space of smooth functions with compact support,
D′(0, 1) := the space of continuous linear functions.

Next, we define an unbounded linear operator L : D(L) ⊂ H −→ H with the
domain

D(L) =
{

(w, v, γ)T |w ∈ H4(0, 1) ∩H2
E(0, 1), v ∈ H2

E(0, 1),

wxx(1) = 0, γ = −wxxx(1) +
m

β
v(1)

}
, ∀t > 0

(2.3)

defined by

L

wv
γ

 =

 v

−wxxxx
− 1
β
γ − 1

β
(α− m

β
)v(1)

.

The equations (1.4)− (1.6) can be written in the following abstract form

(2.4)

zt = Lz(t)

z(0) = z0 ∈ H,

where

z(t) = (w(., t), wt(., t),
m

β
wt(1, t)− wxxx(1, t))T ; z0 = (w0, w1,

m

β
w1(1)− w′′′0 (1))T ,
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for all t > 0. Therefore, this result follows immediately from the theory of
operator semigroups (see [13]).

Theorem 2.1. The operator L defined by (2.3)− (2.4) generates a C0-semigroup
of contractions on H, denoted by {S(t)}t≥0.

Proof. (see [5]). �

The next result follows immediately from Theorem 2.1.

Theorem 2.2. The equation (2.4) has a unique solution

z(t) = S(t)z0 ∈ C([0,∞);H),∀ z0 ∈ H.

2.2. Stability analysis using Lyapunov. The studied systems can only be known
approximately (the parameters of the system may not be known precisely or
terms may be missing in the equations). Thus, the approximations used there-
fore call into question the validity or the relevance of numerical solutions. To
overcome this difficulty, several concepts of stability have been introduced in
the study, such as Lyapunov’s stability, Lagrange’s stability and others. Here, we
use the Lyapunov method which allows us to study the stability of the system
without knowing the explicit solution of the studied system.

We give the definition of a Lyapunov function in a Hilbert space to fix ideas:

Definition 2.1. The functional p : H −→ R is called the Lyapunov functional of
the evolution problem (2.4) if the following propositions are verified:

(i) p(z) > 0, ∀z ∈ H − {0},
(ii) p(0) = 0,

(iii) ṗ(z0) ≤ 0 ∀z0 ∈ H.

Consider the following Lyapunov candidate, the functional p : H −→ R de-
fined by:

(2.5) p(z) =
1

2

∫ 1

0

w2
xxdx+

1

2

∫ 1

0

w2
t dx+

K

2

(
m

β
wt(1)− wxxx(1)

)2

.

Analogously as in (1.8), for all classical solutions z it follows that:

(2.6)
d

dt
p(z) =

d

dt
‖z‖2H ≤ 0,

hence, time evolution of the Lyapunov functional p along the classical solutions
is non-increasing. We can say that the system (2.4) is stable in the sense of
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Lyapunov. Thus, from Theorem 2.1, the decay of energy along the classical
solutions can be extended to mild solutions:

Theorem 2.3. Assume that z(t) is the mild solution of (2.4) for some z0 ∈ H. Then
z(t) −→ 0 in H when t −→∞.

Now, the system of equations (1.4) − (1.6) is written in the weak form, and
the existence and uniqueness of the weak solution are demonstrated.

3. EXISTENCE, UNIQUENESS AND HIGHER REGULARITY OF THE WEAK SOLUTION

3.1. Weak formulation. Multiplying (1.4) by ϕ(x) ∈ H2
E(0, 1) and integrating

over (0, 1), we have:

(3.1)
∫ 1

0

wttϕdx+

∫ 1

0

wxxxxϕdx = 0, ∀ϕ ∈ H2
E(0, 1), t > 0.

Integrating twice by parts and taking into account the boundary conditions, it
follows:

(3.2)
∫ 1

0

wttϕdx+

∫ 1

0

wxxϕxxdx+ wxxx(1, t)ϕ(1) = 0, ∀ϕ ∈ H2
E(0, 1), t > 0.

∫ 1

0

wttϕdx+

∫ 1

0

wxxϕxxdx+mwtt(1, t)ϕ(1) + αwt(1, t)ϕ(1)(3.3)

−βwxxxt(1, t)ϕ(1) = 0,∀ϕ ∈ H2
E(0, 1), t > 0.

In the definition of the weak formulation a very important element is the ap-
propriate space setting. We rely on the work done in [1] for more appropriate
space choices. We define the Hilbert space X by

X = R2 ×H2
E(0, 1) = {ŵ = (w(1), wx(1), w);w ∈ H2

E(0, 1)}

with the inner product:

(3.4) < ŵ1, ŵ2 >X= 〈(w1)xx, (w2)xx〉L2(0,1) .

We also define the Hilbert space

Z = R2 × L2(0, 1) = {ŷ = (y(1), yx(1), y); y ∈ L2(0, 1)}

with the inner product:

(3.5) < ŷ1, ŷ2 >Z= my1(1)y2(1)+ < y1, y2 >L2(0,1) .
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Assume that the injection X ⊂ Z is continuous. There is a canonical map T :

Z ′ −→ X ′. Identifying Z ′ with Z and using T as a canonical embedding from Z ′

into X ′, we can write

X ⊂ Z ≡ Z ′ ⊂ X ′

where all the injections are continuous and dense (provided X is reflexive).
One says that Z is the pivot space, where X ′ and Z ′ are respectively the space
of continuous linear functionals on X and Z. Consider the bilinear forms:

c1 : X ×X −→ R (ŵ1, ŵ2) 7→ c1(ŵ1, ŵ2) =< ŵ1, ŵ2 >X

and

c2 : Z × Z −→ R (ŷ1, ŷ2) 7→ c2(ŷ1, ŷ2) = αy1(1)y2(1)− β(y1x)xx(1)y2(1).

Here, the term wxxxt(1) needs to be considered. Then, the bilinear form c2(., .)

with the first order boundary term in t requires a slight generalization of the
standard theory (as presented for example in section 7.2 of [6]).

Definition 3.1. Let T > 0 be fixed. We say that ŵ = (w(1), wx(1), w) is a weak
solution of problem (1.4) − (1.6) on (0, 1) if ŵ ∈ L2(0, T ;X) ∩ H1(0, T ;Z) ∩
H2(0, T ;X ′) and satisfies

(3.6) < ŵtt, ϕ̂ >X,X′ +c2(ŵt, ϕ̂) + c1(ŵ, ϕ̂) = 0

for almost everywhere t ∈ (0, T ) and for all φ̂ ∈ X with the following initial
conditions:

ŵ(0) = ŵ0 = (w0(1), (w0)x(1), w0) ∈ X(3.7)

ŵt(0) = v̂0 = (v0(1), (v0)x(1), v0) ∈ Z.(3.8)

In the Definition 3.1, the bilinear form < ., . >X,X′ is the duality pairing be-
tween X and X ′. Moreover, the duality pairing on X ′×X can be identified with
the unique extension of the inner product in Y . In (3.7), w0(1) and (w0)x(1)

are the boundary traces of w0 ∈ H2
E(0, 1), but in (3.8), v0(1) and (v0)x(1) are

additionally given values. Note that in the case where ŵ ∈ H2(0, T ;X), the
formulation (3.6) is equivalent to egality (3.3).

In the next section, we present two measure theoretic lemmas which will be
used in the following discussions. We just remind you what intermediate spaces
are. For more details see [8].
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The space [X,Z]θ with 0 ≤ θ ≤ 1 is the intermediate space defined as in
[8], for X and Z two Hilbert spaces, X ⊂ Z, X dense in Z with continuous
injection by means of domains of positive self-adjoint operators. Moreover for
θ = 0, [X,Z]0 = X and for θ = 1, [X,Z]1 = Z. Since X ⊂ [X,Z]θ ⊂ Z, each
space being dense in the following one, we have also by duality for θ ∈ ]0, 1[:

Z ′ ⊂ [X,Z]′θ ⊂ X ′

each space being dense in the following one.

3.2. Existence and uniqueness of the solution. In order to give a meaning to
the initial conditions (3.7) and (3.8) we shall use the following lemma (special
case of Theorem 3.1 in [8]).

Lemma 3.1. Let X and Z be two Hilbert spaces, such that X is dense and continu-
ously embedded in Z. Assume that w ∈ L2(0, T ;X) and v = wt ∈ L2(0, T ;Z) then
w ∈ C([0, T ]; [X,Z] 1

2
) after, possibly, a modification on a set of measure zero.

We need the following duality theorem and Theorem 3.1 for the proof of
Theorem 3.2.

Lemma 3.2. Let X and Z be two Hilbert spaces, such that X is dense and
continuously embedded in Z. For all θ ∈ ]0, 1[,

[X,Z]′θ = [Z ′, X ′]1−θ.

with equivalent norms.

Theorem 3.1. Let H2
E(0, 1) be a subspace of H2(0, 1). Then there exists a infinite

sequence of functions {ϕi}∞i=1 such that: {ϕi}∞i=1 is an orthogonal basis of H2
E(0, 1)

and {ϕi}∞i=1 is an orthonormal basis of L2(0, 1).

Proof. see [3,10] �

3.2.1. Existence of the weak solution.

Theorem 3.2. The weak formulation (3.6) − (3.8) has a unique solution ŵ such
that:

(3.9) ŵ ∈ L∞(0, T ;X), ŵt ∈ L∞(0, T ;Z),

(3.10) ŵ ∈ C([0, T ]; [X,Z] 1
2
),
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(3.11) ŵt ∈ C([0, T ]; [X,Z]′1
2
).

The following proof is an adaption of the proof of Theorem 8.1 in [8] which
is based on the Faedo-Galerkin’s method. This method consists of three steps.

Proof. Let {ϕ̂i}∞i=1 be a sequence of functions that is an orthonormal basis for
Z, and an orthogonal basis for X according to Theorem 3.1. We introduce the
following finite dimensional spaces spanned by {ϕ̂i}mi=1 given by:

(3.12) ∀m ∈ N, Ŵm := span{ϕ̂1, . . . , ϕ̂m} = {
m∑
j=1

αjϕ̂j; α1, α2, . . . , αm ∈ R}.

Step 1 (Construction of approximate solutions): We seek ŵ = ŵm(t) ∈ Ŵm

the approximate solution of the problem in the form

ŵm(t) =
m∑
i=1

�g
im

(t)ϕ̂i,

where �g
im

(t) ∈ R (0 ≤ t ≤ T, i = 1, . . . ,m) solves the weak formulation (3.6)

on Ŵm. For a fixed m ∈ N, it follows

(3.13) < (ŵm)tt, ϕ̂ >Z +c1(ŵm, ϕ̂) + c2((ŵm)t, ϕ̂) = 0 ∀ϕ̂ ∈ Ŵm.

And (3.13) is completed with the initial conditions:

ŵm(0) = ŵm0, ŵm0 =
m∑
i=1

αimϕ̂i −→ ŵ0 in X when m −→∞,(3.14)

v̂m(0) = v̂m0, v̂m0 =
m∑
i=1

βimϕ̂i −→ v̂0 in Z when m −→∞,(3.15)

with αim = �g
im

(0) and βim = (�g
im

)t(0). The ordinary differential equation of

the second order thus obtained admits a unique solution ŵm ∈ C2([0, T ];X) of
(3.13)− (3.15) for 0 ≤ t ≤ T .

Step 2 (A-priori estimates on approximate solutions): Let Ê : R ×X −→ R
an energy functional, analogous to the Lyapunov functional in (2.5):

(3.16) Ê(t, ŵ) =
1

2

∫ 1

0

ŵ2
xxdx+

1

2

∫ 1

0

ŵ2
t dx+

1

2
K

(
m

β
ŵt(1)− ŵxxx(1)

)2

,

(3.17) Ê(t, ŵ) =
1

2
‖(w,wt,

m

β
wt(1)− wxxx(1))‖H.
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For a solution ŵm ∈ C2([0, τ ]; Ŵm) of (3.13) on some interval [0, τ ] and taking
ϕ̂ = (ŵm)t in (3.13), a straightforward calculation yields

d

dt
Ê(t, ŵm) ≤ 0,

for all t ∈ [0, τ ]. Dissipation of the functional Ê corresponds to the decay in
(2.6) for the classical solution. Hence:

Ê(t, ŵm) ≤ Ê(0, ŵm0), t ≥ 0,

which implies that:

{ŵm}m∈N is bounded in C([0, T ];X),(3.18)

{(ŵm)t}m∈N is bounded in C([0, T ];Z).(3.19)

Considering the boundedness results in (3.18)-(3.19), for all ϕ̂ ∈ X, we have:

(3.20) |c1(ŵm(t), ϕ̂) + c2((ŵm)t(t), ϕ̂)|≤M‖ϕ̂‖X ,∀t ∈ [0, T ],

whereM is a positive constant which does not depend onm. Letm ∈ N be fixed.
Also, we consider ϕ̂ ∈ X and ϕ̂ = φ̂1 + φ̂2 such φ̂1 ∈ Ŵm and φ̂2 orthogonal to
Ŵm in Z. Then we obtain < (ŵm)tt, ϕ̂ >Z=< (ŵm)tt, φ̂1 >Z . From (3.13) and
(3.20), we have:

(3.21) < (ŵm)tt, ϕ̂ >Z= −c1(ŵm, φ̂1)− c2((ŵm)t, φ̂1) ≤M‖φ̂1‖X ≤M‖ϕ̂‖X .

This implies that

(3.22) {(ŵm)tt}m∈N is bounded in C([0, T ];X ′).

Step 3 (Passage to the limit): According to the Eberlein-Šmulian Theorem
in [4], there exist subsequences {ŵml

}l∈N, {(ŵml
)t}l∈N and {(ŵml

)tt}l∈N with ŵ ∈
L2(0, T ;X), ŵt ∈ L2(0, T ;Z) and ŵtt ∈ L2(0, T ;X ′) such that:

{ŵml
}⇀ ŵ in L2(0, T ;X),(3.23)

{(ŵml
)t}⇀ ŵt in L2(0, T ;Z),(3.24)

{(ŵml
)tt}⇀ ŵtt in L2(0, T ;X ′).(3.25)

Let m0 ∈ N. For all functions ϕ̂ ∈ L2(0, T ; Ŵm0) of the form

(3.26) ϕ̂(t, x) =

m0∑
j=1

κj(t)φj(x),
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where κj ∈ L2(0, T ;R) and for all ml ≥ m0, the formulation (3.13) becames

(3.27)
∫ T

0

< (ŵml
)tt, ϕ̂ >Z +c1(ŵml

, ϕ̂) + c2((ŵml
)t, ϕ̂)dt = 0.

Therefore, passing to the limit in (3.27) for m = ml, when l −→ ∞ and using
the convergence results (3.23)-(3.25), we obtain

(3.28)
∫ T

0

< ŵtt, ϕ̂ >X,X′ +c1(ŵ, ϕ̂) + c2(ŵt, ϕ̂)dt = 0,

consequently < ŵtt, ϕ̂ >X,X′ +c1(ŵ, ϕ̂) + c2(ŵt, ϕ̂) = 0 on [0, T ] for all ϕ̂ ∈
L2(0, T ;X).

The fonctions ϕ̂ of (3.26) being dense in L2(0, T ;X) and therefore (3.28) is
well-defined for any ϕ̂ ∈ L2(0, T ;X). We obtain the expression of the weak
formulation (3.6) for almost everywhere on [0, T ]. Hence ŵ is the solution of
the weak formulation.

Concerning additional regularities, by definition of weak solution and (3.18)-
(3.19), ŵ satisfies (3.9). As for (3.10), it immediately arises from the Lemma
3.1, after, possibly a modification on a set of measure zero, and finally, the
regularity (3.11) is deduced from the Lemma 3.1 and from Lemma 3.2. �

Now, we prove that the solution ŵ satisfies initial conditions (3.7)-(3.8). Let
ϕ̂ ∈ C2([0, T ];X) such that ϕ̂(T ) = 0 and ϕ̂t(T ) = 0. Integrating (3.6) on [0, T ],
we have:

(3.29)
∫ T

0

[< ŵtt, ϕ̂ >X,X′ +c1(ŵ, ϕ̂) + c2(ŵt, ϕ̂)] dτ = 0.

Integrating twice by parts on [0, T ] under the duality pairing, we obtain:∫ T

0

[
< ŵ, ϕ̂tt >Z +c1(ŵ, ϕ̂) + c2(ŵt, ϕ̂)

]
dτ

=< ŵt(0), ϕ̂(0) >X,X′ − < ŵ(0), ϕ̂t(0) >Z .

(3.30)

For a fixed m, similarly from (3.13), it follows:∫ T

0

[
< ŵm, ϕ̂tt >Z +c1(ŵm, ϕ̂) + c2((ŵm)t, ϕ̂)

]
dτ

=< v̂m0, ϕ̂(0) >Z − < ŵm0, ϕ̂t(0) >Z .

(3.31)
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Using (3.14)-(3.15) and (3.23)-(3.25), passing to the limit in (3.31) along the
convergent subsequence, we obtain:∫ T

0

[
< ŵ, ϕ̂tt >Z +c1(ŵ, ϕ̂) + c2((ŵ)t, ϕ̂)

]
dτ

=< v̂0, ϕ̂(0) >Z − < ŵ0, ϕ̂t(0) >Z .

(3.32)

Comparing (3.30) with (3.32), we deduce that ŵ(0) = ŵ0 and ŵt(0) = v̂0 so
initial conditions (3.7) and (3.8) are verified.

3.2.2. Uniqueness of the Weak Solution.

Theorem 3.3. The solution ŵ of weak formulation (3.6) with the initial conditions
(3.7)− (3.8) is unique.

Proof. We use an adaption of proof of Theorem 8.1 in [8] to prove that a only
weak solution of (3.6) is ŵ ≡ 0. For this, let fix 0 ≤ s ≤ T and let introduce this
auxiliary function: ψ̂ : ]0, T [−→ R,

ψ̂(t) :=


∫ s
t
ŵ(τ)dτ, 0 < t < s,

0, t ≥ s.

Taking ψ̂(t) = ϕ̂(t) in (3.6) and by integration by parts of (3.6) on [0, T [, we
have

(3.33)
∫ s

0

[
< ŵt(τ), ŵ(τ) >Z −c1(ψ̂t(τ), ψ̂(τ)) + c2(ŵ(τ), ŵ(τ))

]
dτ = 0.

We deduce from (3.33), the following equality

(3.34)
∫ s

0

d

dt

[1

2
‖ŵ(τ)‖2Z −

1

2
c1(ψ̂(τ), ψ̂(τ))

]
dτ = −

∫ s

0

c2(ŵ(τ), ŵ(τ))dτ.

This is equivalent to[1

2
‖ŵ(τ)‖2X −

1

2
c1(ψ̂(τ), ψ̂(τ))

]s
0

= −
∫ s

0

c2(ŵ(τ), ŵ(τ))dτ.

Therefore,
1

2
‖ŵ(s)‖2X +

1

2
c1(ψ̂(0), ψ̂(0)) ≤ 0.

The bilinear form c1(., .) is coercive, ŵ(s) ≡ 0 and ψ̂(0) = 0. Since s ∈]0, T [ was
arbitrary, then ŵ ≡ 0. �
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3.3. Higher regularity results. We recall the Lemma 8.1 (here Lemma 3.3)
of [8] which will be used in the Theorem 3.4. Before let’s give the following
definition.

Definition 3.2. Let Z be a Banach space. Then

Cw([0, T ];Z) = {w ∈ L∞(0, T ;Z) : t 7−→< f,w(t) >

is continuous on [0, T ],∀f ∈ Z ′}

denotes the space of weakly continuous functions with values in Z.

Lemma 3.3. Let X and Z be two Banach spaces, X ⊂ Z with continuous injection,
X being reflexive. Then

L∞(0, T ;X) ∩ Cw(0, T ;Z) = Cw(0, T ;X).

Theorem 3.4. The weak solution ŵ of (3.6)− (3.8) satisfies

ŵ ∈ C([0, T ];X),(3.35)

ŵt ∈ C([0, T ];Z),(3.36)

after, possibly, a modification on a set of measure zero.

Proof. This proof is an adaption of standard strategies to the situation at hand
(cf. Section 8.4 of [8] pp. 297-301 and Section 2.4 of [15]). Using Lemma 3.3,
it follows from (3.9)-(3.10) that ŵ ∈ Cw([0, T ];X). Likewise, (3.9) and (3.11)
imply ŵt ∈ Cw([0, T ];Z).

We set ξ ∈ C∞(R) a fixed scalar cutoff function such as ξ(x) = 1 if x ∈ J ⊂⊂
[0, T ] and ξ(x) = 0 else. The function ξŵ is then compactly supported. Let ηε be
a standard mollifier in time. The following notation is introduced:

ŵε = ηε ∗ ξŵ ∈ C∞c (R, X).

ŵε converges to ŵ in X and (ŵε)t converges to ŵt a.e in Z for all element on J .
Hence Ê(t, ŵε) converges to Ê(t, ŵ) a.e on J . Since ŵε is smooth, a straightfor-
ward calculation on J gives:

(3.37)
d

dt
Ê(t, ŵε) = −K

β
[(ŵεx)xx(t)]

2 − Kmα

β2
[(ŵε)t(t)]

2 .

Passing to the limit in (3.37) when ε −→ 0:

(3.38)
d

dt
Ê(t, ŵ) = −K

β
[(ŵx)xx(t)]

2 − Kmα

β2
[(ŵ)t(t)]

2 .
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holds in the sense of distributions on J . Since J was arbitrary, (3.38) holds on
all compact subintervals of [0, T ]. Let t ∈ [0,∞[ be fixed and limn−→∞ tn = t.

Taking the sequence (σn)n∈N defined by

σn =
1

2
‖(ŵ(t)− ŵ(tn))‖2X +

1

2
‖ŵt(t)− ŵt(tn)‖2Z +(3.39)

K

2

[(
m

β
(wt)(t)− (wx)xx(t)

)
−
(
m

β
(wt)(tn)− (wx)xx(tn)

)]2
−

m

2
(wt)

2(t)− m

2
(wt)

2(tn).

We have for all n ∈ N:

σn = Ê(t, ŵ) + Ê(tn, ŵ)− < ŵ(t), ŵ(tn) >X −(3.40)

< ŵt(t), ŵt(tn) >Z −K
(
m

β
(wt)(t)− (wx)xx(t)

)(
m

β
(wt)(tn)− (wx)xx(tn)

)
−m

2
(wt)

2(t)− m
2

(wt)
2(tn).

Since ŵ, ŵt are weakly continuous and Ê is continuous in t, passing to the limit
in (3.40), it follows:

σn −→ 0, when n −→∞.
Therefore, this implies that

(3.41) ‖ŵ(t)− ŵ(tn)‖2X −→ 0 when n −→∞,

(3.42) ‖ŵt(t)− ŵt(tn)‖2Z −→ 0 when n −→∞.

Thus, we get ŵ ∈ C([0, T ];X) and ŵt ∈ C([0, T ];Z).

�

4. SEMI-DISCRETE SCHEME

4.1. Semi-discrete Scheme: Space Discretization. Suppose V h is a finite di-
mensional subspace of H2

E(0, 1). (At this stage the symbol h is used only to
indicate that we are considering approximation in a finite dimensional space.)
We can now formulate the semi-discrete problem for our general linear Euler-
Bernoulli problem.

The Galerkin finite element approximation is referred to as Problem F h.
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Problem F h

Find wh ∈ C2((0,∞), V h) such as for all t > 0

(4.1) c((wh)tt(t), v) + c2((wh)t(t), v) + c1(wh(t), v) = 0 for all v ∈ V h

with wh(0) = wh0 and (wh)t(0) = wh1 .

The initial conditions wh0 and wh1 are approximations in V h and must be chosen
appropriately. We will show the existence of the solution to Problem F h in next
section.

Definition 4.1. (bilinear forms)

c1(w, v) =

∫ 1

0

wxxvxxdx, ∀ w, v ∈ H2
E(0, 1);

c2(w, v) = αw(1)v(1)− βwxxx(1)v(1), ∀ w, v ∈ H2
E(0, 1);

c(w, v) =

∫ 1

0

wvdx+mw(1)v(1) ∀ w, v ∈ L2(0, 1).

Remark 4.1. Note that the bilinear forms c1, c2 and c are symmetrical.

Proposition 4.1. There exists a constant CK such that the bilinear form c2 is non-
negative, symmetric and bounded on H2

E(0, 1), i.e. there exists a positive constant
CK such that

|c2(w, v)| ≤ CK‖w‖H2
E(0,1)‖v‖H2

E(0,1), for all w, v ∈ H2
E(0, 1),

with CK = α + β

4.1.1. An ordinary differential equation system. In this subsection, let’s consider
(ϕi)i=1,··· ,N a basis of V h. The Problem F h is equivalent to an ordinary differen-
tial equation problem as demonstrated below. There exists functions Wi(t) such
that wh(x, t) =

∑N
i=1Wi(t)ϕi(x), where W (t) is the vector representation of the

function wh defined as follows:

W = [W1,W2, . . . ,WN ]T .

The Galerkin approximation of (3.6) is written as follows:∫ 1

0

(wh)ttϕjdx+

∫ 1

0

(wh)xx(ϕj)xxdx+m(wh)tt(1)(ϕj)(1) + α(wh)t(1)(ϕj)(1)

−β(wh)xxxt(1)(ϕj)(1) = 0,(4.2)
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for all j = 1, · · · , N and t > 0, with initial conditions wh(., 0) = wh,0 ∈ V h;
(wh)t(., 0) = wh,1 ∈ V h.

Then, equation (4.2) is equivalent to the following equation:

(4.3) SWtt +BWt + AW = 0.

Notation: The matrices A,B and S are defined by:

Aij = c1(ϕi, ϕj) =

∫ 1

0

(ϕi)xx(ϕj)xxdx ∀i, j = 1, . . . , N,

Bij = c2(ϕi, ϕj) = α(ϕi)(1)(ϕj)(1)− β(ϕi)xxx(1)(ϕj)(1), ∀i, j = 1, . . . , N,

Sij = c(ϕi, ϕj) =

∫ 1

0

ϕiϕjdx+m(ϕi)(1)(ϕj)(1) ∀i, j = 1, . . . , N.

S is the mass matrix and A the rigidity matrix. A is symmetric, defined and
positive, therefore A is invertible. The matrix S is also symmetric, defined and
positive, therefore S is invertible. Using the theory of linear differential equa-
tions the problem (4.3) has a unique solution. This implies, the existence and
the uniqueness of the solution of Problem F h. Note that S and A are tridiagonal
matrices by blocks while B is diagonal.

4.1.2. Piecewise cubic Hermite polynomials. In this subsection, we use the well-
know piecewise cubics (see [16]). They are used successfully as basis func-
tions for the Galerkin approximation in the beams problem. Hermite cubics are
sufficiently accurate for beams problems. The discretization space is therefore
(see [16])

V h = span{ϕ1, ϕ2, · · · , ϕ2n−1, ϕ2n},
which is dimension N = 2n. With the separation of variables, the approximate
solution wh ∈ V h which we seek can be written as follows:

wh(x, t) =
n∑
j=1

[w̄j(t)ϕ2j−1(x) + (w̄j)x(t)ϕ2j(x)].

An advantage of this choice of discrete space and its basis is that it yields the
simple relations: wh(1, t) = WN−1(t) and (wh)x(1, t) = WN(t).
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4.2. Interpolation.

4.2.1. Interpolation operator.

Definition 4.2. We define

Πw =
N∑
i=1

w(xi)ϕi, w ∈ H2(0, 1).

Note that if v = Πw, then v(xi) = w(xi). Also, it is easy to see that Πw ∈ H2
E(0, 1)

if w ∈ H2
E(0, 1).

4.2.2. Interpolation error. In this subsection we quote standard interpolation
estimates, as found in for instance, (see [11], [12]). We will use K̂b to denote
a generic constant which depends on the constants in Sobolev’s lemma and let
J be a bounded or unbounded interval, either an open interval containing zero
or of the form [0, T ) or [0,∞). The seminorm of order k for the product space
Hk = Hk(0, 1)× R× R is defined by |ŵ|2k = |w|2k.

Lemma 4.1. There exists a constant K̂b such that, for all w ∈ Hk(0, 1) with k ≥ 2,

‖w − Πw‖m ≤ K̂bh
k∗−m|w|k∗ ,m = 0, 1, · · · , k∗

where k∗ = min{k; 4}. As H2
E(0, 1) ⊂ H2(0, 1) and the energy norm is equivalent

to the H2 norm, the following interpolation estimate holds.

Corollary 4.1. There exists a constant K̂b such that, for all w ∈ Hk(0, 1)∩H2
E(0, 1)

with k ≥ 2, ‖w − Πw‖H2
E(0,1) ≤ K̂bh

k∗−2|w|k∗ .

For our problem k = 4 it follows that k∗ = 4. This means that the following
result applies to the interpolation operator that we use.

Corollary 4.2. There exists a constant K̂b such that, for all w ∈ H4(0, 1)∩H2
E(0, 1),

‖w − Πw‖H2
E(0,1) ≤ K̂bh

2|w|4.

4.3. Approximation. We have a Hilbert space H2
E(0, 1), a finite dimensional

subspace V h, an interpolation operator Π and an estimate for the interpolation
error w−Πw. We now introduce a projection of H2

E(0, 1) onto the subspace V h.



2748 Y.S.A. Joresse, B.G. Jean-Marc, Y. Gozo, and T.K. Augustin

4.3.1. Projection.

Definition 4.3. P is a projection of H2
E(0, 1) onto V h with respect to the inner

product c1.

To obtain an estimate for the error eh(t) = w(t)−wh(t), the projection is used.
The definition implies that for any w ∈ H2

E(0, 1),

c1(w − Pw, v) = 0, ∀v ∈ V h.

We use P to denote the projection Pw of a function w, that is, (Pw)(t) = Pw(t)

for each t ∈ J . The projection is used to split the error eh(t) = w(t) − wh(t) as
follows: e(t) = Pw(t)− wh(t) and ep(t) = w(t)− Pw(t); i.e eh(t) = e(t) + ep(t).

Due to the important role that it will play in the theory, we display the prop-
erties of this projection:

‖w − Pw‖H2
E(0,1) ≤ ‖w − v‖H2

E(0,1) for all v ∈ V h,

‖Pw − v‖H2
E(0,1) ≤ ‖w − v‖H2

E(0,1) for all v ∈ V h and ‖Pw‖H2
E(0,1) ≤ ‖w‖H2

E(0,1).

Lemma 4.2. There exists a constant K̂b such that, for all w ∈ Hk(0, 1) ∩H2
E(0, 1)

with k ≥ 2, ‖Pw−w‖H2
E(0,1) ≤ K̂b|w|k∗hk

∗−2 and ‖Πw−Pw‖H2
E(0,1) ≤ K̂b|w|k∗hk

∗−2.

Proof. ‖Pw−w‖H2
E(0,1) ≤ ‖Πw−w‖H2

E(0,1) and ‖Πw−Pw‖H2
E(0,1) ≤ ‖w−Πw‖H2

E(0,1).

Now, we use the result for the interpolation error in Corollary 4.1. �

Corollary 4.3. There exists a constant K̂b such that, for all w ∈ H4(0, 1)∩H2
E(0, 1)

‖Pw − w‖H2
E(0,1) ≤ K̂b|w|4h2 and ‖Πw − Pw‖H2

E(0,1) ≤ K̂b|w|4h2.

We are able to determine the estimate for the projection error, in the next sub-
section we will determine the estimate for the error e to finally find an estimate
for the error eh.

4.3.2. Fundamental estimate. The error e estimate of our problem is the same
as in [2], then we have:

Lemma 4.3. Let w the solution of (3.6). Assume that w ∈ C1([0, T );H2
E(0, 1)) ∩

C2((0, T );H2
E(0, 1)), then for any t ∈ (0, T ),

‖e(t)‖H2
E(0,1) + ‖et(t)‖L2(0,1) ≤

√
24e3tBT
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where

BT =

∫ T

0

‖(ep)tt(s)‖L2(0,1)ds+ 3CKmax‖(ep)t(t)‖H2
E(0,1)(4.4)

+ 3CK

∫ T

0

‖(ep)tt(s)‖H2
E(0,1)ds+ ‖et(0)‖L2(0,1)

+
√

1 + CK‖e(0)‖H2
E(0,1) +

√
CK‖(ep)t(0)‖H2

E(0,1).

4.4. Convergence. The rate of convergence is also directly influenced by the
choice of the initial values wh0 and wh1 for the solution wh of Problem F h.

In the following theorem we consider the case where wh0 = Πw0 and wh1 =

Πw1.

Corollary 4.4. Let w the solution of (3.6). Assume that C1([0, T );H2
E(0, 1)) ∩

C2((0, T );H2
E(0, 1)). Then, for any t ∈ (0, T ),

‖eh(t)‖H2
E(0,1) + ‖(eh)t(t)‖L2(0,1) ≤ ‖w(t)− Pw(t)‖H2

E(0,1)

+ ‖wt(t)− Pwt(t)‖L2(0,1) +
√

24e3tBT ,

where

BT =

∫ T

0

‖(wtt − Pwtt)(s)‖L2(0,1)ds+ 3CKmax‖(wt − Pwt)(t)‖H2
E(0,1)

+ 3CK

∫ T

0

‖(wtt − Pwtt)(s)‖H2
E(0,1)ds+ ‖Pwh1 − w1‖L2(0,1)

+
√

1 + CK‖Pwh0 − w0‖H2
E(0,1) +

√
CK‖w1 − Pw1‖H2

E(0,1).

Theorem 4.1. Let wh0 = Πw0, wh1 = Πw1 and w the solution of (3.6). Assume
that w ∈ C1([0, T );H2

E(0, 1))∩C2((0, T );H2
E(0, 1)) and wtt ∈ L2([0, T ];H4(0, 1)∩

H2
E(0, 1)) for t ≥ 0. Assume also that Corollary 4.3 holds. Then,

‖eh(t)‖H2
E(0,1) + ‖(eh)t(t)‖L2(0,1) ≤ K̂bh

2(|w(t)|4 + |wt(t)|4)

+
√

24e3tK̂bh
2
[
Cbmaxs∈[0,T ]|wtt(s)|4

+ 3CKmax|wt(t)|4 + 3CKmaxs∈[0,T ]|wtt(s)|4

+ Cb|w1|4 +
√

1 + CK |w0|4 +
√
CK |w1|4

]
(4.5)

for t ∈ (0, T ).
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Proof. The result follows from Lemma 4.3, Corollary 4.4 and note that:

‖Pw0 − Πw0‖H2
E(0,1) ≤ K̂bh

2|w0|4

‖Pw1 − Πw1‖L2(0,1) ≤ Cb‖Pw1 − Πw1‖H2
E(0,1) ≤ K̂bCbh

2|w1|4∫ T

0

‖(ep)tt(s)‖L2(0,1)ds ≤ CbK̂bh
2maxs∈[0,T ]|wtt(s)|4.

�

5. NUMERICAL RESULT

In this section, we implement results of numerical schemes developed in sub-
sections above.

5.1. Representations. In this subsection, we show the simulation results of the
numerical methods. We consider the time step k = 0.01 and the spatial dis-
cretization h = 0.01. The initial conditions are taken as follows:

w0(x) = 0.4x3 − 0.6x2 and v0 ≡ 0.

5.1.1. Representation of the deflection and energy. Here, we give for different
values of α, β and m = 0.1 the graphic representation of the deflection.

Figures 1, 2 and 3 represent the deflection of beam w(x, t) when α = 2,
β = 10−8; α = β = 10−8 and α = 10−8, β = 10−6.

Figure 4 represents the decay of Lyapunov function (2.5) on the time interval
[0,50] for α = 2, β = 10−8; α = β = 10−8 and α = 10−8, β = 10−6. We can
notice that when α = β = 10−8, the energy decreases rapidly. In the other two
cases the decrease is rather slow.

FIGURE 1. Deflection w(x, t) FIGURE 2. Deflection w(x, t)
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FIGURE 3. Deflection w(x, t)

FIGURE 4. Energy for
different values of α and
β

5.1.2. Representation of Tip position and Tip angle. Here, the results are com-
pared to the simulation results in the cases where α = 2, β = 10−8; α = β = 10−8

and α = 10−8, β = 10−6.
In the figures 5 and 6, the tip position w(1, t) and the tip angle wx(1, t) of the

beam are compared on time interval [0,50].

FIGURE 5. Tip position comparison FIGURE 6. Tip angle comparison
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