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A SIMPLE GENERALIZED CONSTRUCTION OF RESOLVABLE BALANCED
INCOMPLETE BLOCK DESIGNS WITH PRIME BLOCK SIZES

A.J. Saka', R.A. Adetona, and T.G. Jaiyéold

ABSTRACT. This paper presents a Simple Generalized Construction of Resolv-
able Balanced Incomplete Block Designs whose parameter combination is of the
formv = k% r =k +1, A = k° = 1, where k is prime. The design construction
was achieved by using the cyclic subgroup of the symmetric group S; whose
generator is one of the permutations of the 2-permutation generating set of
the Dihedral group D, and 2-permutation generating set of the presentation of
Sk. The method is efficient, sufficient and also mitigate against the tediousness
encountered in other methods of construction when v is large.

1. INTRODUCTION

A balanced incomplete block design is called a resolvable or referred to as
resolvable balanced incomplete block design (RBIBD) if the set of blocks can
be partitioned into parallel (distinct) classes called resolution classes, wherein

every treatment occurs once in each distinct class. See example in Saka et al.
[26].
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Example 1.1. A Resolvable BIBD with v = 9,k = 3 and b = 12 in four distinct
classes is presented:

[(4,7,1), (5,8,2), (6,9,3)]
[(4,5,6), (7,8,9), (1,2,3)]
[(1,6,8), (2,4,9), (3,5,7)]
[(1,5,9), (2,6,7), (3,4,8)]

The details of the construction could be seen in Section 2.

Importantly, the early sources for constructing resolvable incomplete block
designs with some files are in Yates [24] and [25] for square lattices, Hab-
shbabger [|8-10] for rectangular lattices, Kempthorn [14]] and Federer [6] for
prime power lattices, and David [3] and John et al. [[11] on cyclic designs. We
remark that there is no absolute feasibility for constructing a complete file of in-
complete block designs for all situations. Nevertheless, researchers had cutting
edge with algebraic structures to attain constructions usable by experimenters.
In view of this, research in the area of Hadamard matrices and their applications
has steadily and rapidly grown, especially during the last few decades due to its
useful applications in the construction of block designs. On this note, Hedayat
and Wallis [7] transformed the Hadamard matrices to produce incomplete block
designs, t-designs, Youden designs, orthogonal F-square designs, optimal satu-
rated resolution III designs, optimal weighing designs. Evangelaras et al. [5],
also presented a number of applications of Hadamard matrices to signal pro-
cessing, optical multiplexing, error correction coding, and design and analysis of
statistics. Equally, Saka, et al. [26]] imposes some algebraic structure on square
matrix to construct Zig-zag Matrix for Resolvable Nested Balanced Incomplete
Block Designs and also Saka et al. [27] used an algebraic notion, of the left
coset type to construct Coset-k? Nested Balanced Incomplete Block Designs of
Resolvable Type.

The practical importance of, and motivation for resolvability is to gain orthog-
onality between treatments and nuisance factors of concern. For instance, re-
solvability in sequential experimentation, with replicates corresponding to time
periods, is used to mitigate time effects. Resolvability can likewise be useful in
multi-site experiments and in experiments with multiple individuals handling
experimental runs. Notably, the use of resolvable designs in agricultural field
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trials at sometimes received considerable patronage in the United Kingdom; see
Patterson and Silvey [17].

This paper shall mitigate the tediousness (computational and combinatorial
efforts) encountered in the designs construction processes by Saka, et al. [27]]
when v is large. Also, the method of construction in this paper does not rest on
the generation of a complete set of MOLS of order k as it were in some earlier
literatures.

2. METHODS OF CONSTRUCTION

In this section, we describe a simple approach to the construction of RBIBD
(Graeco-Latin squares) of order k£ x k where k£ is an odd integer. Let k = 2s + 1
and s € N. The number of resolvable blocks n = k +1 = 2(s + 1).

Our methods shall employ the use of symmetric groups in algebra.

Definition 2.1. Let X be a non-empty set. The group of all permutations of X
under composition of mappings is called the symmetric group on X and is denoted
by Sx. A subgroup of Sx is called a permutation group on X.

It is easily seen that a bijection X ~ Y induces in a natural way an isomor-
phism Sy = Sy. If | X| = n, Sx is denoted by S,, and called the symmetric group
of degree n.

A permutation o € S,, can be exhibited in the form

( 1 2 ... >
o(l) o2) - on) )’

consisting of two rows of integers; the top row has integers 1,2,...,n usu-
ally(but not necessarily) in their natural order, and the bottom row has o (i)
below i for each « = 1,2,...,n. This is called a two-row notation for a permu-
tation. There is a simpler, one-row notation for a special kind of permutation
called cycle.

Definition 2.2. (One-Row Notation) Let o € S,. If there exists a list of distinct
integers x1,...,x, € Nsuch that

o(x;)) =wip1, i=1,...,7—1,
o(x,) = x1,

o(x):x lfxg{mlw"axT}a
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then o is called a cycle of length r and denoted by (x; ... x,).

Remark 2.1. A cycle of length 2 is called a transposition. In other words , a cycle
(x1...x,.) moves the integers x1,...,x, one step around a circle and leaves every
other integer in N. If o(x) = x, we say o does not move x. Trivially, any cycle of
length 1 is the identity mapping I or e. Note that the one-row notation for a cycle
does not indicate the degree n, which has to be understood from the context.

Definition 2.3. Let X be a set of points in space, so that the distance d(x,y)
between points x and y is given for all x,y € X. A permutation o of X is called a

symmetry of X if

d(o(x),0(y)) =d(z,y) Vx,y € X.
Let X be the set of points on the vertices of a regular polygon which are labelled
{1,2,...,n}. The group of symmetries of a regular polygon P, of n sides is called
the dihedral group of degree n and denoted D,,.

Remark 2.2. It must be noted that D,, is a subgroup of S,, i.e D,, < S,,.

Theorem 2.1. (Cayley Theorem) Every group is isomorphic to a permutation
group.

Theorem 2.2. The dihedral group D, is a group of order 2n generated by two
elements o, T satisfying o™ = e = 72 and 7o = o™ 1, where

az(l 2 ... n)
:(1 . g>: [T (int2-1)

2<i< (nt2)
=t=""

and

Remark 2.3. Geometrically, o is a rotation of the regular polygon P, through an
angle ¢ in its own plane, and 7 is a reflection (or a turning over) in the diameter
through the vertex 1. Jafyéold [12] used symmetric groups of degree n to introduce
and study palindromic Permutations and generalized Smarandache palindromic
permutations. There, it was shown that the dihedral group D, is generated by a
generalized right Smarandache palindromic permutations (RGSPP), o, and a left
generalized Smarandache palindromic permutations (LGSPP), T of S,,.

Theorem 2.3. (Jaiyéold [12]) The dihedral group D, is generated by a RGSPP
and a LGSPP i.e D,, = (o,7) where 0 € GSPP,(S,) and 7 € GSPP\(S,).
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The dihedral group D,, has the presentation
D,=(r,s|r"=1 =1, rsr=s")
=(r,s|r=s=(rs)>=1).

(2.1)

and so, it is a Coxeter group.
The symmetric group S,, has a presentation

(22) Sn = <81, S9,...,8p—1 ‘ (S,L'Sj)m(i’j) = 1>
where
L, 1= 7,
mi,j) =4 3, i=j—1lori=j+]1,

and so, it is a Coxeter group.

In Bray et al. [2], the authors showed that for every integer n > 1, the sym-
metric group S, has a presentation on the generators (1 2) ando = (12 --- n)
in which the number of relations and the presentation length are of some values.

Ss3 is the first and smallest non-abelian symmetric group and a Frobenious
group. S3 = D3 and S; = Ds. It has the group representation

2

<r,a\r3:1, a’ =1, am:r’l>:<r,a]r3, a”, amr>

or (a,b|a*>=0b*= (ab)® =1) = (a,b | a®, V?, (ab)?).
Sy is the first non-solvable symmetry group. It is the Galois group of general
quintic equation.

Theorem 2.4. Let M;;(N},) be the set of k*-matrices over Ny = {1,2,... k}. Let
XO = ((m - 1)]f—|—]), Xg = ((] — 1)k’ +m) € kak(Nk)for 1< m,j <k and let

[b'] b~
iy o=
[b?n] b—?n]

O I PR B ERVAER

[b(k—l)i] [b—(k—m}

] ]
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for i=1,2,3,..., 51, where

<b>= {bqi}’;:1 — {b,b2,b3,...,bki :e} <D, <8,

with [b7], [b%], [b*],- -, b~V | [b¥] being the lower rows of the permutations
b, b% b3 .. Vi Bk in their 2-row formats (similarly for X; ! fori =1,2,3,. ..,
i)

Define a mapping f : Myxx(Ni) = Mixi(N*) as follows f(X) = f ((xn,)) =
(x,(ﬁ;_l)kﬂ) for any X = (,,,) € Myxi(Ny) where N¥ = {a! : 1 <1<k z €
Ni}. For X = () = Xyor X' = (a7, ) = X;7}, i = 1,2,3,... 554, let 11 -
FOX) = f ((2m,) € Mgk (NF) = Z € My (Ny2) be defined as Z = T1(£(X;)) =
O((zm,) = (m—1Dk+j) = (Tmi(r)), v = 1,2,---k so that Y; = [f(X;)]
and Y, = [f(X;1) ], i =1,2,3,..., 5L Then, L = {Xo, X, Y1, Y ', - Y1},
s = k—gl is an RBIBD whose parameter combinations satisfy: v = k*, r = k+1, A =
°=1land L = {X;, X;",--- X'}, s = &2 forms a set of mutually orthogonal
Latin squares.

Proof. The proof will be divided into three steps.

Step 1 The first two blocks are determined by X, = ((m — 1)k + j)
(2.3)

1 2 3 k-1 k
kE+1 k+2 k+3 2k —1 2k
2k +1 2k 42 2k +3 3k—1 3k

k(k—2)+1 k(k—2)+2 k(k—2)+3
k(k—1)+1 k(k—1)+2 k(k—1)+3

E2—1

k(k—2)+k—1 K2 —k

k?

where the transpose of X, denoted by X/ is given by X = ((j — 1)k + m)

1 k+1 2k+1 E(k—2)+1 k(k—1)+1
2 k+2 2k+2 k(k—2)+2  k(k—1)+2
3 k+3 2k+3 k(k—3)+3 k(k—1)+3
0.4 X7
k—1 2k—1 3k—1 k(k—2)+k—1 k2 -1
k 2k 3k k*—k k2
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Step 2. Consider the first row of X, as a permutation b € S, such that | b |= &

(i.e. b* = I (Identity permutation)), permutation b = (1 2 3 ... k) as a cycle.
Let

[b'] [b~]

62 b2

[bi’n] [b73i]

Xo=| | xt= | e MuaW)
[b(kfl)i] [bf(k—l)i}

for ¢ = 1,2,3,...,%, where kak(Nk) is the set of k?-matrices over N, =
{(1,2,...,k} and < b >= {0} = {2 0%... 0 = ¢} < D, < S, with
6], [6%], [6%], ..., [p*=7] | [ok] belng the lower rows of the permutations b, b%,
R Gl b’“ in their 2-row formats. This explains how X; is gotten and
s1m1larly, “tfori=1,2,3,..., 5L

Step 3. Define a mapping f : My.x(Ny) = Mixi(N*) as follows f(X)
[ (@) = <x$§j b kﬂ) for any X = (zn,) € Mixi(Ny;) where N¥ ={z' : 1
[<k2 z €N}

Let X = (z,) = X;, @ = 1,2,3,..., 5, so that f(X;) = [ ((zm,)) =
( - 1)’f+ﬂ> i=1,2,3,.... 5" Similarly let X ' = («/, ) = X; i = 1,2,3,...,
k=1
2

IN

)

so that f(X; ') = f ((:rﬁnj)) = (xi%?‘”’“*j) i=1,2,3,... &L
Let T : f(X)) = f((xm;) € Mpn(N¥) — Z € Myyx(Ny2) be defined as

Z =T(f(X))) = 0((&m,)) = ((m — 1k + 5) = (tmy(r)), 7 = 1,2,... k. Then,
(2.5)
m1;(1) moi(1) e mgoy;(1) i (1)
m15(2) m(2) e e To1)(2) T (2)
715(3) m(3) e w1 (3) T (3)
i = [7(x1)] = . . . . .
mj(k—1) mo(k—1) -+ oo ok —1) m(k—1)

m15(k) moi(k) e maony(k) s (k)
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fori=1,2,3,...,5 where j =1,... k.
Similarly, the Y;~' corresponding to X; ' can be found for i = 1,2,3,..., 51
using the same approach. Hence, for a any n = 2k + 1, where k is a natural

number, RBIBD is

kE—1
(26) L:{X07X317}/17Y1_17"')/;_1}7 SZT?
and elements of the set
~1 -1 k-1
2.7) L={X, X" X s =
are mutually orthogonal Latin squares. O

Remark 2.4. It is interesting to note that the construction in Theorem is prin-
cipally based on a cyclic subgroup of the symmetric group S,  whose generator is
one of the permutations of the 2-permutation generating set of the dihedral group
D,, and 2-permutation generating set of the presentation of S,,.

3. CONSTRUCTION OF DESIGNS

In this section, we shall use the methodology presented in Section 2 to con-
struct RBIBD (Graeco-Latin squares) for cases £ = 3,5 and 11 of order k£ x k
where £ is an odd integer. Also, let £ = 25 + 1 and s € N be the number of
resolvable blocks n = k + 1 = 2(s + 1). Then, the constructions are as follow:

Case 1: For k=3.
When v =9, k = 3, s = 1. By equation (2.3)),

1 2 3 11213 147 1147
Xo=|4 5 6|=|4|5|6, XI'=[25 8|=/2|5/8
789 7189 369 3/6|9

Let the permutation
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Note that (b) = {b, 0%, b* = e} = ((123)) < S5. For i = 1, we have

b 2 3 1 b1 31 2
Xp=(v*|=1312| and X;'=|[02|=|2 3 1
b 1 23 b3 1 23
These gives
2! 32 13 3112 23
(3.1) f(X))=1[3* 15 26|, and f(X;Y)=]2* 3° 16],
17 28 39 17 28 39

where the superscripts are the corresponding f(q¢,,) e.g for X; in equation (3.1)),
f(11) =3, f(12) = 5 and f(13) = 7. Hence, we get

357 3(5|7 2 6 7 2167
Yi=|16 8| =|1|6|8| and Y;'=[3 4 8| =348
2 49/ |2]4]|9 159 1/5|9

Therefore, the blocks for RBIBD of Latin square of order & = 3 after computing
f(X5), f(X;Y), j=1landY;, Y, " are:

J

1(2/3 11417 3|5]7 2167
4/5/6|, |2|/5|8| |1|/6|8|and|3|4|8|
71819 3|/6|9 21419 1/5(9

Case 2: For n=5.
When v = 25, k = 5, s = 2. By equation (2.3)),

1 2 3 4 5 112345
6 7 8 9 10 6|7]8|9]|10
Xo=1|11 12 13 14 15| =|11|12|13 |14 |15}
16 17 18 19 20 16 1718|1920
21 22 23 24 25 21122232425

1 6 11 16 21 116 |11|16]21
2 7 12 17 22 2171121722
X'=13 8 13 18 23| =|3| 8 |13|18/|23
49 14 19 24 419 114119 |24
5 10 15 20 25 5110|1520 |25
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. 1 2 3 45
Let the permutation b = =(1,2,3,4,5) = [2,3,4,5,1]
2 3 4 5 1

Note that < b >= {b,b* b3, 0%, 1° = e} < Dy < Ss. For i = 1,2, we have

b 2 3 45 1 bt 512 3 4
b 345 1 2 b2 451 2 3
Xi=|¥|l=145123|, X'=|v3]=[34512],
b 51 2 3 4 b—? 2 3451
b 1 2345 b=° 1 2345
b? 3451 2 b2 45123
b? 512 3 4 b—* 2 3451
Xo=|¥]|=12345 1], X;'=|v°®|=]|512 3 4
b 451 2 3 b8 3451 2
b0 1 2345 b10 1 2345
This gives
2t 32 43 5t 1P 5191|1317 |21
36 47 58 19 210 1/10|14 (18|22
f(Xy)= |41 512 113 o4 35| — YV, =/2| 6 |15|19|23
516 117 218 319 420 3|7 |11|20|24
12 22 328 42 5% 4|8 |12|16|25

and so on.

Therefore, the blocks for RBIBD of Latin square of order k£ = 5 after computing
f(X5), f(X;Y, j=1,...,2and Y}, Y, " are:

112345 116 |11|16]21 5|19 11311721
67|89 ]|10 217 1121722 1/10]14|18| 22
11112131415 |3| 8 |13|18|23|, |2| 6 |15|19 |23
16 17|18 |19 |20 419 (114119 | 24 3|7 (112024
2112212324 |25 5110|1520 25 4|18 121625
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218142021 417 1151821 3110|1219 |21
3|19 15|16 |22 5| 8 (111922 416 |13]20|22
4110|1117 |23 1191122023 5|7 (141623
516 (12/18|24 211013 |16 |24 118 |15|17 |24
117 ]113[19|25 3161|1417 |25 219 |11]18]|25

Case 3: For k=11.
When v = 121, k = 11, s = 5. By equation (2.3)),

1 2 3 4 5 6 7 8 9 10 11
12 13 14 15 16 17 18 19 20 21 22
23 24 2 26 27 28 29 30 31 32 33
34 35 36 37 38 39 40 41 42 43 44
45 46 47 48 49 50 51 52 33 54 55
Xo = 56 57 58 B39 60 61 62 63 64 65 66
67 68 69 70 71 72 73 74 75 76 17
% 79 80 81 82 &8 84 8 8 87 88
8 90 91 92 93 94 95 96 97 98 99
100 101 102 103 104 105 106 107 108 109 110
111 112 113 114 115 116 117 118 119 120 121

12 113 | 14 | 15| 16 | 17 | 18 | 19 | 20 | 21 | 22
23 | 24 | 25 | 26 | 27 | 28 | 29 | 30 | 31 | 32 | 33
34 | 35|36 | 37 | 38 | 39 | 40 | 41 | 42 | 43 | 44
45 | 46 | 47 | 48 | 49 | 50 | 51 | 52 | 53 | 54 | 55

67 | 68 | 69 | 70 | 71 | 72 | 73 | 74 | 75 | 76 | 77
78 |79 |1 80 | 81 | 82 | 83|84 | 8 |8 | 87 | 88
80 190 | 91 | 92 |93 |94 | 95| 96 | 97 | 98 | 99
100 | 101 | 102 | 103 | 104 | 105 | 106 | 107 | 108 | 109 | 110
111 112|113 114 |115|116| 117|118 119|120 | 121
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b 2 3 4 5 6 7 8 9 10 11 1
b? 3 4 5 6 7 8 9 10 11 1 2
b3 4 5 6 7 &8 9 10 11 1 2 3
b 5 6 7 8 9 10 11 1 2 3 4
b’ 6 7 8 9 10 11 1 2 3 4 5
Xi=|¥W|=]7 8 9 1011 1 2 3 4 5 6
b7 8 9 10 11 1 2 3 4 5 6 7
be 9 10 11 1 2 3 4 5 6 7 8
b? 10011 1 2 3 4 5 6 7 8 9
b0 11 1 2 3 4 5 6 7 8 9 10
b1 1 3 4 5 6 7 8 9 10 11
11(21/31|41(51|/61|71|81|91|101 111

22132142 |52|62|72|82|92|102|112
12133 (435363 |73|83|93|103|113
13123 (4454|164 |74|84|94|104|114
1412434 |55|65|75|85|95|105|115
15125354566 |76|86|96|106| 116
16|26 (36|46 |56 |77 |87 |97 |107 | 117
17127 (3747|5767 |88|98|108|118
18128384858 |68|78(99|109 |119
1912939495969 |79|89|110|120
201304050 60|70|80{90 100|121

<
I
VoY v bW N

[
o

and so on.

Therefore, the blocks for RBIBD of Latin square of order k£ = 11 after comput-
ing f(X;), f(X;'), j=1,....,5andY;, Y, are:

J
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14126(38|50|62|74 86|98 |110|111
151271395163 |75|87|99|100 112
1628 (40|52 64|76 88|89 |101|113
17129 |41|53|65|77|78|90|102|114
18 /3042|5466 |67 |79|91|103|115
193143 |55|56|68|80|92|104]|116
20 (32|44 /45|57|69 81|93 105|117
213334 |/46|58|70|82|94 106|118
22123 135|47|59|71|83|95|107|119
12124 36|48 60 |72|84|96|108 | 120
13125(37(49|61|73|85[97|109| 121

O ||| h~lWIN

—_
o

—
—

[

—_
(=)

19128 (37|46 |66 |75|84[93|102|111
2029|3847 |56|76|85|94 103|112
2130|3948 |57|77[86|95|104 | 113
22(31{40|49|58|67[87|96|105|114
12132 (41|50 |59 |68 88|97 |106| 115
1333 (42|51 |60|69|78|98|107|116
14123 |43|52|61|70|79|99 108|117
15|24 (44|53 /62|71|80(89|109|118
1625(34|54 63 |72|81(90|110|119
17126 |35|55|64|73|82|91|100| 120
1827 (36|45|65|74 8392|101 121
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14|27 (40|53 |66 |68|81|94|107|120
15128 41|54 |56 |69|82|95|108| 121
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202413954 |58|73|88]92 107|111
21125140 |55|59|74|78 93108112
22 (26|41 /45]/60|75|79|94|109 | 113
12127424661 |76|80|95|110|114
13128 (43|47 |62 |77 |81|96|100| 115
101141294448 |63 |67 |82|97|101|116
11]15(30|34 |49 |64 |68 83|98 102|117
1631 (35|50 |65|69|84|99|103|118
17132 (36|51 |66|70|85(89|104|119
1833 (37|52 |56|71|86|90 (105|120
19123(38|53|57|72 8791|106/ 121

O[O IJ| O U
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1330({36|53|59|76|82|99 105|111
14131|37|54|60|77 83|89 106|112
15/32|38|55|61|67|84|90|107|113
1633139456268 |85|91|108|114
17123 |40|46|63|69|86|92|109|115
18124 (41|47 /6470|8793 |110]| 116
19125(42{48 |65|71|88|94|100]| 117
2026|4349 |66 |72|78|95|101 |118
21 (27|44 |50|56|73]79|96 102|119
2212834 |51|57|74|80|97 103|120
12129 35|52 |58 |75|81]98|104|121
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17133 |38|54|59|75|80|96|101|117
18123|39|55|60|76|81|97|102|118
19124 (40|45 |61 |77|82|98|103|119
20(25(41 46|62 678399 104|120
21264247 |63 |68 |84 |89 105|121
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4. CONCLUSION

A Simple Generalized Construction of Resolvable for k& being a Prime Num-
ber were constructed, in which algebric groupings were capitalized on in the

constructions. The method is efficient, sufficient and also mitigate against the
tediousness encountered in other methods of construction when v is large.
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