Advances in Mathematics: Scientific Journal 10 (2021), no.6, 2785-2797
é(%)l\{J(%AL'JA\IZ-irNHAI_ ISSN: 1857-8365 (printed); 1857-8438 (electronic)
https://doi.org/10.37418/amsj.10.6.7

COINCIDENCE POINT THEOREMS FOR MULTI-VALUED MAPPINGS IN
b-METRIC SPACES VIA DIGRAPHS

Duangkamon Kitkuan and Pheerachate Bunpatcharacharoen!

ABSTRACT. In this paper, we present the concept of conventional F;-contraction
and prove the results of a new coincidence point for multi-valued in b-metric
spaces endowed with a digraph G.

1. INTRODUCTION

Nadler [1]] proved that the multi-valued contractions in all metric regions
have a fixed point. Since then, many authors, including Pathak [2], Berinde [4],
Gordji et al. [5]] and others have studied various types of fixed point theories for
multi-valued contraction.

Wardowski [|6] adopted the concept of F-contraction for single-value map-
pings and studied the fixed points for such mappings in metric spaces. Using
Wardowski’s concepts and Nadler’s concepts, many authors (see [7-H13] and
their references) studied fixed points for multi-value mapping.

Bakhtin [14] takes the concept of b-metric spaces as a generalization of met-

ric spaces and makes Banach’s famous contraction principle in metric spaces to
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b-metric spaces in a recent investigation. Study of fixed point theory that inte-
grates graphs is a new development in the domain of contractual value multi-
value theory.

Motivation by the results in [6,23,24], we present the concept of conventional
Fg-contraction in b-metric spaces and achieve coincidence point results for the
value match hybrid pair. Multiple values in a b-metric space with a digraph.

2. SOME BASIC CONCEPTS

In the sequel, throughout this article, N, R, R* denote the set of natural num-
bers, the set of real numbers and the set of positive real numbers, respectively.

Definition 2.1. [3] Let ) be a nonempty set and s > 1 be a given real number. A
function d : Q x Q — [0, c0) is said to be a b-metric on 2 if the following conditions
hold:

(@) d(&,¢) = 0if and only if = ¢;
(i) d(¢,¢) = d(&, ¢);
(iiD) d(&,n) < s[d(&, C) + d(¢,n)].
The pair (€2, d) is called a b-metric space.

Example 1. [4] Let p € (0, 1). Then the set

lp(R) = {{gn} CR: Z |§n|p < OO}

endowed with the functional d : [’(R) x [P(R) — R given by

A6} {6) = (Z 60— w) p

forall {¢,},{¢.} € IP(R) is a b-metric space with s = 2%

Definition 2.2. [[15] Let (€2, d) be a b-metric space, { € and {&,} be a sequence in
Q. Then
(1) {&.} converges to ¢ if and only if limd(§,,{) = 0. We denote this by
lim, o0 & =&
(ii) {&.} is Cauchy if and only if limy, ;00 d(&n, Em) = 0;
(iii) (2, d) is complete if and only if every Cauchy sequence in () is convergent.
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Definition 2.3. [[16] Let (€2, d) be a b-metric space. A subset A C Q) is said to
be open if and only if for any a € A, there exists ¢ > 0 such that the open ball
B(a, €) C A. The family of all open subsets of €2 will be denoted by .

Theorem 2.1. [16] Let (2, d) be a b-metric space and T be the topology defined
above. Then for any nonempty subset A C X we have

(i) A is closed if and only if for any sequence {¢,} in A which converges to &,
we have & € A;

(ii) if we define A to be the intersection of all closed subsets of ) which contains
A, then for any ¢ € A and for any € > 0, we have B(§,¢) N A # ().

Let (2,d) be a b-metric space and C'B({2) be the set of all nonempty closed
bounded subsets of ). An element ¢ € () is said to be a fixed point of a multi-
valued mapping P : Q — 2% if ¢ € P¢, where 2% denotes the collection of all
nonempty subsets of (). For A, B € C'B({2), define

§eA ¢eB

where d(¢, B) = inf{d(¢,() : ( € B}. Such a map H is called the Hausdorff
b-metric induced by the b-metric d.

Definition 2.4. [23] Let (2, d) be a b-metric space and P : Q — CB(Q2) and
f:Q — Q be two mappings. If ( = f( € P& for some € in X, then £ is called a
coincidence point of P and f and ( is called a point of coincidence of P and f.

Lemma 2.1. [18] Let (2, d) be a b-metric space with s > 1 and A, B € CB(Q2).
Then, for each A > 1 and for each a € A, there exists b(a) € B such that
d(a,b(a)) < A\H(A, B).

Lemma 2.2. [19] Let (2, d) be a b-metric space with s > 1. For any A, B,C €
CB(R2) and any &, ¢ € 2, we have the following:
(1) d(& B) < d(&,b) forany b € B;
(ii) d(¢, B) < H(A, B) for any £ € A;
(iii) d(§, A) < s[d(&,¢) +d(¢, A)].

Let (©2,d) be a b-metric space. We assume that G is a digraph with the set

of vertices V(G) = Q and the set E(G) of its edges contains all the loops, i.e.,
A C E(G) where A = {(&,¢) : £ € Q}. We also assume that G has no parallel
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edges and obtain a weighted graph by assigning to each edge the distance be-
tween its vertices. We can identify G with the pair (V(G), E(G)). We denote the
conversion of a graph G by G}, that is, the graph obtained from G by reversing
the direction of the edgesi.e., E(G™') = {(£,{) € Q x Q: (¢,€) € E(G)}.

Let (@ denote the undirected graph obtained from G by ignoring the direction
of edges. Actually, it will be more convenient for us to treat G as a digraph for
which the set of its edges is symmetric. Under this convention,

(2.1) E(G) = E(G)UE(G™).

If &, ¢ are vertices of the digraph G, then a path in G from ¢ to ¢ of length

n(n € N) is a sequence {{;}]_, of n + 1 vertices such that §, = ¢, §, = ¢ and
(&-1,&) € E(G) for j = 1,2,...,n. A graph G is connected if there is a path
between any two vertices of G. G is weakly connected if G is connected (see
more detail [[9,20-22]).

Definition 2.5 (see [23]]). Let (€2, d) be a b-metric space with s > 1 and let G =
(V(G), E(G)) be a graph. Then the mapping f : Q2 — Q is called edge preserving if

£,C€Q, (6) € B(G) = (f& f¢) € B(G).

Definition 2.6 (see [23]). Let (€2,d) be a b-metric space with a graph G =
(V(G), E(G)). Then the mapping P : Q2 — C'B(f) is called edge preserving if

£,Ce0 E£C (60 € B(G) = (u,u) € B(G), Y uy € PE, uy € PC.

Definition 2.7 (see [23]). Let (€2,d) be a b-metric space with a graph G =
(V(G), E(G)). Let P : Q — CB(Q) be a multi-valued mapping and f : Q —  be
a single-valued mapping. Then P is called edge preserving w.r.t. f if

£.CEQ E£C, (fE Q) € B(G) = (ur,u2) € B(G), Y ui € P&, uy € PC.

Definition 2.8. [24] Let s > 1 be a real number. We denote by F the family of all
functions F' : R™ — R with the following properties:
(F1) F is strictly increasing;
(F2) for each sequence {1} of positive numbers, lim,,_,., ¥, = 0 if and only if
lim,, o0 F(¢y,) = —o00;
(F3) for each sequence {1} of positive numbers, lim,, ,,, ¥, = 0, there exists
k € (0,1) such that lim,, . (¥n)*F () = 0;
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(F4) such that 7 + F(si,) < F(¢,-1), Vn € N and some 7 > 0, then 7 +
F(s™,) < F(s" Y, 1) VneN.

Definition 2.9. [24] Let (2,d) be a b-metric space with s > 1. A multivalued

mapping P : Q — CB(Q) is called an F-contraction of Nadler type if there exist
F e F, 7> 0such that

21 + F(sH(P¢, PQ)) < F(d(&, (),
forall &, ¢ € Qwith P¢ # PC.

Example 2. [24] If F(§) =1n&, £ > 0, then F € F.

3. MAIN RESULTS

We support that (€, d) is a b-metric space endowed with a reflexive digraph G
such that V(G) = Q2 and G has no parallel edges.

Definition 3.1. Let (€2, d) be a b-metric space with s > 1 andlet G = (V(G), E(Q))
be a digraph. Then the pair (P, ) of mappings P : Q — CB(Q)and f : Q — Qs
called a generalized Fg-contraction of Nadler type if there exist F' € F, 7 > 0 and
L > 0, such that

(3.1 21 + F(sH(PE, PQ)) < F(M(f&, f¢)) + LN(f¢, f¢),
for all €,¢ € X with P€ # P¢ and (f¢€, f¢) € E(G) where

M(f¢, ¢) = max {d( se. poy, < f?g(;gd% Pg) }

and

N(f€, f¢) = min{d(f¢, fC), d(fE, PE),d(fC, PC), d(fE, PC), d(f¢, PE)} .

Theorem 3.1. Let (£2, d) be a b-metric space with s > 1 and let G = (V(G), E(G))
be a graph. Let P : Q@ — CB(Q2) and f : Q — § be such that P(Q2) C f()
and f(2) a complete subspace of ). Support that P is edge preserving w.r.t. f and
there exist a function F' € F which is continuous from right 7 > 0 and L > 0 such

that (P, f) is generalized F-contraction of Nadler type. Suppose that the triple
(Q,d, G) has the following property:
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@ If {f¢.} is a sequence in ) such that f&, — & and (f&,, f&na1) € E(G)
for all n € N, then there exists a subsequence {f¢,,} of {f&.} such that
(fén,,€) € E(G) forall k € N.

(ii) If there exists £ € Q such that (f&y,u) € E(G‘) for some u € P&, then f
and P have a point of coincidence in f(£2).

Proof Suppose there exists &, € 2 such that (f&,u) € E(G) for some u € P&.
If f& € P¢&, then there is nothing to prove. Then, we support that &, ¢
P&y. So, d(f&, P&) > 0, from P&, is closed. Hence, d(f&),() > 0 for all { €
P&y. Since P&, C f(Q) is nonempty, there exists {; € 2 such that u = f§ €

P&y, d(f&, f&) > 0 and (f&, f&1) € E(G). If f& € P&, then f and P have a
point of coincidence in f(€2). Thus, we assume that f¢; ¢ P& and so P&y # P&
which gives that {, # &;. From F' € F is continuous from the right, there exists
A > 1 such that

(3.2) F(AsH(P&, P&)) < F(sH(P&, P&)) + 7.

From f¢ € P& and A > 1, using Lemma there exists f¢& € P& for some
& € such that

(3.3) d(f&, &) < AH(P&, P&).

Because f& ¢ P&, we get d(f&, P&) > 0 and d(f&, f&) > 0. Using mono-
tonicity property of , from (3.2) and (3.3]), we obtain that

(3.4) F(sd(f&, f€2)) < F(AsH(P&, P&)) < F(sH(P&, P&1)) + 7.

Using and (3.4), we get
21 + F(sd(f&1, f&)) < 27 + F(sH(P&, P&)) + 7

(3.5)
< F(M(f&, f&1)) + LN(f&o, f&1)) + 7.

Hence,

(3.6) T+ F(sd(f&, f&2)) < F(M(f&, f§1)) + LN (f&o, f&1))-

From P is edge preserving w.rt. f and & # &1, (féo, f&1) € E(G), f& €
P&, f& € P&, it follows that (f&, f&) € E(G). If f( € P&, then the the-
orem is proved. Thus, we support that f& ¢ P&,. It follows that P& # P&, and
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this implies that &; # &. Similarly above, there exists f¢3 € P&, for some &3 € Q
and d(f&, f&3) > 0 such that

3.7) T+ F(sd(f&, f&3)) < F(M(f&, f§2)) + LN(f&1, f§2))-

From P is edge preserving w.rt. f and & # &, (&, f&) € E(G), f& €
P&y, f& € P&, it follows that (f&,, f&) € FE(G). Continuing this process,
we can construct a sequence {f¢,} in f(Q2) such that f§, € PE,_1, f& ¢

P&, d(fén, f€ar1) >0, (fén, féni1) € E(G) forn=0,1,2,... and
(38) T+ F(Sd(ffm ffn—f—l)) < F(M(fgn—la fgn)) + LN(ffn—la ffn); VTL € N

Thus,

(39) F(Sd(f£n7f£n+1>> < F(M<f£n—17f£n)) +LN(f€n—1af§n)? Vn S N

Since F' is strictly increasing, we get

(310) 0< Sd(f€n> f€n+1)) < M(ffnfla fgn) + LN(ffnflaffn% Vn € N.
So,

(311) O< d(f&naf&n-i—l)) < M(fgn—hfgn)+LN(f§n—1af£n)a ‘v’nE N,

where

M(f€u1, f€) = max {d< re e, W Pli) [;(;;({5;51,)135”1)] }

d(fgm f£n+1)[1 + d(fgn—ly fgn)] }
1 + d(ffnfb ffn)

A(Fmr, £0). d(FE, Fnnn) |

< max

< max {d(ffnl, f&n),

and

N(f&u-1, &)

= min {d(f&—1, f&), d(f&n—1, P&a1), d(fn, P&n), d(f&n—1, Pn), d(f&ns Pén1)}
< min {d(f&u-1, f&n), d(f&n—1, [n), d(f&ns [Ens1), d(fn—1, [ént1), d(f&n, &)}
=0.

If d(f&n, 1) = d(fén 1, [€), it follows from that

(312) 0< d(fgm fgn—i-l)) < d(fgm fgn—i-l): vn € N7
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which is a contradiction. Thus, d(f&,, f&11) < d(f&.—1, f&,), and hence

T+ F(Sd(fgna fgn-i-l)) < F(M(ffn—ly ffn)) + LN(fgn—ly f€n>
(313) S F(d(fgn—b fgn)) + LN(fgn—la fgn)
:F(d(fgnflvffn)% VneN

Putting ¢, = d(f&,, f€ne1) > 0 for all n € N U {0}. Using (F4) and (3.13), we
obtain that

(3.14) T+ F(s"by) < F(s" 1), VneN.
or
(3.15) F(s")y) < F(s" Wu_1) =7, VneN.

In general, one can get

(3.16) F(s"py) < F(s" Y1) —7 < -~ < F(apg) —n7r, VneN.
Thus,
(3.17) ILm F(s"p,) = —0

So, from (F2 ), we have

(3.18) lim s",, = 0.

n—o0

Hence, using (F3), there exists k& € (0, 1) such that

(3.19) lim (5", )FF(s™"1,,) = 0.

n—oo
Using (3.16)), we obtain
(3.20) (8" ) F (5™ ) — (8™ F(1hg) < —nr(s™n)* <0, VneN.
Letting limit as n — oo, we obtain

(3.21) lim n(s",)* = 0.

n—oo

Using (3.21)), there exists n; € N such that n(s",)* < 1 forall n > n;.

1
(3.22) $S"Yp < —, Vn=n.
nk
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Consequently, if m > n > ny, then
2
d(ffna ffm) < Sd(fgn’ f€n+1) +s d(ffn—f—la ffn—i-?)

o ST A (f g, fEna) + ST A(fEm, fEm)
S Swn + Szwn-‘rl +- sm_n_lwm—Z + Sm_nwm—l

(3.23) L. n+1 m—2 m—1
~ gn1 (8" + 8" pyr ST Y + 8T ]
m—1 o) o)
1 , 1 , 1 1
= Snfl Z S]d]j < Snfl Zsjd}j S Snfl : :j_’lf
j=1 j=1 j=n

1
Since k € (0,1), the series }_°° — is convergent. Hence, {f¢,} is a Cauchy
&

sequence in f(2). From f(Q2) is complete, there exists z € f(€2) such that
lim,, o &, = 2 = fu for some u € Q.

If there exists a subsequence { /¢, } of { f¢,} such that ¢, € Puforallk € N,
then limy_,, f&,, = fu € Pu, and Pu is closed.

Finally, we will show that f and P have a point of coincidence in f(2). We
assume that there exists no € N such that f¢, ¢ Pu for all n € N with n > n,.
Then f¢,.1 ¢ Pu for all n > ny and so P¢,, # Pu for all n > ng. Using property
(i), there exists a subsequence {f,,} of {f&,} such that {f¢,,, fu} € E(G) for
all j € N. It follows that P¢,, # Pu for all j > n,. Using (3.30), we get

(3.24) 27 + F(sH(P&,, Pu) < F(M(f€u,, fu) + LN(féu,, fu), ¥ j = no.
Then,

27 + F(sd(f&n;41, Pu)) < 27 + F(sH(PE,,, Pu))

(3.25)

< F(M(f&n;: fu)) + LN(f&n,, fu), V¥ j = no,
From (3.25)), we get
(3.26)  F(sd(f&n,+1, Pu)) < F(M(f&,, fu)) + LN(f&,, fu), ¥V j = no,

where

d(fu, Pu)[l + d(f&n,, Pén,)] }
1+ d(f&n,;, fu)
d(fu, Pu)[1 + d(f&n,, f&n;41)] }
L+d(f&,, fu)

M(f&, . fu) = max {d(fgnj, fu),

< max {d(fﬁnj, fu),
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and

N(f&n,, fu)

= min {d(f&,,, fu), d(f&,, P&,), d(fu, Pu),d(f&,, Pu), d(fu, P&, }

< min {d(f&,, fu), d(f&n,s f&ny+1)s d(fu, Pu),d(f&ny, Pu), d(fu, féa,41) } -
Letting limit as ;7 — oo in (3.26]), we obtain

(3.27) F(sd(fu, Pu)) < F(d(fu,Pu))+L-0
or
(3.28) F(sd(fu, Pu)) < F(d(fu, Pu)),

which is a contradiction. Hence, d(fu, Pu) = 0. From Pu is closed, it follows
that z = fu € Pu, i.e., z is a point of coincidence of f and P. O

Corollary 3.1. Let (£2,d) be a complete b-metric space with s > 1 and let G =
(V(G), E(G)) be a graph. Suppose that P : Q — CB(f) is edge preserving and
there exist a function F' € F which is continuous from right and 7 > 0 and L > 0
such that

(3.29) 21 + F(sH(PE, P¢)) < F(M(E, Q) + LN(¢, ),
forall €,¢ € X with P¢ # P¢ and (€,¢) € E(G) where

d(C,PC)[ler(é,P&)]}
1+d(,¢)

M(E, ) = max {d@,c),

and
N(&,¢) = min{d(¢, ), d(&, PS), d(C, P¢),d(§, PC),d(¢, P)} -
Suppose also that the triple (2, d, G) has the following property:

() If {&,} is a sequence in 2 such that &, — ¢ and (&,,§,+1) € E(G) for all
n € N, then there exists a subsequence {&,, } of {{,} such that (¢,,,¢) €
E(G) for all j > N.

(i) If there exists & € (2 such that (&, u) € E(G) for some u € P&, then P

has a fixed point in (.

Proof. Letting f = I, the identity map on €2 and follows proof from Theorem
B.1l O
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Corollary 3.2. Let (2, d) be a b-metric space with s > 1. Let P : Q@ — C'B(2) and
f 9 — Q be such that P(Q2) C f(Q2) and f(2) a complete subspace of (). Assume
that there exist a function F' € F which is continuous from right 7 > 0and L > 0
such that

(3.30) 21 + F(sH(PE, PQ)) < F(M(&,¢)) + LN(&, Q),

where

M(£,¢) = max {d(& o), d(¢, PO)[1 + d(€, PE€)] }

1+d(,¢)

and

N(&,¢) = min{d(¢, €), d(&, PS), d(C, P¢),d(§, PC),d(¢, P)},
forall ¢,¢ € Qwith P§ # P(. Then f and P have a point of coincidence in f(f).

Proof. Letting G = G, where G, is the complete graph (2, Q2 x 2). and follows
proof from Theorem [3.1 O

Theorem 3.2. Let (€2, d) be a b-metric space with s > 1 and let P : Q — C'B(Q)
and f : Q — Q be a hybrid pair of mappings such that P(Q2) C f(2) and f(Q2) a
complete subspace of ). Assume that there exists k € (0,1) and L > 0 such that

(3.31) sH(P¢, P¢) < kM(&,¢) + LN(&, ),

where

M(g,€) = max {d@ o), 46 POLL+ de, Pe)) }

14+d(,¢)

and

N(&,¢) = min{d(¢, ¢), d(&, PS), d(C, P¢),d(§, PC),d(¢, P},
forall ¢, € Q. Then f and P have a point of coincidence in f(£2).

Proof. Let G = Gy = (2,2 x Q), L > 0, and 7 > 0 be such that k¥ = ¢2". For
¢, ¢ € Qwith P # P(, using (3.31)), we obtain

F(sH(PE, PC)) < =21+ F(M(f€, f¢)) + LN(&,¢),

which 27+ F(sH(P¢, PC)) < F(M(f¢, f¢))+LN(¢, ), where F(§) = In¢. Thus,
all the hypotheses of Theorem 3.1 hold true. O
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