

Advances in Mathematics: Scientific Journal **10** (2021), no.6, 2785–2797 ISSN: 1857-8365 (printed); 1857-8438 (electronic) https://doi.org/10.37418/amsj.10.6.7

COINCIDENCE POINT THEOREMS FOR MULTI-VALUED MAPPINGS IN b-METRIC SPACES VIA DIGRAPHS

Duangkamon Kitkuan and Pheerachate Bunpatcharacharoen¹

ABSTRACT. In this paper, we present the concept of conventional F_G -contraction and prove the results of a new coincidence point for multi-valued in b-metric spaces endowed with a digraph G.

1. INTRODUCTION

Nadler [1] proved that the multi-valued contractions in all metric regions have a fixed point. Since then, many authors, including Pathak [2], Berinde [4], Gordji et al. [5] and others have studied various types of fixed point theories for multi-valued contraction.

Wardowski [6] adopted the concept of F-contraction for single-value mappings and studied the fixed points for such mappings in metric spaces. Using Wardowski's concepts and Nadler's concepts, many authors (see [7–13] and their references) studied fixed points for multi-value mapping.

Bakhtin [14] takes the concept of b-metric spaces as a generalization of metric spaces and makes Banach's famous contraction principle in metric spaces to

¹corresponding author

- 2020 Mathematics Subject Classification. 47H09, 47H10, 54H25.
- Key words and phrases. Coincidence point, b-metric, multi-valued, Nadler type.

Submitted: 30.04.2021; Accepted: 21.05.2021; Published: 09.06.2021.

b-metric spaces in a recent investigation. Study of fixed point theory that integrates graphs is a new development in the domain of contractual value multivalue theory.

Motivation by the results in [6,23,24], we present the concept of conventional F_G -contraction in b-metric spaces and achieve coincidence point results for the value match hybrid pair. Multiple values in a b-metric space with a digraph.

2. Some basic concepts

In the sequel, throughout this article, \mathbb{N} , \mathbb{R} , \mathbb{R}^+ denote the set of natural numbers, the set of real numbers and the set of positive real numbers, respectively.

Definition 2.1. [3] Let Ω be a nonempty set and $s \ge 1$ be a given real number. A function $d : \Omega \times \Omega \rightarrow [0, \infty)$ is said to be a b-metric on Ω if the following conditions hold:

- (i) $d(\xi, \zeta) = 0$ if and only if $\xi = \zeta$;
- (ii) $d(\xi, \zeta) = d(\xi, \zeta);$
- (iii) $d(\xi, \eta) \leq s[d(\xi, \zeta) + d(\zeta, \eta)].$

The pair (Ω, d) is called a b-metric space.

Example 1. [4] Let $p \in (0, 1)$. Then the set

$$l^{p}(\mathbb{R}) := \left\{ \{\xi_{n}\} \subseteq \mathbb{R} : \sum_{n=1}^{\infty} |\xi_{n}|^{p} < \infty \right\}$$

endowed with the functional $d: l^p(\mathbb{R}) \times l^p(\mathbb{R}) \to \mathbb{R}$ given by

$$d(\{\xi_n\}, \{\zeta_n\}) = \left(\sum_{n=1}^{\infty} |\xi_n - \zeta_n|^p\right)^{\frac{1}{p}}$$

for all $\{\xi_n\}, \{\zeta_n\} \in l^p(\mathbb{R})$ is a b-metric space with $s = 2^{\frac{1}{p}}$.

Definition 2.2. [15] Let (Ω, d) be a b-metric space, $\xi \in \text{and } \{\xi_n\}$ be a sequence in Ω . Then

- (i) $\{\xi_n\}$ converges to ξ if and only if $\lim d(\xi_n, \xi) = 0$. We denote this by $\lim_{n\to\infty} \xi_n = \xi$;
- (ii) $\{\xi_n\}$ is Cauchy if and only if $\lim_{n,m\to\infty} d(\xi_n,\xi_m) = 0$;
- (iii) (Ω, d) is complete if and only if every Cauchy sequence in Ω is convergent.

Definition 2.3. [16] Let (Ω, d) be a b-metric space. A subset $A \subseteq \Omega$ is said to be open if and only if for any $a \in A$, there exists $\epsilon > 0$ such that the open ball $B(a, \epsilon) \subseteq A$. The family of all open subsets of Ω will be denoted by τ .

Theorem 2.1. [16] Let (Ω, d) be a b-metric space and τ be the topology defined above. Then for any nonempty subset $A \subseteq X$ we have

- (i) A is closed if and only if for any sequence {ξ_n} in A which converges to ξ, we have ξ ∈ A;
- (ii) if we define A to be the intersection of all closed subsets of Ω which contains A, then for any $\xi \in A$ and for any $\epsilon > 0$, we have $B(\xi, \epsilon) \cap A \neq \emptyset$.

Let (Ω, d) be a b-metric space and $CB(\Omega)$ be the set of all nonempty closed bounded subsets of Ω . An element $\xi \in \Omega$ is said to be a fixed point of a multivalued mapping $P : \Omega \to 2^{\Omega}$ if $\xi \in P\xi$, where 2^{Ω} denotes the collection of all nonempty subsets of Ω . For $A, B \in CB(\Omega)$, define

$$H(A,B) = \max\{\sup_{\xi \in A} d(\xi,B), \sup_{\zeta \in B} d(\zeta,A)\},\$$

where $d(\xi, B) = \inf\{d(\xi, \zeta) : \zeta \in B\}$. Such a map *H* is called the Hausdorff b-metric induced by the b-metric *d*.

Definition 2.4. [23] Let (Ω, d) be a b-metric space and $P : \Omega \to CB(\Omega)$ and $f : \Omega \to \Omega$ be two mappings. If $\zeta = f\zeta \in P\xi$ for some ξ in X, then ξ is called a coincidence point of P and f and ζ is called a point of coincidence of P and f.

Lemma 2.1. [18] Let (Ω, d) be a b-metric space with $s \ge 1$ and $A, B \in CB(\Omega)$. Then, for each $\lambda > 1$ and for each $a \in A$, there exists $b(a) \in B$ such that $d(a, b(a)) \le \lambda H(A, B)$.

Lemma 2.2. [19] Let (Ω, d) be a b-metric space with $s \ge 1$. For any $A, B, C \in CB(\Omega)$ and any $\xi, \zeta \in \Omega$, we have the following:

- (i) $d(\xi, B) \leq d(\xi, b)$ for any $b \in B$;
- (ii) $d(\xi, B) \leq H(A, B)$ for any $\xi \in A$;
- (iii) $d(\xi, A) \leq s[d(\xi, \zeta) + d(\zeta, A)].$

Let (Ω, d) be a b-metric space. We assume that G is a digraph with the set of vertices $V(G) = \Omega$ and the set E(G) of its edges contains all the loops, i.e., $\Delta \subseteq E(G)$ where $\Delta = \{(\xi, \xi) : \xi \in \Omega\}$. We also assume that G has no parallel

edges and obtain a weighted graph by assigning to each edge the distance between its vertices. We can identify G with the pair (V(G), E(G)). We denote the conversion of a graph G by G^{-1} , that is, the graph obtained from G by reversing the direction of the edges i.e., $E(G^{-1}) = \{(\xi, \zeta) \in \Omega \times \Omega : (\zeta, \xi) \in E(G)\}.$

Let \tilde{G} denote the undirected graph obtained from G by ignoring the direction of edges. Actually, it will be more convenient for us to treat \tilde{G} as a digraph for which the set of its edges is symmetric. Under this convention,

(2.1)
$$E(\tilde{G}) = E(G) \cup E(G^{-1}).$$

If ξ, ζ are vertices of the digraph G, then a path in G from ξ to ζ of length $n(n \in \mathbb{N})$ is a sequence $\{\xi_j\}_{j=0}^n$ of n+1 vertices such that $\xi_0 = \xi, \xi_n = \zeta$ and $(\xi_{j-1}, \xi_j) \in E(G)$ for j = 1, 2, ..., n. A graph G is connected if there is a path between any two vertices of G. G is weakly connected if \tilde{G} is connected (see more detail [9,20–22]).

Definition 2.5 (see [23]). Let (Ω, d) be a b-metric space with $s \ge 1$ and let G = (V(G), E(G)) be a graph. Then the mapping $f : \Omega \to \Omega$ is called edge preserving if

$$\xi, \zeta \in \Omega, \ (\xi, \zeta) \in E(G) \Rightarrow (f\xi, f\zeta) \in E(G).$$

Definition 2.6 (see [23]). Let (Ω, d) be a b-metric space with a graph G = (V(G), E(G)). Then the mapping $P : \Omega \to CB(\Omega)$ is called edge preserving if

$$\xi, \zeta \in \Omega, \, \xi \neq \zeta, \, (\xi, \zeta) \in E(G) \Rightarrow (u_1, u_2) \in E(G), \quad \forall \ u_1 \in P\xi, \, u_2 \in P\zeta.$$

Definition 2.7 (see [23]). Let (Ω, d) be a b-metric space with a graph G = (V(G), E(G)). Let $P : \Omega \to CB(\Omega)$ be a multi-valued mapping and $f : \Omega \to \Omega$ be a single-valued mapping. Then P is called edge preserving w.r.t. f if

$$\xi, \zeta \in \Omega, \ \xi \neq \zeta, \ (f\xi, f\zeta) \in E(\tilde{G}) \Rightarrow (u_1, u_2) \in E(\tilde{G}), \quad \forall \ u_1 \in P\xi, \ u_2 \in P\zeta.$$

Definition 2.8. [24] Let $s \ge 1$ be a real number. We denote by \mathcal{F} the family of all functions $F : \mathbb{R}^+ \to \mathbb{R}$ with the following properties:

- (F1) *F* is strictly increasing;
- (F2) for each sequence $\{\psi_n\}$ of positive numbers, $\lim_{n\to\infty} \psi_n = 0$ if and only if $\lim_{n\to\infty} F(\psi_n) = -\infty$;
- (F3) for each sequence $\{\psi_n\}$ of positive numbers, $\lim_{n\to\infty} \psi_n = 0$, there exists $k \in (0,1)$ such that $\lim_{n\to\infty} (\psi_n)^k F(\psi_n) = 0$;

(F4) such that
$$\tau + F(s\psi_n) \leq F(\psi_{n-1}), \forall n \in \mathbb{N}$$
 and some $\tau > 0$, then $\tau + F(s^n\psi_n) \leq F(s^{n-1}\psi_{n-1}) \forall n \in \mathbb{N}$.

Definition 2.9. [24] Let (Ω, d) be a b-metric space with $s \ge 1$. A multivalued mapping $P : \Omega \to CB(\Omega)$ is called an *F*-contraction of Nadler type if there exist $F \in \mathcal{F}, \tau > 0$ such that

$$2\tau + F(sH(P\xi, P\zeta)) \le F(d(\xi, \zeta)),$$

for all $\xi, \zeta \in \Omega$ with $P\xi \neq P\zeta$.

Example 2. [24] *If* $F(\xi) = \ln \xi, \, \xi > 0$, *then* $F \in \mathcal{F}$.

3. MAIN RESULTS

We support that (Ω, d) is a b-metric space endowed with a reflexive digraph G such that $V(G) = \Omega$ and G has no parallel edges.

Definition 3.1. Let (Ω, d) be a b-metric space with $s \ge 1$ and let G = (V(G), E(G))be a digraph. Then the pair (P, f) of mappings $P : \Omega \to CB(\Omega)$ and $f : \Omega \to \Omega$ is called a generalized F_G -contraction of Nadler type if there exist $F \in \mathcal{F}, \tau > 0$ and L > 0, such that

(3.1)
$$2\tau + F(sH(P\xi, P\zeta)) \le F(M(f\xi, f\zeta)) + LN(f\xi, f\zeta),$$

for all $\xi, \zeta \in X$ with $P\xi \neq P\zeta$ and $(f\xi, f\zeta) \in E(\tilde{G})$ where

$$M(f\xi, f\zeta) = \max\left\{d(f\xi, f\zeta), \frac{d(f\zeta, P\zeta)[1 + d(f\xi, P\xi)]}{1 + d(f\xi, f\zeta)}\right\}$$

and

$$N(f\xi, f\zeta) = \min \left\{ d(f\xi, f\zeta), d(f\xi, P\xi), d(f\zeta, P\zeta), d(f\xi, P\zeta), d(f\zeta, P\xi) \right\}.$$

Theorem 3.1. Let (Ω, d) be a b-metric space with $s \ge 1$ and let G = (V(G), E(G))be a graph. Let $P : \Omega \to CB(\Omega)$ and $f : \Omega \to \Omega$ be such that $P(\Omega) \subseteq f(\Omega)$ and $f(\Omega)$ a complete subspace of Ω . Support that P is edge preserving w.r.t. f and there exist a function $F \in \mathcal{F}$ which is continuous from right $\tau > 0$ and L > 0 such that (P, f) is generalized F_G -contraction of Nadler type. Suppose that the triple (Ω, d, G) has the following property:

- (i) If {fξ_n} is a sequence in Ω such that fξ_n → ξ and (fξ_n, fξ_{n+1}) ∈ E(G) for all n ∈ N, then there exists a subsequence {fξ_{nk}} of {fξ_n} such that (fξ_{nk}, ξ) ∈ E(G) for all k ∈ N.
- (ii) If there exists $\xi_0 \in \Omega$ such that $(f\xi_0, u) \in E(\tilde{G})$ for some $u \in P\xi_0$, then f and P have a point of coincidence in $f(\Omega)$.

Proof. Suppose there exists $\xi_0 \in \Omega$ such that $(f\xi_0, u) \in E(\tilde{G})$ for some $u \in P\xi_0$. If $f\xi_0 \in P\xi_0$, then there is nothing to prove. Then, we support that $f\xi_0 \notin P\xi_0$. So, $d(f\xi_0, P\xi_0) > 0$, from $P\xi_0$ is closed. Hence, $d(f\xi_0, \zeta) > 0$ for all $\zeta \in P\xi_0$. Since $P\xi_0 \subseteq f(\Omega)$ is nonempty, there exists $\xi_1 \in \Omega$ such that $u = f\xi_1 \in P\xi_0$, $d(f\xi_0, f\xi_1) > 0$ and $(f\xi_0, f\xi_1) \in E(\tilde{G})$. If $f\xi_1 \in P\xi_1$, then f and P have a point of coincidence in $f(\Omega)$. Thus, we assume that $f\xi_1 \notin P\xi_1$ and so $P\xi_0 \neq P\xi_1$ which gives that $\xi_0 \neq \xi_1$. From $F \in \mathcal{F}$ is continuous from the right, there exists $\lambda > 1$ such that

(3.2)
$$F(\lambda s H(P\xi_0, P\xi_1)) < F(s H(P\xi_0, P\xi_1)) + \tau.$$

From $f\xi_1 \in P\xi_0$ and $\lambda > 1$, using Lemma 2.1, there exists $f\xi_2 \in P\xi_1$ for some $\xi_2 \in$ such that

(3.3)
$$d(f\xi_1, f\xi_2) \le \lambda H(P\xi_0, P\xi_1).$$

Because $f\xi_1 \notin P\xi_1$, we get $d(f\xi_1, P\xi_1) > 0$ and $d(f\xi_1, f\xi_2) > 0$. Using monotonicity property of , from (3.2) and (3.3), we obtain that

(3.4)
$$F(sd(f\xi_1, f\xi_2)) \le F(\lambda sH(P\xi_0, P\xi_1)) < F(sH(P\xi_0, P\xi_1)) + \tau.$$

Using (3.30) and (3.4), we get

(3.5)
$$2\tau + F(sd(f\xi_1, f\xi_2)) < 2\tau + F(sH(P\xi_0, P\xi_1)) + \tau \\ \leq F(M(f\xi_0, f\xi_1)) + LN(f\xi_0, f\xi_1)) + \tau.$$

Hence,

(3.6)
$$\tau + F(sd(f\xi_1, f\xi_2)) < F(M(f\xi_0, f\xi_1)) + LN(f\xi_0, f\xi_1)).$$

From *P* is edge preserving w.r.t. f and $\xi_0 \neq \xi_1$, $(f\xi_0, f\xi_1) \in E(\tilde{G})$, $f\xi_1 \in P\xi_0$, $f\xi_2 \in P\xi_1$, it follows that $(f\xi_1, f\xi_2) \in E(\tilde{G})$. If $f\zeta_2 \in P\xi_2$, then the theorem is proved. Thus, we support that $f\xi_2 \notin P\xi_2$. It follows that $P\xi_1 \neq P\xi_2$ and

this implies that $\xi_1 \neq \xi_2$. Similarly above, there exists $f\xi_3 \in P\xi_2$ for some $\xi_3 \in \Omega$ and $d(f\xi_2, f\xi_3) > 0$ such that

(3.7)
$$\tau + F(sd(f\xi_2, f\xi_3)) < F(M(f\xi_1, f\xi_2)) + LN(f\xi_1, f\xi_2)).$$

From *P* is edge preserving w.r.t. f and $\xi_1 \neq \xi_2$, $(f\xi_1, f\xi_2) \in E(\tilde{G})$, $f\xi_2 \in P\xi_1$, $f\xi_3 \in P\xi_2$, it follows that $(f\xi_2, f\xi_3) \in E(\tilde{G})$. Continuing this process, we can construct a sequence $\{f\xi_n\}$ in $f(\Omega)$ such that $f\xi_n \in P\xi_{n-1}$, $f\xi_n \notin P\xi_n$, $d(f\xi_n, f\xi_{n+1}) > 0$, $(f\xi_n, f\xi_{n+1}) \in E(\tilde{G})$ for n = 0, 1, 2, ... and

(3.8)
$$\tau + F(sd(f\xi_n, f\xi_{n+1})) < F(M(f\xi_{n-1}, f\xi_n)) + LN(f\xi_{n-1}, f\xi_n), \quad \forall n \in \mathbb{N}.$$

Thus,

(3.9)
$$F(sd(f\xi_n, f\xi_{n+1})) < F(M(f\xi_{n-1}, f\xi_n)) + LN(f\xi_{n-1}, f\xi_n), \quad \forall n \in \mathbb{N}.$$

Since F is strictly increasing, we get

(3.10)
$$0 < sd(f\xi_n, f\xi_{n+1})) < M(f\xi_{n-1}, f\xi_n) + LN(f\xi_{n-1}, f\xi_n), \quad \forall n \in \mathbb{N}.$$

So,

(3.11)
$$0 < d(f\xi_n, f\xi_{n+1})) < M(f\xi_{n-1}, f\xi_n) + LN(f\xi_{n-1}, f\xi_n), \quad \forall n \in \mathbb{N},$$

where

$$M(f\xi_{n-1}, f\xi_n) = \max\left\{ d(f\xi_{n-1}, f\xi_n), \frac{d(f\xi_n, P\xi_n)[1 + d(f\xi_{n-1}, P\xi_{n-1})]}{1 + d(f\xi_{n-1}, f\xi_n)} \right\}$$
$$\leq \max\left\{ d(f\xi_{n-1}, f\xi_n), \frac{d(f\xi_n, f\xi_{n+1})[1 + d(f\xi_{n-1}, f\xi_n)]}{1 + d(f\xi_{n-1}, f\xi_n)} \right\}$$
$$\leq \max\left\{ d(f\xi_{n-1}, f\xi_n), d(f\xi_n, f\xi_{n+1}) \right\}$$

and

$$N(f\xi_{n-1}, f\xi_n) = \min \left\{ d(f\xi_{n-1}, f\xi_n), d(f\xi_{n-1}, P\xi_{n-1}), d(f\xi_n, P\xi_n), d(f\xi_{n-1}, P\xi_n), d(f\xi_n, P\xi_{n-1}) \right\}$$

$$\leq \min \left\{ d(f\xi_{n-1}, f\xi_n), d(f\xi_{n-1}, f\xi_n), d(f\xi_n, f\xi_{n+1}), d(f\xi_{n-1}, f\xi_{n+1}), d(f\xi_n, f\xi_n) \right\}$$

$$= 0.$$

If $d(f\xi_n, f\xi_{n+1}) \ge d(f\xi_{n-1}, f\xi_n)$, it follows from (3.11) that (3.12) $0 < d(f\xi_n, f\xi_{n+1})) < d(f\xi_n, f\xi_{n+1}), \quad \forall n \in \mathbb{N},$

which is a contradiction. Thus, $d(f\xi_n, f\xi_{n+1}) < d(f\xi_{n-1}, f\xi_n)$, and hence

(3.13)

$$\tau + F(sd(f\xi_n, f\xi_{n+1})) < F(M(f\xi_{n-1}, f\xi_n)) + LN(f\xi_{n-1}, f\xi_n)$$

$$\leq F(d(f\xi_{n-1}, f\xi_n)) + LN(f\xi_{n-1}, f\xi_n)$$

$$= F(d(f\xi_{n-1}, f\xi_n)), \quad \forall n \in \mathbb{N}$$

Putting $\psi_n = d(f\xi_n, f\xi_{n+1}) > 0$ for all $n \in \mathbb{N} \cup \{0\}$. Using (F4) and (3.13), we obtain that

(3.14)
$$\tau + F(s^n \psi_n) \le F(s^{n-1} \psi_{n-1}), \quad \forall \ n \in \mathbb{N}.$$

or

(3.15)
$$F(s^n\psi_n) \le F(s^{n-1}\psi_{n-1}) - \tau, \quad \forall \ n \in \mathbb{N}.$$

In general, one can get

(3.16)
$$F(s^n\psi_n) \le F(s^{n-1}\psi_{n-1}) - \tau \le \dots \le F(\psi_0) - n\tau, \quad \forall \ n \in \mathbb{N}.$$

Thus,

(3.17)
$$\lim_{n \to \infty} F(s^n \psi_n) = -\infty$$

So, from (F2), we have

$$\lim_{n \to \infty} s^n \psi_n = 0.$$

Hence, using (F3), there exists $k \in (0, 1)$ such that

(3.19)
$$\lim_{n \to \infty} (s^n \psi_n)^k F(s^n \psi_n) = 0.$$

Using (3.16), we obtain

(3.20)
$$(s^n \psi_n)^k F(s^n \psi_n) - (s^n \psi_n)^k F(\psi_0) \le -n\tau (s^n \psi_n)^k < 0, \quad \forall \ n \in \mathbb{N}.$$

Letting limit as $n \to \infty$, we obtain

(3.21)
$$\lim_{n \to \infty} n (s^n \psi_n)^k = 0.$$

Using (3.21), there exists $n_1 \in \mathbb{N}$ such that $n(s^n \psi_n)^k \leq 1$ for all $n \geq n_1$.

(3.22)
$$s^n \psi_n \le \frac{1}{n^{\frac{1}{k}}}, \quad \forall \ n \ge n_1.$$

Consequently, if $m > n > n_1$, then

$$d(f\xi_{n}, f\xi_{m}) \leq sd(f\xi_{n}, f\xi_{n+1}) + s^{2}d(f\xi_{n+1}, f\xi_{n+2}) + \dots + s^{m-n-1}d(f\xi_{m-2}, f\xi_{m-1}) + s^{m-n-1}d(f\xi_{m-1}, f\xi_{m}) \leq s\psi_{n} + s^{2}\psi_{n+1} + \dots + s^{m-n-1}\psi_{m-2} + s^{m-n}\psi_{m-1} = \frac{1}{s^{n-1}}[s^{n}\psi_{n} + s^{n+1}\psi_{n+1} + \dots + s^{m-2}\psi_{m-2} + s^{m-1}\psi_{m-1}] = \frac{1}{s^{n-1}}\sum_{j=1}^{m-1}s^{j}\psi_{j} < \frac{1}{s^{n-1}}\sum_{j=1}^{\infty}s^{j}\psi_{j} \leq \frac{1}{s^{n-1}}\sum_{j=n}^{\infty}\frac{1}{j^{\frac{1}{k}}}.$$

Since $k \in (0,1)$, the series $\sum_{j=n}^{\infty} \frac{1}{j^{\frac{1}{k}}}$ is convergent. Hence, $\{f\xi_n\}$ is a Cauchy sequence in $f(\Omega)$. From $f(\Omega)$ is complete, there exists $z \in f(\Omega)$ such that $\lim_{n\to\infty} f\xi_n = z = fu$ for some $u \in \Omega$.

If there exists a subsequence $\{f\xi_{n_k}\}$ of $\{f\xi_n\}$ such that $f\xi_{n_k} \in Pu$ for all $k \in \mathbb{N}$, then $\lim_{k\to\infty} f\xi_{n_k} = fu \in Pu$, and Pu is closed.

Finally, we will show that f and P have a point of coincidence in $f(\Omega)$. We assume that there exists $n_0 \in \mathbb{N}$ such that $f\xi_n \notin Pu$ for all $n \in \mathbb{N}$ with $n \ge n_0$. Then $f\xi_{n+1} \notin Pu$ for all $n \ge n_0$ and so $P\xi_n \neq Pu$ for all $n \ge n_0$. Using property (i), there exists a subsequence $\{f\xi_{n_j}\}$ of $\{f\xi_n\}$ such that $\{f\xi_{n_j}, fu\} \in E(\tilde{G})$ for all $j \in \mathbb{N}$. It follows that $P\xi_{n_j} \neq Pu$ for all $j \ge n_0$. Using (3.30), we get

(3.24)
$$2\tau + F(sH(P\xi_{n_j}, Pu)) \le F(M(f\xi_{n_j}, fu)) + LN(f\xi_{n_j}, fu), \quad \forall \ j \ge n_0.$$

Then,

(3.25)
$$2\tau + F(sd(f\xi_{n_j+1}, Pu)) \le 2\tau + F(sH(P\xi_{n_j}, Pu)) \le F(M(f\xi_{n_j}, fu)) + LN(f\xi_{n_j}, fu), \quad \forall \ j \ge n_0,$$

From (3.25), we get

(3.26)
$$F(sd(f\xi_{n_j+1}, Pu)) \le F(M(f\xi_{n_j}, fu)) + LN(f\xi_{n_j}, fu), \quad \forall \ j \ge n_0,$$

where

$$M(f\xi_{n_j}, fu) = \max\left\{ d(f\xi_{n_j}, fu), \frac{d(fu, Pu)[1 + d(f\xi_{n_j}, P\xi_{n_j})]}{1 + d(f\xi_{n_j}, fu)} \right\}$$
$$\leq \max\left\{ d(f\xi_{n_j}, fu), \frac{d(fu, Pu)[1 + d(f\xi_{n_j}, f\xi_{n_j+1})]}{1 + d(f\xi_{n_j}, fu)} \right\}$$

and

$$N(f\xi_{n_j}, fu)$$

$$= \min \left\{ d(f\xi_{n_j}, fu), d(f\xi_{n_j}, P\xi_{n_j}), d(fu, Pu), d(f\xi_{n_j}, Pu), d(fu, P\xi_{n_j}) \right\}$$

$$\leq \min \left\{ d(f\xi_{n_j}, fu), d(f\xi_{n_j}, f\xi_{n_j+1}), d(fu, Pu), d(f\xi_{n_j}, Pu), d(fu, f\xi_{n_j+1}) \right\}.$$

Letting limit as $j \to \infty$ in (3.26), we obtain

$$(3.27) F(sd(fu, Pu)) \le F(d(fu, Pu)) + L \cdot 0$$

or

$$(3.28) F(sd(fu, Pu)) \le F(d(fu, Pu)),$$

which is a contradiction. Hence, d(fu, Pu) = 0. From Pu is closed, it follows that $z = fu \in Pu$, i.e., z is a point of coincidence of f and P.

Corollary 3.1. Let (Ω, d) be a complete b-metric space with $s \ge 1$ and let G = (V(G), E(G)) be a graph. Suppose that $P : \Omega \to CB(\Omega)$ is edge preserving and there exist a function $F \in \mathcal{F}$ which is continuous from right and $\tau > 0$ and $L \ge 0$ such that

(3.29)
$$2\tau + F(sH(P\xi, P\zeta)) \le F(M(\xi, \zeta)) + LN(\xi, \zeta),$$

for all $\xi, \zeta \in X$ with $P\xi \neq P\zeta$ and $(\xi, \zeta) \in E(\tilde{G})$ where

$$M(\xi,\zeta) = \max\left\{d(\xi,\zeta), \frac{d(\zeta,P\zeta)[1+d(\xi,P\xi)]}{1+d(\xi,\zeta)}\right\}$$

and

$$N(\xi,\zeta) = \min \left\{ d(\xi,\zeta), d(\xi,P\xi), d(\zeta,P\zeta), d(\xi,P\zeta), d(\zeta,P\xi) \right\}$$

Suppose also that the triple (Ω, d, G) has the following property:

- (i) If $\{\xi_n\}$ is a sequence in Ω such that $\xi_n \to \xi$ and $(\xi_n, \xi_{n+1}) \in E(\tilde{G})$ for all $n \in \mathbb{N}$, then there exists a subsequence $\{\xi_{n_j}\}$ of $\{\xi_n\}$ such that $(\xi_{n_j}, \xi) \in E(\tilde{G})$ for all $j \ge \mathbb{N}$.
- (ii) If there exists $\xi_0 \in \Omega$ such that $(\xi_0, u) \in E(\tilde{G})$ for some $u \in P\xi_0$, then P has a fixed point in Ω .

Proof. Letting f = I, the identity map on Ω and follows proof from Theorem 3.1.

Corollary 3.2. Let (Ω, d) be a b-metric space with $s \ge 1$. Let $P : \Omega \to CB(\Omega)$ and $f : \Omega \to \Omega$ be such that $P(\Omega) \subseteq f(\Omega)$ and $f(\Omega)$ a complete subspace of Ω . Assume that there exist a function $F \in \mathcal{F}$ which is continuous from right $\tau > 0$ and $L \ge 0$ such that

(3.30)
$$2\tau + F(sH(P\xi, P\zeta)) \le F(M(\xi, \zeta)) + LN(\xi, \zeta),$$

where

$$M(\xi,\zeta) = \max\left\{d(\xi,\zeta), \frac{d(\zeta,P\zeta)[1+d(\xi,P\xi)]}{1+d(\xi,\zeta)}\right\}$$

and

$$N(\xi,\zeta) = \min \left\{ d(\xi,\zeta), d(\xi,P\xi), d(\zeta,P\zeta), d(\xi,P\zeta), d(\zeta,P\xi) \right\},\$$

for all $\xi, \zeta \in \Omega$ with $P\xi \neq P\zeta$. Then f and P have a point of coincidence in $f(\Omega)$.

Proof. Letting $G = G_0$, where G_0 is the complete graph $(\Omega, \Omega \times \Omega)$. and follows proof from Theorem 3.1.

Theorem 3.2. Let (Ω, d) be a b-metric space with $s \ge 1$ and let $P : \Omega \to CB(\Omega)$ and $f : \Omega \to \Omega$ be a hybrid pair of mappings such that $P(\Omega) \subseteq f(\Omega)$ and $f(\Omega)$ a complete subspace of Ω . Assume that there exists $k \in (0, 1)$ and $L \ge 0$ such that

(3.31)
$$sH(P\xi, P\zeta) \le kM(\xi, \zeta) + LN(\xi, \zeta),$$

where

$$M(\xi,\zeta) = \max\left\{d(\xi,\zeta), \frac{d(\zeta,P\zeta)[1+d(\xi,P\xi)]}{1+d(\xi,\zeta)}\right\}$$

and

$$N(\xi,\zeta) = \min \left\{ d(\xi,\zeta), d(\xi,P\xi), d(\zeta,P\zeta), d(\xi,P\zeta), d(\zeta,P\xi) \right\},\$$

for all $\xi, \zeta \in \Omega$. Then f and P have a point of coincidence in $f(\Omega)$.

Proof. Let $G = G_0 = (\Omega, \Omega \times \Omega), L \ge 0$, and $\tau > 0$ be such that $k = e^{-2\tau}$. For $\xi, \zeta \in \Omega$ with $P\xi \neq P\zeta$, using (3.31), we obtain

$$F(sH(P\xi, P\zeta)) \le -2\tau + F(M(f\xi, f\zeta)) + LN(\xi, \zeta),$$

which $2\tau + F(sH(P\xi, P\zeta)) \le F(M(f\xi, f\zeta)) + LN(\xi, \zeta)$, where $F(\xi) = \ln \xi$. Thus, all the hypotheses of Theorem 3.1 hold true.

ACKNOWLEDGMENT

The authors would like to thank the support of the Research and Development Institute of Rambhaibarni Rajabhat University.

REFERENCES

- [1] S. NADLER: Multi-valued contraction mappings, Pac. J. Math., 20 (1969), 475–488.
- [2] H.K. PATHAK: Fixed point theorems for weak compatible multi-valued and single-valued mappings, Acta Math. Hungar, 67 (1995), 69–78.
- [3] S. CZERWIK: Contraction mappings in b-metric spaces, Acta Math. Inform. Univ. Ostrav, 1 (1993), 5–11.
- [4] V. BERINDE: Generalized contractions in quasimetric spaces, In: Seminar on Fixed Point Theory, (1993), 3–9.
- [5] M.E. GORDJI, H. BAGHANI, H. KHODAEI, M. RAMEZANI: A generalization of Nadler's fixed point theorem, The Journal of Nonlinear Science and Applications, 3 (2010), 148– 151.
- [6] D. WARDOWSKI: Fixed points of a new type of contractive mappings in complete metric spaces, Fixed Point Theory and Applications, **94** (2012).
- [7] J. AHMAD, A. AL-RAWASHDEH, A. AZAM: New *iňĄxed point theorems for generalized F-contractions in complete metric spaces*, Fixed Point Theory and Applications, **80** (2015).
- [8] I. ALTUN, G. DURMAZ, G. MINAK, S. ROMAGUERA: Multivalued Almost F-contractions on complete metric spaces, Filomat, 30 (2016), 441–448.
- [9] A. PADCHAROEN, P. KUMAM, D. GOPAL: Coincidence and periodic point results in a modular metric space endowed with a graph and applications, Creat. Math. Inform., 26 (2017), no. 1, 95–104.
- [10] A. PADCHAROEN, D. GOPAL, P. CHAIPUNYA, P. KUMAM: Fixed point and periodic point results for α-type F-contractions in modular metric spaces, Fixed Point Theory and Applications, 2016 (2016), 1–12.
- [11] H. KANEKO, S. SESSA: Fixed point theorems for compatible multi-valued and single-valued mappings, Internat. J. Math. and Math. Sci., 12 (1989), 257–262.
- [12] D. JAIN, A. PADCHAROEN, P. KUMAM, D. GOPAL : A new approach to study fixed point of multivalued mappings in modular metric spaces and applications, Mathematics, 4(3) (2016), 51.
- [13] C. MONGKOLKEHA, D. GOPAL: Some Common Fixed Point Theorems for Generalized F-Contraction Involving w-Distance with Some Applications to Differential Equations, Mathematics, 7(1) (2019), 32.
- [14] I.A. BAKHTIN: The contraction mapping principle in almost metric spaces, Funct. Anal., Gos. Ped. Inst. Unianowsk, 30 (1989), 26–37.

- [15] M. BORICEANU: Strict iňĄxed point theorems for multivalued operators in b-metric spaces, Int. J. Mod. Math., 4 (2009), 285–301.
- [16] N. HUSSAIN, R. SAADATI, R.P. AGRAWAL: On the topology and wt-distance on metric type spaces, Fixed Point Theory and Applications, **88** (2014).
- [17] S.K. MOHANTA, S. PATRA: Coincidence points and common fixed points for hybrid pair of mappings in b-metric spaces endowed with a graph, J. Lin. Top. Alg., 6 (2017), 301–321.
- [18] S. CZERWIK: Nonlinear set-valued contraction mappings in b-metric spaces, Atti Semin. Mat. Fis. Univ. Modena, 46 (1998), 263–276.
- [19] S. CZERWIK: Contraction mappings in b-metric spaces, Acta Math. Inform. Univ. Ostrav, 1 (1993), 5–11.
- [20] J.A. BONDY, U.S.R. MURTY: *Graph theory with applications*, American Elsevier Publishing Co., Inc., New York, 1976.
- [21] G. CHARTRAND, L. LESNIAK, P. ZHANG: *Graph and digraph*, CRC Press, New York, NY, USA, 2011.
- [22] J.I. GROSS, J. YELLEN: Graph theory and its applications, CRC Press, New York, NY, USA, 1999.
- [23] S.K. MOHANTA, R. KAR: Some new coincidence point results for single-valued and multi-valued mappings in b-metric spaces via digraphs, Matematychni Studii., 53(1) (2020), 69–84.
- [24] M. COSENTINO, M. JLELI, B. SAMET, C. VETRO: Solvability of integrodiiňÅerential problems via fixed point theory in b-metric spaces, Fixed Point Theory and Applications, 70 (2015), wrt.no.70.

DEPARTMENT OF MATHEMATICS RAMBHAI BARNI RAJABHAT UNIVERSITY CHANTHABURI 22000, THAILAND. *Email address*: or_duangkamon@hotmail.com

DEPARTMENT OF MATHEMATICS RAMBHAI BARNI RAJABHAT UNIVERSITY CHANTHABURI 22000, THAILAND. *Email address*: stevie_g_o@hotmail.com