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COINCIDENCE POINT THEOREMS FOR MULTI-VALUED MAPPINGS IN
b-METRIC SPACES VIA DIGRAPHS

Duangkamon Kitkuan and Pheerachate Bunpatcharacharoen1

ABSTRACT. In this paper, we present the concept of conventional FG-contraction
and prove the results of a new coincidence point for multi-valued in b-metric
spaces endowed with a digraph G.

1. INTRODUCTION

Nadler [1] proved that the multi-valued contractions in all metric regions
have a fixed point. Since then, many authors, including Pathak [2], Berinde [4],
Gordji et al. [5] and others have studied various types of fixed point theories for
multi-valued contraction.

Wardowski [6] adopted the concept of F -contraction for single-value map-
pings and studied the fixed points for such mappings in metric spaces. Using
Wardowski’s concepts and Nadler’s concepts, many authors (see [7–13] and
their references) studied fixed points for multi-value mapping.

Bakhtin [14] takes the concept of b-metric spaces as a generalization of met-
ric spaces and makes Banach’s famous contraction principle in metric spaces to
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b-metric spaces in a recent investigation. Study of fixed point theory that inte-
grates graphs is a new development in the domain of contractual value multi-
value theory.

Motivation by the results in [6,23,24], we present the concept of conventional
FG-contraction in b-metric spaces and achieve coincidence point results for the
value match hybrid pair. Multiple values in a b-metric space with a digraph.

2. SOME BASIC CONCEPTS

In the sequel, throughout this article, N, R, R+ denote the set of natural num-
bers, the set of real numbers and the set of positive real numbers, respectively.

Definition 2.1. [3] Let Ω be a nonempty set and s ≥ 1 be a given real number. A
function d : Ω×Ω→ [0,∞) is said to be a b-metric on Ω if the following conditions
hold:

(i) d(ξ, ζ) = 0 if and only if ξ = ζ;

(ii) d(ξ, ζ) = d(ξ, ζ);

(iii) d(ξ, η) ≤ s[d(ξ, ζ) + d(ζ, η)].

The pair (Ω, d) is called a b-metric space.

Example 1. [4] Let p ∈ (0, 1). Then the set

lp(R) :=

{
{ξn} ⊆ R :

∞∑
n=1

|ξn|p <∞

}
endowed with the functional d : lp(R)× lp(R)→ R given by

d({ξn}, {ζn}) =

(
∞∑
n=1

|ξn − ζn|p
) 1

p

for all {ξn}, {ζn} ∈ lp(R) is a b-metric space with s = 2
1
p .

Definition 2.2. [15] Let (Ω, d) be a b-metric space, ξ ∈ and {ξn} be a sequence in
Ω. Then

(i) {ξn} converges to ξ if and only if lim d(ξn, ξ) = 0. We denote this by
limn→∞ ξn = ξ;

(ii) {ξn} is Cauchy if and only if limn,m→∞ d(ξn, ξm) = 0;

(iii) (Ω, d) is complete if and only if every Cauchy sequence in Ω is convergent.
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Definition 2.3. [16] Let (Ω, d) be a b-metric space. A subset A ⊆ Ω is said to
be open if and only if for any a ∈ A, there exists ε > 0 such that the open ball
B(a, ε) ⊆ A. The family of all open subsets of Ω will be denoted by τ.

Theorem 2.1. [16] Let (Ω, d) be a b-metric space and τ be the topology defined
above. Then for any nonempty subset A ⊆ X we have

(i) A is closed if and only if for any sequence {ξn} in A which converges to ξ,
we have ξ ∈ A;

(ii) if we define A to be the intersection of all closed subsets of Ω which contains
A, then for any ξ ∈ A and for any ε > 0, we have B(ξ, ε) ∩ A 6= ∅.

Let (Ω, d) be a b-metric space and CB(Ω) be the set of all nonempty closed
bounded subsets of Ω. An element ξ ∈ Ω is said to be a fixed point of a multi-
valued mapping P : Ω → 2Ω if ξ ∈ Pξ, where 2Ω denotes the collection of all
nonempty subsets of Ω. For A,B ∈ CB(Ω), define

H(A,B) = max{sup
ξ∈A

d(ξ, B), sup
ζ∈B

d(ζ, A)},

where d(ξ, B) = inf{d(ξ, ζ) : ζ ∈ B}. Such a map H is called the Hausdorff
b-metric induced by the b-metric d.

Definition 2.4. [23] Let (Ω, d) be a b-metric space and P : Ω → CB(Ω) and
f : Ω → Ω be two mappings. If ζ = fζ ∈ Pξ for some ξ in X, then ξ is called a
coincidence point of P and f and ζ is called a point of coincidence of P and f.

Lemma 2.1. [18] Let (Ω, d) be a b-metric space with s ≥ 1 and A,B ∈ CB(Ω).

Then, for each λ > 1 and for each a ∈ A, there exists b(a) ∈ B such that
d(a, b(a)) ≤ λH(A,B).

Lemma 2.2. [19] Let (Ω, d) be a b-metric space with s ≥ 1. For any A,B,C ∈
CB(Ω) and any ξ, ζ ∈ Ω, we have the following:

(i) d(ξ, B) ≤ d(ξ, b) for any b ∈ B;

(ii) d(ξ, B) ≤ H(A,B) for any ξ ∈ A;

(iii) d(ξ, A) ≤ s[d(ξ, ζ) + d(ζ, A)].

Let (Ω, d) be a b-metric space. We assume that G is a digraph with the set
of vertices V (G) = Ω and the set E(G) of its edges contains all the loops, i.e.,
∆ ⊆ E(G) where ∆ = {(ξ, ξ) : ξ ∈ Ω}. We also assume that G has no parallel



2788 D. Kitkuan and P. Bunpatcharacharoen

edges and obtain a weighted graph by assigning to each edge the distance be-
tween its vertices. We can identify G with the pair (V (G), E(G)). We denote the
conversion of a graph G by G−1, that is, the graph obtained from G by reversing
the direction of the edges i.e., E(G−1) = {(ξ, ζ) ∈ Ω× Ω : (ζ, ξ) ∈ E(G)}.

Let G̃ denote the undirected graph obtained from G by ignoring the direction
of edges. Actually, it will be more convenient for us to treat G̃ as a digraph for
which the set of its edges is symmetric. Under this convention,

(2.1) E(G̃) = E(G) ∪ E(G−1).

If ξ, ζ are vertices of the digraph G, then a path in G from ξ to ζ of length
n(n ∈ N) is a sequence {ξj}nj=0 of n + 1 vertices such that ξ0 = ξ, ξn = ζ and
(ξj−1, ξj) ∈ E(G) for j = 1, 2, . . . , n. A graph G is connected if there is a path
between any two vertices of G. G is weakly connected if G̃ is connected (see
more detail [9,20–22]).

Definition 2.5 (see [23]). Let (Ω, d) be a b-metric space with s ≥ 1 and let G =

(V (G), E(G)) be a graph. Then the mapping f : Ω→ Ω is called edge preserving if

ξ, ζ ∈ Ω, (ξ, ζ) ∈ E(G̃)⇒ (fξ, fζ) ∈ E(G̃).

Definition 2.6 (see [23]). Let (Ω, d) be a b-metric space with a graph G =

(V (G), E(G)). Then the mapping P : Ω→ CB(Ω) is called edge preserving if

ξ, ζ ∈ Ω, ξ 6= ζ, (ξ, ζ) ∈ E(G̃)⇒ (u1, u2) ∈ E(G̃), ∀ u1 ∈ Pξ, u2 ∈ Pζ.

Definition 2.7 (see [23]). Let (Ω, d) be a b-metric space with a graph G =

(V (G), E(G)). Let P : Ω → CB(Ω) be a multi-valued mapping and f : Ω → Ω be
a single-valued mapping. Then P is called edge preserving w.r.t. f if

ξ, ζ ∈ Ω, ξ 6= ζ, (fξ, fζ) ∈ E(G̃)⇒ (u1, u2) ∈ E(G̃), ∀ u1 ∈ Pξ, u2 ∈ Pζ.

Definition 2.8. [24] Let s ≥ 1 be a real number. We denote by F the family of all
functions F : R+ → R with the following properties:

(F1) F is strictly increasing;

(F2) for each sequence {ψn} of positive numbers, limn→∞ ψn = 0 if and only if
limn→∞ F (ψn) = −∞;

(F3) for each sequence {ψn} of positive numbers, limn→∞ ψn = 0, there exists
k ∈ (0, 1) such that limn→∞(ψn)kF (ψn) = 0;
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(F4) such that τ + F (sψn) ≤ F (ψn−1), ∀ n ∈ N and some τ > 0, then τ +

F (snψn) ≤ F (sn−1ψn−1) ∀ n ∈ N.

Definition 2.9. [24] Let (Ω, d) be a b-metric space with s ≥ 1. A multivalued
mapping P : Ω → CB(Ω) is called an F -contraction of Nadler type if there exist
F ∈ F , τ > 0 such that

2τ + F (sH(Pξ, Pζ)) ≤ F (d(ξ, ζ)),

for all ξ, ζ ∈ Ω with Pξ 6= Pζ.

Example 2. [24] If F (ξ) = ln ξ, ξ > 0, then F ∈ F .

3. MAIN RESULTS

We support that (Ω, d) is a b-metric space endowed with a reflexive digraph G
such that V (G) = Ω and G has no parallel edges.

Definition 3.1. Let (Ω, d) be a b-metric space with s ≥ 1 and letG = (V (G), E(G))

be a digraph. Then the pair (P, f) of mappings P : Ω→ CB(Ω) and f : Ω→ Ω is
called a generalized FG-contraction of Nadler type if there exist F ∈ F , τ > 0 and
L > 0, such that

(3.1) 2τ + F (sH(Pξ, Pζ)) ≤ F (M(fξ, fζ)) + LN(fξ, fζ),

for all ξ, ζ ∈ X with Pξ 6= Pζ and (fξ, fζ) ∈ E(G̃) where

M(fξ, fζ) = max

{
d(fξ, fζ),

d(fζ, Pζ)[1 + d(fξ, Pξ)]

1 + d(fξ, fζ)

}
and

N(fξ, fζ) = min {d(fξ, fζ), d(fξ, Pξ), d(fζ, Pζ), d(fξ, Pζ), d(fζ, Pξ)} .

Theorem 3.1. Let (Ω, d) be a b-metric space with s ≥ 1 and let G = (V (G), E(G))

be a graph. Let P : Ω → CB(Ω) and f : Ω → Ω be such that P (Ω) ⊆ f(Ω)

and f(Ω) a complete subspace of Ω. Support that P is edge preserving w.r.t. f and
there exist a function F ∈ F which is continuous from right τ > 0 and L > 0 such
that (P, f) is generalized FG-contraction of Nadler type. Suppose that the triple
(Ω, d, G) has the following property:
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(i) If {fξn} is a sequence in Ω such that fξn → ξ and (fξn, fξn+1) ∈ E(G̃)

for all n ∈ N, then there exists a subsequence {fξnk
} of {fξn} such that

(fξnk
, ξ) ∈ E(G̃) for all k ∈ N.

(ii) If there exists ξ0 ∈ Ω such that (fξ0, u) ∈ E(G̃) for some u ∈ Pξ0, then f

and P have a point of coincidence in f(Ω).

Proof. Suppose there exists ξ0 ∈ Ω such that (fξ0, u) ∈ E(G̃) for some u ∈ Pξ0.

If fξ0 ∈ Pξ0, then there is nothing to prove. Then, we support that fξ0 /∈
Pξ0. So, d(fξ0, P ξ0) > 0, from Pξ0 is closed. Hence, d(fξ0, ζ) > 0 for all ζ ∈
Pξ0. Since Pξ0 ⊆ f(Ω) is nonempty, there exists ξ1 ∈ Ω such that u = fξ1 ∈
Pξ0, d(fξ0, fξ1) > 0 and (fξ0, fξ1) ∈ E(G̃). If fξ1 ∈ Pξ1, then f and P have a
point of coincidence in f(Ω). Thus, we assume that fξ1 /∈ Pξ1 and so Pξ0 6= Pξ1

which gives that ξ0 6= ξ1. From F ∈ F is continuous from the right, there exists
λ > 1 such that

(3.2) F (λsH(Pξ0, P ξ1)) < F (sH(Pξ0, P ξ1)) + τ.

From fξ1 ∈ Pξ0 and λ > 1, using Lemma 2.1, there exists fξ2 ∈ Pξ1 for some
ξ2 ∈ such that

(3.3) d(fξ1, fξ2) ≤ λH(Pξ0, P ξ1).

Because fξ1 /∈ Pξ1, we get d(fξ1, P ξ1) > 0 and d(fξ1, fξ2) > 0. Using mono-
tonicity property of , from (3.2) and (3.3), we obtain that

(3.4) F (sd(fξ1, fξ2)) ≤ F (λsH(Pξ0, P ξ1)) < F (sH(Pξ0, P ξ1)) + τ.

Using (3.30) and (3.4), we get

(3.5)
2τ + F (sd(fξ1, fξ2)) < 2τ + F (sH(Pξ0, P ξ1)) + τ

≤ F (M(fξ0, fξ1)) + LN(fξ0, fξ1)) + τ.

Hence,

(3.6) τ + F (sd(fξ1, fξ2)) < F (M(fξ0, fξ1)) + LN(fξ0, fξ1)).

From P is edge preserving w.r.t. f and ξ0 6= ξ1, (fξ0, fξ1) ∈ E(G̃), fξ1 ∈
Pξ0, fξ2 ∈ Pξ1, it follows that (fξ1, fξ2) ∈ E(G̃). If fζ2 ∈ Pξ2, then the the-
orem is proved. Thus, we support that fξ2 /∈ Pξ2. It follows that Pξ1 6= Pξ2 and
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this implies that ξ1 6= ξ2. Similarly above, there exists fξ3 ∈ Pξ2 for some ξ3 ∈ Ω

and d(fξ2, fξ3) > 0 such that

(3.7) τ + F (sd(fξ2, fξ3)) < F (M(fξ1, fξ2)) + LN(fξ1, fξ2)).

From P is edge preserving w.r.t. f and ξ1 6= ξ2, (fξ1, fξ2) ∈ E(G̃), fξ2 ∈
Pξ1, fξ3 ∈ Pξ2, it follows that (fξ2, fξ3) ∈ E(G̃). Continuing this process,
we can construct a sequence {fξn} in f(Ω) such that fξn ∈ Pξn−1, fξn /∈
Pξn, d(fξn, fξn+1) > 0, (fξn, fξn+1) ∈ E(G̃) for n = 0, 1, 2, . . . and

(3.8) τ + F (sd(fξn, fξn+1)) < F (M(fξn−1, fξn)) + LN(fξn−1, fξn), ∀n ∈ N.

Thus,

(3.9) F (sd(fξn, fξn+1)) < F (M(fξn−1, fξn)) + LN(fξn−1, fξn), ∀n ∈ N.

Since F is strictly increasing, we get

(3.10) 0 < sd(fξn, fξn+1)) < M(fξn−1, fξn) + LN(fξn−1, fξn), ∀n ∈ N.

So,

(3.11) 0 < d(fξn, fξn+1)) < M(fξn−1, fξn) + LN(fξn−1, fξn), ∀n ∈ N,

where

M(fξn−1, fξn) = max

{
d(fξn−1, fξn),

d(fξn, P ξn)[1 + d(fξn−1, P ξn−1)]

1 + d(fξn−1, fξn)

}
≤ max

{
d(fξn−1, fξn),

d(fξn, fξn+1)[1 + d(fξn−1, fξn)]

1 + d(fξn−1, fξn)

}
≤ max

{
d(fξn−1, fξn), d(fξn, fξn+1)

}
and

N(fξn−1, fξn)

= min {d(fξn−1, fξn), d(fξn−1, P ξn−1), d(fξn, P ξn), d(fξn−1, P ξn), d(fξn, P ξn−1)}

≤ min {d(fξn−1, fξn), d(fξn−1, fξn), d(fξn, fξn+1), d(fξn−1, fξn+1), d(fξn, fξn)}

= 0.

If d(fξn, fξn+1) ≥ d(fξn−1, fξn), it follows from (3.11) that

(3.12) 0 < d(fξn, fξn+1)) < d(fξn, fξn+1), ∀n ∈ N,
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which is a contradiction. Thus, d(fξn, fξn+1) < d(fξn−1, fξn), and hence

(3.13)

τ + F (sd(fξn, fξn+1)) < F (M(fξn−1, fξn)) + LN(fξn−1, fξn)

≤ F (d(fξn−1, fξn)) + LN(fξn−1, fξn)

= F (d(fξn−1, fξn)), ∀n ∈ N

Putting ψn = d(fξn, fξn+1) > 0 for all n ∈ N ∪ {0}. Using (F4) and (3.13), we
obtain that

(3.14) τ + F (snψn) ≤ F (sn−1ψn−1), ∀ n ∈ N.

or

(3.15) F (snψn) ≤ F (sn−1ψn−1)− τ, ∀ n ∈ N.

In general, one can get

(3.16) F (snψn) ≤ F (sn−1ψn−1)− τ ≤ · · · ≤ F (ψ0)− nτ, ∀ n ∈ N.

Thus,

(3.17) lim
n→∞

F (snψn) = −∞

So, from (F2 ), we have

(3.18) lim
n→∞

snψn = 0.

Hence, using (F3), there exists k ∈ (0, 1) such that

(3.19) lim
n→∞

(snψn)kF (snψn) = 0.

Using (3.16), we obtain

(3.20) (snψn)kF (snψn)− (snψn)kF (ψ0) ≤ −nτ(snψn)k < 0, ∀ n ∈ N.

Letting limit as n→∞, we obtain

(3.21) lim
n→∞

n(snψn)k = 0.

Using (3.21), there exists n1 ∈ N such that n(snψn)k ≤ 1 for all n ≥ n1.

(3.22) snψn ≤
1

n
1
k

, ∀ n ≥ n1.
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Consequently, if m > n > n1, then

(3.23)

d(fξn, fξm) ≤ sd(fξn, fξn+1) + s2d(fξn+1, fξn+2)

+ · · ·+ sm−n−1d(fξm−2, fξm−1) + sm−n−1d(fξm−1, fξm)

≤ sψn + s2ψn+1 + · · ·+ sm−n−1ψm−2 + sm−nψm−1

=
1

sn−1
[snψn + sn+1ψn+1 + · · ·+ sm−2ψm−2 + sm−1ψm−1]

=
1

sn−1

m−1∑
j=1

sjψj <
1

sn−1

∞∑
j=1

sjψj ≤
1

sn−1

∞∑
j=n

1

j
1
k

.

Since k ∈ (0, 1), the series
∑∞

j=n

1

j
1
k

is convergent. Hence, {fξn} is a Cauchy

sequence in f(Ω). From f(Ω) is complete, there exists z ∈ f(Ω) such that
limn→∞ fξn = z = fu for some u ∈ Ω.

If there exists a subsequence {fξnk
} of {fξn} such that fξnk

∈ Pu for all k ∈ N,
then limk→∞ fξnk

= fu ∈ Pu, and Pu is closed.
Finally, we will show that f and P have a point of coincidence in f(Ω). We

assume that there exists n0 ∈ N such that fξn /∈ Pu for all n ∈ N with n ≥ n0.

Then fξn+1 /∈ Pu for all n ≥ n0 and so Pξn 6= Pu for all n ≥ n0. Using property
(i), there exists a subsequence {fξnj

} of {fξn} such that {fξnj
, fu} ∈ E(G̃) for

all j ∈ N. It follows that Pξnj
6= Pu for all j ≥ n0. Using (3.30), we get

(3.24) 2τ + F (sH(Pξnj
, Pu)) ≤ F (M(fξnj

, fu)) + LN(fξnj
, fu), ∀ j ≥ n0.

Then,

(3.25)
2τ + F (sd(fξnj+1, Pu)) ≤ 2τ + F (sH(Pξnj

, Pu))

≤ F (M(fξnj
, fu)) + LN(fξnj

, fu), ∀ j ≥ n0,

From (3.25), we get

(3.26) F (sd(fξnj+1, Pu)) ≤ F (M(fξnj
, fu)) + LN(fξnj

, fu), ∀ j ≥ n0,

where

M(fξnj
, fu) = max

{
d(fξnj

, fu),
d(fu, Pu)[1 + d(fξnj

, P ξnj
)]

1 + d(fξnj
, fu)

}
≤ max

{
d(fξnj

, fu),
d(fu, Pu)[1 + d(fξnj

, fξnj+1)]

1 + d(fξnj
, fu)

}
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and

N(fξnj
, fu)

= min
{
d(fξnj

, fu), d(fξnj
, P ξnj

), d(fu, Pu), d(fξnj
, Pu), d(fu, Pξnj

)
}

≤ min
{
d(fξnj

, fu), d(fξnj
, fξnj+1), d(fu, Pu), d(fξnj

, Pu), d(fu, fξnj+1)
}
.

Letting limit as j →∞ in (3.26), we obtain

(3.27) F (sd(fu, Pu)) ≤ F (d(fu, Pu)) + L · 0

or

(3.28) F (sd(fu, Pu)) ≤ F (d(fu, Pu)),

which is a contradiction. Hence, d(fu, Pu) = 0. From Pu is closed, it follows
that z = fu ∈ Pu, i.e., z is a point of coincidence of f and P. �

Corollary 3.1. Let (Ω, d) be a complete b-metric space with s ≥ 1 and let G =

(V (G), E(G)) be a graph. Suppose that P : Ω → CB(Ω) is edge preserving and
there exist a function F ∈ F which is continuous from right and τ > 0 and L ≥ 0

such that

(3.29) 2τ + F (sH(Pξ, Pζ)) ≤ F (M(ξ, ζ)) + LN(ξ, ζ),

for all ξ, ζ ∈ X with Pξ 6= Pζ and (ξ, ζ) ∈ E(G̃) where

M(ξ, ζ) = max

{
d(ξ, ζ),

d(ζ, Pζ)[1 + d(ξ, Pξ)]

1 + d(ξ, ζ)

}
and

N(ξ, ζ) = min {d(ξ, ζ), d(ξ, Pξ), d(ζ, Pζ), d(ξ, Pζ), d(ζ, Pξ)} .

Suppose also that the triple (Ω, d, G) has the following property:

(i) If {ξn} is a sequence in Ω such that ξn → ξ and (ξn, ξn+1) ∈ E(G̃) for all
n ∈ N, then there exists a subsequence {ξnj

} of {ξn} such that (ξnj
, ξ) ∈

E(G̃) for all j ≥ N.
(ii) If there exists ξ0 ∈ Ω such that (ξ0, u) ∈ E(G̃) for some u ∈ Pξ0, then P

has a fixed point in Ω.

Proof. Letting f = I, the identity map on Ω and follows proof from Theorem
3.1. �
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Corollary 3.2. Let (Ω, d) be a b-metric space with s ≥ 1. Let P : Ω→ CB(Ω) and
f : Ω→ Ω be such that P (Ω) ⊆ f(Ω) and f(Ω) a complete subspace of Ω. Assume
that there exist a function F ∈ F which is continuous from right τ > 0 and L ≥ 0

such that

(3.30) 2τ + F (sH(Pξ, Pζ)) ≤ F (M(ξ, ζ)) + LN(ξ, ζ),

where

M(ξ, ζ) = max

{
d(ξ, ζ),

d(ζ, Pζ)[1 + d(ξ, Pξ)]

1 + d(ξ, ζ)

}
and

N(ξ, ζ) = min {d(ξ, ζ), d(ξ, Pξ), d(ζ, Pζ), d(ξ, Pζ), d(ζ, Pξ)} ,

for all ξ, ζ ∈ Ω with Pξ 6= Pζ. Then f and P have a point of coincidence in f(Ω).

Proof. Letting G = G0, where G0 is the complete graph (Ω,Ω × Ω). and follows
proof from Theorem 3.1. �

Theorem 3.2. Let (Ω, d) be a b-metric space with s ≥ 1 and let P : Ω → CB(Ω)

and f : Ω → Ω be a hybrid pair of mappings such that P (Ω) ⊆ f(Ω) and f(Ω) a
complete subspace of Ω. Assume that there exists k ∈ (0, 1) and L ≥ 0 such that

(3.31) sH(Pξ, Pζ) ≤ kM(ξ, ζ) + LN(ξ, ζ),

where

M(ξ, ζ) = max

{
d(ξ, ζ),

d(ζ, Pζ)[1 + d(ξ, Pξ)]

1 + d(ξ, ζ)

}
and

N(ξ, ζ) = min {d(ξ, ζ), d(ξ, Pξ), d(ζ, Pζ), d(ξ, Pζ), d(ζ, Pξ)} ,

for all ξ, ζ ∈ Ω. Then f and P have a point of coincidence in f(Ω).

Proof. Let G = G0 = (Ω,Ω × Ω), L ≥ 0, and τ > 0 be such that k = e−2τ . For
ξ, ζ ∈ Ω with Pξ 6= Pζ, using (3.31), we obtain

F (sH(Pξ, Pζ)) ≤ −2τ + F (M(fξ, fζ)) + LN(ξ, ζ),

which 2τ+F (sH(Pξ, Pζ)) ≤ F (M(fξ, fζ))+LN(ξ, ζ), where F (ξ) = ln ξ. Thus,
all the hypotheses of Theorem 3.1 hold true. �
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