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AN APPLICATION OF LINEAR DIOPHANTINE EQUATIONS TO
CRYPTOGRAPHY

P. Anuradha Kameswari1, S.S. Sriniasarao, and Aweke Belay

ABSTRACT. In this chapter we propose a Key exchange protocol based on a
random solution of linear Diophantine equation in n variables, where the con-
sidered linear Diophantine equation satisfies the condition for existence of in-
finitely many solutions. Also the crypt analysis of the protocol is analysed.

1. INTRODUCTION

Public key Cryptography is quite useful in developing key exchange protocol
for classical Cryptosystem. These protocols are based on hard computational
problems, like factorization, discrete logarithm and evaluating short vector in
lattices. A protocol based on Diophantine equation was proposed by Lin Chang,
Lie in 1995, which was proved to be insecure in cusick. Hary yosh in [5] pro-
posed a protocol based on solutions of non linear Diophantine equations and
certain operators, whose security is based on the hardness to find solution to
the equation. This protocol was adapted in paper [9] by using pell equation and
elliptic curves. In paper [7] the efficiency of the protocol by Hary yosh was ana-
lyzed and suggested for security and efficiency that n, the number of variables in
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the polynomial are to be such that n ≥ 3 and noted that the key exchange based
onm parameters used for the operators may be evaluated with the knowledge of
the 2m solutions of the Diophantine equation considered leading to breaking of
the protocol. In this paper we propose a key exchange protocol with solutions
of linear Diophantine equation with n variables, based on a random solution
and controlled by a bijective operator depending on a set of parameters, where
evaluation of the parameters is hard.

2. LINEAR DIOPHANTINE EQUATIONS IN n VARIABLES FOR n > 2

In [2,7] the study of solutions of linear Diophantine equations with two vari-
ables is extended to n variables for n > 2. The existence of solutions is based
on a relation between greatest common divisor of all the coefficients and the
constant coefficient of the given Linear Diophantine equation. In this section we
define Diophantine equation in n variables for n > 2 and recall the theorems as
in [2,7] on the conditions for existence of solutions for these equations and the
possibility for existence of infinitely solutions for these equations.

Definition 2.1. Let n > 2 a linear Diophantine equations in n variables is an
equation of the form a1x1 + a2x2 + · · · + anxn = b where ai are all integers for all
i = 1, 2, . . . , n and x1, x2, . . . , xn are unknowns.

To describe condition for the existence of solutions of the above Diophantine
equation in n variables for n > 2 we compute the gcd(a1, a2, . . . , an) for n > 2

from the following theorem.

Theorem 2.1. Given integers a1, a2, . . . , an, n > 2 we have

gcd(a1, a2, . . . , an) = gcd(a1a2 . . . an−2, gcd(an−1, an)).

Now in the following theorem the solutions of Diophantine equation of n
variables are expressed as solutions of system of two equations one in (n − 1)

variables and other in two variables.

Theorem 2.2. Let a1, a2, . . . , an be n integers for n > 2 then for e = gcd(an−1, an),
the set of solutions of the equation in n variables a1x1+a2x2+ . . . anxn = b is same
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as the set of solutions of the system of two equations in n+ 1 variablesa1x1 + a2x2 + . . . an−2xn−2 + exn+1 = b

an−1xn−1 + anxn − exn+1 = 0
.

In the following theorem we have the condition for the existence of solutions
of the linear Diophantine equation with n variables for n ≥ 2 basing on the gcd
of the coefficients.

Theorem 2.3. The equation a1x1 + a2x2 + . . . + anxn = b has integer solutions if
and only if gcd(a1, a2, . . . , an) divides b

Now in the following theorem we have the condition for linear Diophantine
equations of n variables with n > 2 to have infinitely many solutions.

Theorem 2.4. Let n ≥ 2 if gcd(a1, a2, . . . an) divides b then the Diophantine equa-
tion a1x1 + a2x2 + . . .+ anxn = b has infinitely many solutions. m

3. THE KEY EXCHANGE PROTOCOL WITH SOLUTION OF LINEAR DIOPHANTINE

EQUATION WITH n VARIABLES

In this section we construct a Key Exchange protocol based on solution of
linear diophantine equation with n variables.

The key exchange protocol is given in the following steps.

Step 1: Public Key Generation by Sender

• The sender considers a linear Diophantine equation g(x1x2 . . . xn) and
using the parameters pi, qi with pi ≥ 0 qi > 0 ∀i = 1, 2, . . .m considers
the operator on the Diophantine equation given as for Ti = T[pi,qi](g) =

(g + pi)qi.
• The sender generates the public key by taking key as T = TmoTm−1o . . . oT1

and computes T (g) as

T (g) = Tm.Tm−1 . . . T1(g(x1x2 . . . xn))

= (((g(x1x2 . . . xn) + p1)q1 + p2)q2 . . .+ pm)qm

= h(x1x2 . . . xn).

• The sender makes the Diophantine equations h(x1x2 . . . xn) and
g(x1x2 . . . xn) public.
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Step 2: Public Key and Private Key Generation by Recipient

• The recipient considers a linear Diophantine equation f(x1x2 . . . xn) =

a1x1 + a2x2 + . . . + anxn = b in n variables for n > 2 such that
gcd(a1, a2, . . . , an) divides b and selects a random solution (α1, α2, . . . , αn)

of the linear Diophantine equation f(x1x2 . . . xn) = a1x1 + a2x2 + . . . +

anxn = b.
• The recipient on receiving the public key Diophantine equations evalu-

ates h(x1x2 . . . xn) and g(x1x2 . . . xn) evaluates h(α1α2 . . . αn) = u(say),
g(α1α2 . . . αn) = v(say).
• The recipient keeps the evaluated value v as secret key and makes u

public key.

Step 3: Private Key Recovery by the Sender

• The sender recovers the secret key v from public key u by applying the
inverse of operators Ti where for Ti we have T−1

i = T−1
[pi,qi]

, with T h
[pi,qi]

=

(h) 1
qi
− pi.

• Sender from T−1
i the inverse of Ti recovers v from u by

(Tm ◦ Tm−1 . . . T1)
1(u) = T−1

1 T−1
2 . . . T−1

m−1 ◦ T−1
m

= ((u)
1

qm
− pm) . . .

1

q1
− p1.

Step 4: Key Exchange
The secret key evaluated by both sender and receiver g(α1α2 . . . αn) = v can be
used as the key for key exchange.

Example 1. The sender considers a linear Diophantine equation g(x1, x2, x3) =

2x1 + 7x2 + 5x3 − 2 and constructs the public key h(x1, x2, x3) using the operators
T1 = T[3,2], T2 = T[4,5]

h(x1, x2, x3) = T2 ◦ T1(g(x1, x2, x3))

= T2 ◦ T1(2x1 + 7x2 + 5x3 − 2)

= T[4,5].T[3,2](2x1 + 7x2 + 5x3 − 2)

= T[4,5].((2x1 + 7x2 + 5x3 − 2 + 3).2)

= ((4x1 + 14x2 + 10x3 + 2) + 4)5

i.e. h(x1, x2, x3) = 20x1 + 70x2 + 50x3 + 30.
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Sender makes 2x1 + 7x2 + 5x3 − 2

20x1 + 70x2 + 50x3 + 30

public.
Recipient considers the linear Diophantine equation f(x1, x2, x3) = 3x1 + 7x2 +

4x3 − 5 picks a solution (α1, α2, α3) = (−2, 1, 1) and keeps it private.
Recipient evaluates

h(α1, α2, α3) = 20(−2) + 70(1) + 50(1) + 30

= −40 + 70 + 50 + 30

= 110

g(α1, α2, α3) = 2(−2) + 7(1) + 5(1)− 2

= −4 + 7 + 5− 2

= 6

Recipient now keeps v = g(α1, α2, α3) = 6 as secret key, makes u = h(α1, α2, α3) =

110 as public key.
Sender recovers secrete key v from the private key h(α1α2α3) by applying

(T2 ◦ T1)−1(h(α1α2α3)) = T−1
1 ◦ T−1

2 (h(α1α2α3))

= T−1
[3,2] ◦ T

−1
[4,5](110)

= T−1
[3,2]((110)

1

5
− 4)

= T−1
[3,2](18)

= (18)
1

2
− 3

= 6

= v

Therefore the common secrete key v = 6 can be used as a key exchange.

Proposition 3.1. The proposed protocol is a cryptosystem.

Proof. The proposed protocol is a cryptosystem with the tuple (P , C,K, E ,D)
given as P = Z, C = Z, K = {f : f = a1x1+a2x2+· · ·+anxn−b, ai ∈ Z for all i =
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1, 2, . . . , n}, E = {T (g)(αf ) : f, g ∈ K, αf = (α1, α2, . . . αn) with f(αf ) = 0} and
D = {T−1(h(αf )) : f, g ∈ K, h = T (g), αf = (α1, α2, . . . αn) with f(αf ) = 0}.

Further note the integer plain texts which are functional values g(αf ) are en-
crypted and is recovered from public key h(αf ) = u by decryption with operators
as follows: T−1(h(αf )) = T−1(T (g))(αf ) = T−1oT (g(αf )) = g(αf ). �

3.1. Cryptanalysis. To compute the common secret key either αf or the 2m
parameters pi, qi for all i = 1, 2, . . . ,m are required. The difficulty of computing
these with the public data is discussed in the following propositions.

Proposition 3.2. Infeasible to compute αf with the public data for n > 1.

Proof. The considered Diophantine equation has n number of variables n and
the solution αf is to be evaluated only from the two equations available as
public data given as h(α1α2 . . . αn) = u, g(α1α2 . . . αn). Now as αf is any so-
lution of f(x1x2 . . . xn) = a1x1 + a2x2 + . . . + anxn = b in n variables where
gcd(a1, a2, . . . , an) divides b, there are infinite possible values for (x1x2 . . . xn) so
finding the choosen value αf from the equation h(α1α2 . . . αn) = u is hard for
n > 1. �

Proposition 3.3. Infeasible to compute the 2m parameters for 2m > n+ 1.

Proof. We have

h(x1x2 . . . xn) = Tm.Tm−1 . . . T1(g(x1x2 . . . xn))

= (((g(x1x2 . . . xn) + p1)q1 + p2)q2 . . .+ pm)qm.

Now if h(x1x2 . . . xn) = b1x1+b2x2+. . .+bnxn = c, note each of the n coefficients
of the polynomial h gives an equation in the 2m parameter variables p1...pm and
q1...qm, given as

Ci(p1p2 . . . pm, q1q2 . . . qm) = bi for all i = 1, 2...n.

Now note as there are n variables and a constant in h, we have a system of n+1

equations in the parameter variables p1...pm and q1...qm and for 2m > n + 1,
there are infinitely many solutions, therefore finding the chosen 2m parameters
from these solutions is difficult. �

Proposition 3.4. The protocol may be used with same f(x1x2 . . . xn) and αf for at
most n-2 times.
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Proof. The protocol if used with same f(x1x2 . . . xn) and αf then for each usage
with different parameters the middle man gets a new equation hi(α1α2 . . . αn)

= ui for each turn i from the public data h(α1α2 . . . αn) = u, so after n-1 turns,
there is a n system of equations in (x1x2 . . . xn), which may be solved for the
common solution (α1, α2 . . . αn) = αf , therefore the protocol may be used with
same f(x1x2 . . . xn) and αf for at most n− 2 times. �

4. CONCLUSION

In this paper we studied the condition for existence of solutions of Linear
Diophantine equations and proposed a key exchange. We proposed the Key
exchange using a linear Diophantine equation g(x1, x2 . . . , xn) and generated a
public key h(x1, x2 . . . , xn) applying some bijective operators on g(x1, x2 . . . , xn),
then a linear Diophantine equation f(x1, x2 . . . , xn) with gcd of its coefficients
dividing the constant coefficient is considered and a random solution αf is taken,
then the g evaluated at this αf is taken as the common private key and with the
public key h(α1α2 . . . αn) = u the private key is recovered using the bijective
operators.

From the cryptanalysis aspect of the protocol the advantage of this protocol
over Harry yosh is that the Diophantine equation f(x1x2 . . . xn) whose solution
is considered for the private key is not made public and as for the 2m operators
involved in the public key construction the 2m parameters pi, qi can be chosen
to form the public key Diophantine equation h(x1x2 . . . xn) such that 2m > n+1

then as it is infeasible to evaluate the chosen 2m parameters, to evaluate the
key exchange from public key is infeasible.
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