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FIXED POINT THEOREMS IN MR-METRIC SPACE THROUGH
SEMI-COMPATIBILITY

Ayat Rabaiah'®, Abed Al-Rahman Malkawi, Amer Al-Rawabdeh, Diana Mahmoud,
and Maysoon Qousini

ABSTRACT. In this paper, we interpret the concept of M R—semi-compatible
maps in M R—metric spaces and in the view of orbital concept we deduce some
fixed point theorems through M R—semi-compatibly for the pair (U, V') of self-
mappings on the set X under a set of conditions.

1. INTRODUCTION

In 2021, the concept of M R—metric is defined by A. Malkawi et. al [[10] which
is a generalization of a D—metric space. Dhage []3] presented the concept of a
D—metric space which is introduced and proved the existence a unique fixed
point for a self-mapping satisfied a contractive condition.

Latter, Cho et. al [2] initiated the notion of semi-compatible maps in d-
topological spaces.

Definition 1.1. [2] A pair of self-maps (U, V') to be semi-compatible if the follow-
ing two conditions are satisfied.
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(1) Unp = Vnimplies UVn=VUn;
2) UG, — (and V(, — ¢ implies UV (,, — V(, as n — oo.

In the above definition, note that (2) gives (1), set (, = nand ( = Vn = Un.
Thus, by condition (2), we define the M R—semi-compatibly of the pair (U, V)
in an M R— metric space.

On the other hand, we devise the definition of an M R—semi-compatible pair
of self-mappings in an M R—metric space and introduce its relationship with an
M R—compatible pair of self-maps with an example.

Additionally, if V' is continuous, then (U, V') in M R—compatible implies (U, V)
is MR-semi compatible. Therefore, the semi-compatibility of the pair (U, V') does
not imply its M R—compatibility, even if V' is continuous see Example 1.

2. PRELIMINARIES

In every part of this paper N stands for all natural numbers and (X, M) denote
an M R—metric space.

In 1994, Dhage [6] defined a generalization of metric space it is called a
D — metric space.

Definition 2.1. [3] Let X # ¢ be a set. A function D : X x X x X — [0,00) is
called a D — metric, if the following properties are satisfied for each (,n, & € X.
(D1) : D(¢,n,€) = 0.
(D2) : D(¢(,n,§) =0ff C=n=¢
(D3) : D(¢,n, &) = D(p(¢,m, 5))7f0r any permutation p(¢,n,§) of ¢,1,¢.
)

(D4) : D(¢,n,€) < D(¢,n, £) + D(C,£,§) + D(¢,n, §).
A pair (X, D) is called a D — metric space.

The following definition is an M R—metric space.

Definition 2.2. [[10|] Let X # ¢ be a set and R > 1 be a real number. A function
M : X xXxX — [0,00) is called an M R — metric, if it satisfies the following
properties for each (,n,¢ € X.

(M1) - M(C,n,€) = 0.
M2): M(Cn, &) =0iff(=n=¢

) M( )
3): M(¢,m,8) = M(p(¢, 1, €)); fO'” any permutation p(¢,n,§) of ¢,1,&.
) M(¢;n,€) <

(
(M
(M4): M(¢,m,8) < R[M(G,m, ) + M(C,61,6) + M(ly,m,6)].
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A pair (X, M) is called an M R — metric space.

In the following, we present two definitions of M R — convergent and M R —
Cauchy defined by Malkawi et. al [[10].

Definition 2.3. [|10] A sequence {(3, } in an M R — metric space (X, M) is called
MR — convergent if there exists (; in X such that for ¢ > 0, there existsa N > 0
integer number such that M ((y,,(1,,,(1) < € forall m > N, n > N. So we called
{¢1,,} MR — convergent to (; and (; is a limit of {(3, } .

Definition 2.4. [|10] A sequence {(y,, } is a sequence in M R —metric space (X, M)
is called M R — Cauchy if for a given € > 0, there exists a positive integer N such
that M(Clru Clmv Clp) < Efor all m,n,p 2 N.

Definition 2.5. Let (X, M) be an M R — metric space and ¢ # U C X. We define
the diameter of U as:

op(U) = Sup{M(C,n,€): ¢;n,§ € U}.

Definition 2.6. Let V' be a multi-valued map on M R—metric space (X, M). Let
(o € X. (, be a sequence in X called be an orbit of V at (, denoted by O(V, () if
Ca1 € VY ({); That is ¢, € V(1 forall n € N.

An orbit O(V, () is said to be M R—bounded if its diameter is finite. It is said to
be complete if every M R—Cauchy sequence in it M R—converges to a point of X.

Definition 2.7. A pair (U, V') of self-maps on M R — metric space (X, M) is called
M R—compatible if for all {,n and £ € X for some (5 € (0, c0)

2.1) MUV, UV, VUE) < BM(V(,Vn,UE)

Definition 2.8. A pair (U, V) of self-maps on M R — metric space (X, M) is called
an M R— semi-compatible if lim UV, = V(, such that (, is a sequence in X
such that hm Vi, = hm UCn = C That is, A pair (U, V) of self-maps on M R —
metric space is called M R— semi-compatible if hrn MUy, Ulyip, ) = 0 and
Tim M (VG Vg €) = 0 imply lim M(UVG, UV, V) = 0.

Definition 2.9. Let (X, M) be an M R—metric space and U and V' be two self -
mappings of X and {(,} be a sequence in X such that U(,—1 = Vn, for n € N.
Then we define Oy (V' (,) = {V(, : p > n} for n € N ,where p is a unique fixed
pointin X of V.
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Proposition 2.1. Let (U, V') be a M R—compatible pair of self-maps on an M R —
metric space (X, M) and V' be a continuous. Then the pair (U, V') is M R— semi-
compatible.

Proof. Let U(, — s,V (, — s. We have to show that UV, — Vs. Since V
is continuous implies VU(, — Vs. Since (U,V') is M R— compatible, for some
B € (0,00)
MUV, UV, VUE) < M(V(, Vi, US),
forall {,nand ¢ € X.
Setting ¢ = (,,, 1 = (u4p and £ = ¢, in the above condition, we have

M(L L CmL i (n-i—p’ L LCn) S BM(L Cm L Cn+p7L<n)7
implies lim M(UV(,, UV (,1p, Vs) = 0. Thus lim UV (, = Vs. Therefore the
p +p
n—oo

n—oo

pair (U, V) is M R— semi-compatible. O

Remark 2.1. By the next example we note that,
(1) The pair of self-maps (U,V') is M R— semi-compatible yet it is not M R—
compatible even though V' is continuous.
(2) The pair (U,V) is M R— semi-compatible but (V,U) is not M R— semi-
compatible.
(3) UV =VU, still (V,U) is not M R— semi-compatible.

Example 1. Let (R*, M) be an M R — metric space. Define a function M : R™ x
R x R™ — [0,00) as

1
Moo(ganvf) = _maX{|C_77|>|77_f|v|f_§|},

R
forall (,nand £ € RT.
Now, U and V on R* are defined as:
0 if¢>0
U() = { o

1 otherwise

Also, V{ = ( forall ¢ € R*. Let {,, = +. Then U(,,V(, — 0 as n — oo.
(1) UV, = U, — 0=V(0); That is UV, — V(0). Moreover, if we take V'
as the identity function I, for any sequence {(,} such that {U(,} — s and
{V(,} — s, asn — oo, UV(, = UC, — s(=Vs)ie UV(, = Vs. Thus
(U, V) is M R— semi-compatible. Also V = I and V' is continuous.
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Set ( =0,np=0and & =11in (2.1) we have, M(1,1,1) < 5M(0,0,0),
for all g € (0, 00), which is not true. Thus (U, V') is not M R— compatible.
(2) Also, U¢,,V(, = 0asn — oo, VU(, =V (0) = 0# U(0). So (V,U) is not
M R— semi-compatible. From (1), UV, — V(0). Thus (U,V) is MR—
semi- compatible.
(3) Additionally, we observe that as V' = I,UV = VU. Therefore (U,V) is
commuting yet (V,U) is not M R— semi-compatible.

Proposition 2.2. Let U and V be two self-mappings of an M R—metric space
(X, M) such that U(X) C V(X). For (, € X define sequences {(,} and {n,} in
Xby U¢,—1 =V, =mn, forall n € N. Then

(1) O(VU,¢o) = {C0:C1:Cor -+, Gy - - -
(2) O<UV_1U7 UCO) = {TIO’ m,n2,.--5Tn, - } .

Proof. U¢y = V¢, implies ¢; € V7U({, and U¢; = V¢, implies ¢, € VU =
(VIU)%¢.
Similarly, U¢, 1 = V¢, gives ¢, € VIU¢,—, = (V1U)"(y. Once more
m = Ul,m=UqeUVUG) = UV HU,
s = UG eUWVUVIUG) = (UVH2U,

. € (UVH"1U,.
O

According to the definition of (c)-comparison function with base R defined by
Shatanawi [[11] and Dhage [5]], we introduce the following family of functions:

Definition 2.10. [5}|]11]] Let R be a constant R > 1. Amap V : [0, +00) — [0, +00)
is called a (c¢) — comparison function with base R if U satisfies the following:
(1) U is continuous,
(71) W is non-decreasing,
(vit) ZR”\IJ"(RL‘) converges for all t > 0.
n=1
If ¢ is a (c)-comparison function, then for all ¢ > 0 we have ¢(¢) < ¢ and

$(0) = 0.
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Definition 2.11. A set S C X is called an M R—bounded if there exists a constant
K > 0 such that M(¢,n,€&) < K for all (,n,¢ € S and the constant K is called an
M R—bound of S.

Lemma 2.1. Let {(,} C X be M R—bounded with M R—bound K satisfying
M (Cny Gty Gn) < RPU™(RM), Vm >n+1,
Then {(,} is an M R—Cauchy in X.

Proof. Since ZPJ W/ (Rt) converges series of nonnegative real number for all
j=1
t > 0, we have lim R"U"(Rt) = 0 and lim,,,~,, » R/W/(Rt) = 0. For p,t € N,
n—oo
j=n+1
we have
M(gna Cn—i—la Cn+p) S Rn\Dn(RK)a

and

M(Cna Cn+l> Cn+p+t) S Rn\I’n(RK)

By continuing this process of the tetrahedral inequality we obtain

M(Cm <n+p7 Cn—&-p—i—t)

S RM(Cm Cn-ﬁ-la gn—i—p-i-t) + RM(Cm Cn—l—p: Cn-&-l) + RM(CH—H» C?’L-i-pa §n+p+t)
S QRnLI,n(RK) + RM(Cn-Ha Cn—i—pa Cn-‘rp—i-t)
< 2R"™WM(RK) + RM (Cot1, Cnt2s Cnpt) + BM (Cug1s Crtps Cr2)
+RM (Cat2s Cntps Cnprt)
< RMRK) + R R 4 RM (G, G Gropst) < -
n+p—1
< 2> RIW(RK)+ RM(Cospr Guspts Coprt)
j=n
n+p—1 o n+p+t—1 o
< 2 ) RW(RK)+2 Y RW(RK)+ BM(Coritt Gurps Goiptr)
j=n j=n-+p
n+p+t
< 2 ) RUW(RK)R™ U (RK)
j=n

— 0asn — oc.

Thus {(,} is an M R—Cauchy. O
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Lemma 2.2. Let U and V' be two self-mappings of an M R—metric space (X, M)
such that:

(5) U(X) € V(X):

(ii) Some orbit {n,} = O(UV~,U(,) is bounded;

(ii1) For all ¢,n,& € O(V U, {y) and for some W, where U is a (c) — comparison
function with base R,

1 RM(VC, Vi, VE), RM(UC, V(, V§),
M(UC, Un,Ug) < mWmax ¢ RM(Un, Vi, VE), RM(UC, Vi, V),
RM(Un, V¢, VE)

Then {n,} is an M R—Cauchy sequence in O(UV 1 U¢).

Proof. Let ¢, € X. As U(X) C V(X), we define two sequences {(,} and {7, } in X
by U(,—1 = V(, = n,, Vn € N. Then

M(nm Thn+1, 77n+p) = M(Ugn—h UCm UCn—e—p—l)

RM(nna -1, nn+p—1)> RM(nn—la My 77n+p—1)a
¥ max RM(Un-i—la Mn,s 77n+p—1)a RM(%, Tns nn+p—1)>
RM(nn—lv Tn+1, nn+p—1)

<

ol

That is
1
(2.2) M(Um n+1, nn+p) < R\Ij max {RM<77na -1, 7]n+p—1>7
RM(nn+17 Tns nn+p—1)7 RM(T/na T, 77n+p—1)a RM(nn—h TNn+1, nn+p—1)} .
Once more
1
(2.3) M(ﬁn—l, M 77n+p71) < E\I} max {RM(nana -1, 77n+p72)a

RM(nn—la Mns 77n+p—2)7 RM(nn—lv -1, nn+p—2)7 RM(Um Mn—2, 77n+p—2)} .

1
M(Un+17 M 77n+p—1) < E\I] max {RM(nm -1, 77n+p—2)7

(24) RM(T/TH-I’ M 77n+p—2)a RM(nn7 -1, nn+p—2)7 RM(Tln—la Mn+1, 77n+p—2)a
RM(77m T, 77n+p—2)} :
1
(2.5) M(nna M 77n+p—1) SE\D max {RM(nn—la -1, 77n+p—2)a

RM(nn7 nnfla 77n+p*2)} :
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1
M(nnfla Mn+1, 77n+p71) < E\II max {RM(nnf% s nn+p72)>
(2.6) RM(nn—la Nn—2, nn+p—2)’ RM(n’n-‘rl) T, nN+p—2)7 RM(nn—la M, 7]n+p—2)7
RM(nn—Qa Mn+1, 77n+p—2)} .

Substituting (2.3) to (2.6) into (2.2) we attain,

M(T/na Thn+1, 77n+p) S RQ\I}QK@Ca,b,c{RM(naa T, nc)}a

forall a,b,csuchthatn —2<a<nn—-1<b<n+l,c=n+p-—1
Following same procedure, we get

(27) M(nnu Nn+1, 77n+p> S Rn\Ian(lCa’b7c{RM(7]a, 77b7 770)}7

for all a,b, csuchthat 0 < a <n,1<b<n+1,c=p. Let K be the bound of
O(UV~Y,U(). Then it follows from (2.7) that

M(nnv nn-‘rla nn+p) S Rn\Pn(RK)

Thus, by lemma 2.2, {1, } is an M R—Cauchy sequence in O(UV ', U¢,). O

3. MAIN RESULTS

Theorem 3.1. Let U and V be two self-mappings of an M R—metric space (X, M)
such that:
(1) U(X) € V(X);
(73) The pair (U, V') is an MR-semi-compatible and V is continuous;
(ii1) For some (s € X, some orbit {n,} = O(UV~',U(,) is bounded and com-
plete;
(iv) Forall ¢,n € O(V'U, () UO(UV = U(), for some ¥, where ¥ is a (c) —
comparison function with base R and V¢ € X,

M(UC,Un, U€) < 20 max {RM(VC, Vi, V),
RM(UC,VC,VE), RM(Un, Vi, VE), RM(UC, Vi, VE), RM(UR, VC,VE)}

Then U and V' have a unique common fixed point in X.
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Proof. Let {, € X, construct two sequences {(,} and {n,} € X as U(,_1 =
V(, = nn, for all n € N. By Lemma 2.2, {n,} is an M R—Cauchy sequences in
O(UV~1 U(), thus {n,} is complete. Consequently

(3.1) M =VG =U(-1 —s€X
As V is continuous and (U, V') is M R—semi-compatible, we have
(3.2) V3, = Vs, UV(, = Vs.
We will divide the proof into three steps :
Step 1: Setting ( = V' (,,,n = V(, and £ = s in (iv) we have
MUV, UV, Us) < }%\IJ max {RM(VV(,, VV(,,Vs),
RM(UV(,,VV(,,Vs), RM(UV(,, VV(,, Vs), RM(UV(,,VV(,, Vs),
RM(UV(,,VV(,, Vs)}.
Let n — oo, by (3.2) we have,
M(Vs,Vs,Us) =0,
implies
(3.3) Vs=Us.
Step 2: Set ( = (,,n = (, and £ = s in (iv) we obtain,

] RM(V,, Vi, Vs), RM(UC,, V(G Vs),
MU, U, Us) < E\I/ max < RM(UC,,V(,,Vs), RM(UC,, V(n, Vs),
RM (UG, V(n, Vs)
Let n — oo, by (3.1), (3.3) and V is a (¢) — comparison function with base R we
have,

1
M(s,s,Us) < E\IJ{RM(S,S,US)} < M(s,s,Us), if M(s,s,Us) >0,

which is a contradiction. Thus M (s, s, Us) = 0, implies s = Us. Hence s = Us =
V's; that is, s is a common fixed point of U and V.
Step 3: To prove the uniqueness. Let u be a common fixed point of U and V,
then u = Uu = Vu. Set { = (,,,n = ¢, and £ = u in (iv) we obtain,
. RM(V,, VCn, Vu), RM(UC,, VG, V),
MU, U, Uu) < E\If max { RM(UC,, V,, Vu), RM(UC,, V(, Vu),
RM (UG, V,, Vu)
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Let n — oo, by W is a (¢) — comparison function with base R, we have,
1
M (s, s,u) < E\I’{RM(S, s,u)p < M(s,s,u), if M(s,s,u) >0,

which is a contradiction. Thus M (s, s,u) = 0, implies s = u. Hence s = u; That
is, s is a unique common fixed point of U and V. O

Remark 3.1. From (i) of remark (2.1) it gives there are M R—semi-compatible
maps (U, V') which are not M R—compatible even if V is continuous. The above
theorem examines the common fixed points of such M R—semi-compatible maps
(U, V) in M R—metric spaces.

Lemma 3.1. Let X be an M R—metric space and U, V be two self -mappings of X
satisfying there exists a sequence {(,} € X such that

(1) UGy = Vi for n € N;

(2) opm (O (Vp)) < 0.
Then the following are equivalent:

(b1) Let € > 0, there exist ¢ ,¢ such that 0 < € < e < ¢ and let

M(V¢, Vn,Ve)

G4 _ 1 ] RMVEVnVE), RM(VC,UCVE), RM(Vn, UG, VE),
RM(V (UG VE), RM(Vn,Un, V) '
If M(V(, Vi, VE) < € gives M(UC, Un, UE) < €
(b2) There exists an increasing upper seicontinuous ¢ : R™ — Rt and ¢(t) < t
V > 0 such that

(35 MUGURE < O(RM(VE, Vi, VE)) for all &€ € X

Proof. It is obvious that (3.5) implies (3.4). Suppose that (3.4) is satisfied. De-
fine ¢ : R — R™as
5 0<¢<1,
$(C)=1q s+, [J<¢<[J+1L1<¢,
SCHED,  ¢=14[1<¢
Here [(] is the greatest integer not exceeding (. Then (3.5) comes from (3.4)
and definition of ¢. O

Lemma 3.2. Let X be an M R—metric space and U, V be two self -mappings of X
satisfying
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(I) UCn = Vnn-i-l fOT" ne N;
(ID) 62/ (Oy(V(y)) < o0, and (3.4).
Then {(,} is an M R—Cauchy sequence.

Proof. Let \,, = 0)(Op(V(,)),Vn € N. Then by the definition 2.9 and (II), we
attain \; < oo. Since {\,,} is a decreasing sequence of nonnegative real numbers,
there exists € > 0 such that

lim A, = €.
n—oo

By Lemma 3.1, A1 < ¢()\,). Now, it is enough to show that ¢ = 0. If not, then
from Lemma 3.1, we get that € < ¢(¢) < ¢, which is a contradiction. Therefore
¢ = 0.Thus, {V'(,} is an M R—Cauchy sequence. O

Theorem 3.2. Let X be an M R—complete metric space and U, V be two self -
mappings of X satisfying

(s1) 60 (Oy(VEp)) < oo and (3.4);

(s2) V' is continuous;

(s3) UX C VX;

(s4) (U, V) is a pair of an M R—compatible;

(sb) The M R—metric is a continuous function on X x X x X.
Then U and V' have a unique common fixed point in X.

Proof. By (s3), we get a sequence {(,} € X such that
UG, = Vi forn € N

Thus, by Lemma 3.2, {V'(,,} is an M R—Cauchy sequence. Since X be an M R-
complete metric space, {V'(,} converges to s € X. We have to show that s is a
unique fixed point of U and V. Now V' is continuous implies that

lim VU(, = Vsforn e N.

n—oo

Since Vn, m,r € N such thatn < m < r,

by s2, s4 and sb, we get
lim UV(, = Vs.

n—oo
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Take Vs # s. Let e = M(s,s,V's). Then 0 < e. Now

lim M(V(,, VG, VUG,)

RM(V(n, V(,, VUG, RM(V(,, UCn, VUC,),
= Jl%oﬁmax RM(V,, U, VUG RM (V(,, UG, VUG,
RM(V(,, U, VUCG,)
= M(s,s,Vs).

Since

lim M(V(,, V(, VUG,) = M(s,s,Vs) =¢€>0,
n—oo

From Lemma 3.1, ¢ < ¢(€¢) < ¢, which is a contradiction. Thus Vs = s.Take
Us # s. Since

lim M(Vs, Vi, VUG)

n—oo
] RM(Vs,V(,,VUC,), RM(Vs,UCy, VUC,),
= lim = maxd RM(VG,, Us, VUG), RM(V G, Us, VUG,),
RM(V(,, U, VUC,)
= M(s,s,Us) =¢>0,

From Lemma 3.1, € €< ¢(€) < ¢, which is a contradiction. Thus Us = s.
To prove the uniqueness, let s; # s, be two common fixed points of U and V.
Then

M(Vsy,Vs1,Vsy) = M(sq,581,82) :=¢€>0.
Then from Lemma 3.1,
e =M(Us1,Us1,Usy) = M(s1,51,82) < ¢(e) < e.
Which is a contradiction. Hence U and V' have a unique common fixed in X [

We obtain the following corollary.

Corollary 3.1. Let X be a complete M R—metric space and U, V be two self-
mappings of an M R—metric space (X, M) such that:

(1) U(X) € V(X);

(2) The pair (U, V') is an MR-compatible and V is continuous;
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(3) 0a(Ou(V¢o)) < o005
(4) For some q € [0,1) and for all {,n £ € X,

M(UG, Un, U¢)

\I/max{ RM(V(, Vn,VE), RM(UC,V(,VE), RM(Un, Vi, VE), }

= RM(UC, Vi, VE), RM(Un, V(, V)

==

Then U and V' have a unique common fixed point in X.

Proof. Since the 4" condition from the above corollary gives (3.4), the result
comes from Theorem (3.2). O

We generalize the above corollary.

Corollary 3.2. Let U and V be two self-mappings of an M R—metric space (X, M)
satisfying: (i), (iii), (iv) of Theorem (3.1) and the pair (U,V') is M R—compatible
and V' is continuous; Then U and V have a unique common fixed point in X.

Proof. From Theorem (3.1) and proposition 2.1. O

Note that: Corollary 3.2 is a particular case of Corollary 3.1.

Theorem 3.3. Let U and V be two self-mappings of an M R—metric space (X, M)
satisfying:
1. (i), (i7i) of Theorem (3.1) and the pair (U,V') is an MR-semi-compatible
and U is continuous;
2. For some q € [0,1) and forall {,n { € X

MU, Un,U¢E)
o L g ] BMVE VI, VE), RM(UC,VE, VE), RM(Un, Vi, VE),
BEL RM(U¢,Vn,VE), RM(Un,V(, VE) '

Then U and V' have a unique common fixed point in X.

Proof. Let (, € X, construct two sequences {(,}, {n,} € X as in proof of theorem
3.1. Thus (i) of Theorem 3.1 is satisfied. Because U is continuous, we obtain
UV ¢, — Us, and (U,V) is an MR-semi-compatible, we have

UV, — Us.
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Now, the limit of a sequence is unique, we attain Us = V's and the rest of the
proof comes from steps 2 and 3 of Theorems 3.1.
Il
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