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SURVIVAL COPULA PARAMETERS ESTIMATION FOR ARCHIMEDEAN
FAMILY UNDER SINGLY CENSORING

Nesrine Idiou1 and Fatah Benatia

ABSTRACT. Given (Zi, δi) =
{
min(Ti, Ci), I(Ti<Ci)i=1,2

}
, as dependent or in-

dependent right-censored variables, general formulas are proven for a semi-
parametric estimation of the proposed method. As a logical continuation of re-
sults established by N.IDIOU et al 2021 [16], a new estimator of C̃ is proposed
by considering that the underlying copula is Archimedean, under singly censor-
ing data. As an application, two Archimedean copulas models have been cho-
sen to illustrate our theoretical results. A simulation study follows, which sheds
light on the behavior of the process estimation method shown that the proposed
estimator performs well in terms of relative bias and RMSE. The methodology
of the proposed estimator is also illustrated by using lifetime data from the
Diabetic Retinopathy Study, where its efficiency and robustness are observed.

1. INTRODUCTION

In medical domain, researchers were mostly confronted with competing risk
issues, that is, event times may be dependent and they are censoring each other
[1–3, 10–12]. Likewise, in survival analyses, it is popular to observe two or
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more lifetimes for the same customer, patient, or equipment. For example, the
lifetimes of a pair of organs can be observed in a pair of kidneys, an ear, or
an eye in patients; or the lifetimes of engines in a two-engine vehicle. In most
cases, these variables are related and this pattern of bivariate data is well-suited
to the copula model, particularly the Archimedean copula models.

As an outcome, we suggest that the two failure times T1 and T2 can be mod-
elled by an Archimedean copula model and it is subject to dependence or in-
dependence right-censoring with the censoring vector (C1, C2), we also pro-
pose that the vector (C1, C2) follows an arbitrary bivariate continuous distri-
bution. Hence, we can only observe Zi = min(Ti, Ci), δi = I{Ti≤Ci}i=1,2

where I(.)

represents the indicator function. Sometimes, the problem in right-censoring
is how modeling the dependence concept among a bivariate censoring vec-
tors (T1, T2) and (C1, C2), when both variables are censored at the same time
(see N.Idiou et al [16]). The issue now is how to construct the dependency
structure between this vector when only one variable is right-censored. Let’s
look at the bivariate pattern (T1, T2), with the joint distribution function (df)
F (t1, t2) = P (T1 ≤ t1, T2 ≤ t2), which can be presented by the following form
F (t1, t2) = C(F1(t1), F2(t2)), where F1, F2 are continuous margins and C is the
related copula function ordinarily known for all (u, v) in [0, 1]2 by:

C(u, v) = F ((F−1
1 (u), F−1

2 (v)),

when F−1(u) = inf{x ∈ R : F (x) ≥ u} is the generalized inverse of a non-
decreasing function F . A joint survival function S of (T1, T2) is said to have
an Archimedean association dependence structure if for all t1, t2 ≥ 0, it can be
interpreted as follows S(t1, t2) = ϕ−1(ϕ(S1(t1)) + ϕ(S2(t2))), where ϕ is a con-
tinuous and convex function defined on [0, 1] → [0,∞] with ϕ(1) = 0, and S1,

S2 are the marginal survival functions of T1 and T2 respectively (see [4], [5])
and [6]. In the context of multivariate survival analysis, many models have been
proposed to model multivariate survival data among them, Archimedean copu-
las models (see [2], [19] and [20]). Specifically, for the couple (u, v) ∈ [0, 1]2

an Archimedean copula is noted as C(u, v) = ϕ−1(ϕ(u) + ϕ(v)), where ϕ−1 is
the inverse function of ϕ and ϕ usually called the Archimedean generator of C.
Hence, the function C̃ define from [0, 1]2 → [0, 1], which couples S1 and S2 and
known by the survival copula of (T1, T2) via

(1.1) C̃(u, v) = u+ v − 1 + C(1− u, 1− v),
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(Nelsen, (2006) [15]). Supposing that (T1, T2) follows an Archimedean cop-
ula, where S1and S2 are the marginal survival functions, Genest and Rivest
(1993) [6] have proved that U = ϕ(S1(T1))

ϕ(S1(T1))+ϕ(S2(T2))
and V = C̃(S1 (T1) , S2 (T2)) =

ϕ−1 (ϕ (S1 (T1)) + ϕ (S2 (T2))) , are independently distributed random variables
when U follows a uniform distribution on [0, 1] and V follows a so-called Kendall
distribution with the density function: kC (t) = ϕ(t)ϕ′′(t)

(ϕ′(t))2
defined on (0, 1], as a

function of t depends on the unidentified parameter θ.
The main aim of this paper is to present a new semi-parametric estimation

procedure and its application to health-related survival data, given (T1, T2) as
individually censored. General formulas for all possible parameters estimate of
a survival copula C̃ are also presented under the assumption that the copula is
Archimedean.

Important results are reviewed in section 2, where general formulas are pro-
posed for the marginal survival functions of T1 and T2. As an application of our
results, a simple way of the estimation of the unknown parameters is declared
in section 3, where an estimator of V based on the classical moments method
is proposed, followed by two examples of Clayton and Gumbel copula models.
Under the Archimedean dependence structure assumption for censored data, a
simulation study evaluates the performance of our estimator presented in Sec-
tion 4, relatively on bias and RMSE; where the robustness and efficiency of the
estimator proven. In section 5, we illustrate the methodology presented in sec-
tion 3 on real data from the Diabetic Retinopathy Study, which is available in
the "survival" package [22], [23] of the R software. Our paper ends with some
discussions in Section 6.

2. IMPORTANT RESULTS

Assume that (T1, T2) are two positive random variables whose distributions
can be modelled by an Archimedean copula either dependently or independently
right-censored by a censoring vector (C1, C2) that follows an arbitrary bivariate
continuous distribution. Take the available observation in the case of absence
data (Z1i, Z2i, δ1i, δ2i)1≤i≤n : the independent copies of a non-negative random
variable of the vector (Z1, Z2, δ1, δ2). As a result, the variable Zi = min(Ti, Ci)

is only observed when Ti ≤ Ci for i = 1, 2, then δi = I{Ti≤Ci}i=1,2
equal to one

which represents the indicator function of censored data.
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Considering only T1 is right-censored, in other words, C2 = ∞ almost surely,
which is a particular situation from another case of doubly right-censored (see
M.Boukeloua 2020 [14]). In this case, the empirical distribution function is
F̃n(t1, t2) = 1

n

∑n
i=1 1{T1i≤t1,T2i≤t2}. As per Stute (1993) [18], the relating consis-

tent estimator of F was given by

(2.1) F̃n(t1, t2) =
1

n

n∑
i=1

δ1i

Ŝ1

(
Z−1i
)1{Z1i≤t1,Z2i≤t2},

recognizing it was provided that Ŝ1 (t) =
∏

k/Z′1k<t

(1−
∑n
i=1 1{Z1i=Z

′
1k
,δ1i=0}∑n

i=1 1{Z1i≥Z′1k}
), where Ŝ1

as the Kaplan-Meier estimate of S1 and ((Z ′1k)1≤k≤m,m ≤ n) is the distinct val-
ues of (Z1i)1≤i≤n . Suppose that the copula C is twice continuously differentiable
and the variable T1’s support is lower than the variable T2’s support. Follow-
ing Gribkova and Lopez (2015) [9] and noted that F1n(t1) = lim

t2→∞
Fn(t1, t2),

F2n(t2) = lim
t1→∞

Fn(t1, t2), the empirical copula function Cn have estimated by:

Cn (u, v) =
1

n

n∑
i=1

δ1i

Ŝ1

(
Z−1i
)1{F1n(Z1i)≤u,F2n(Z2i)≤v}, (u, v) ∈ [0, 1]2,

The weak convergence of Cn has proved under some assumptions (see [16]).
Hence, the empirical survival copula of such form:

C̃n(u, v) = u+ v − 1 +
1

n

n∑
i=1

δ1i

Ŝ1

(
Z−1i
)1{F̄1n(Z1i)≥u,F̄2n(Z2i)≥v},

where (u, v) ∈ [0, 1]2. Following [16], the asympthotic normality of the empirical
survival copula C̃n, has proved under some assumptions in Theorem 2. Because
the dependence between Ti and Ci, i = 1, 2 can be modeled by an Archimedean
copula, Wang and Oakes(2008) proved that the distribution function of V for-
mulated by

(2.2) F (v, c1, c2) =
1

C̃ (c1, c2)

v − ϕ(v)− ϕ
(
C̃ (c1, c2)

)
ϕ′(v)

 , 0 ≤ v ≤ C̃ (c1, c2) ,

where T1 and T2 are both right-censored [21]. By analogy, when only one vari-
able is censored the distribution function of V become as follows:

• F1(v, c1, t2) =
ϕ′(C̃(c1,t2))

ϕ′(v)
, 0 ≤ v ≤ C̃ (c1, t2), when only T1 is right-

censored;
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• F2(v, t1, c2) =
ϕ′(C̃(t1,c2))

ϕ′(v)
, 0 ≤ v ≤ C̃ (t1, c2) , when only T2 is right-

censored.

Proof. see [21]. �

By the way used 2.2, the kth moments of V in the case of doubly right cen-
soring have established by:

E(V k
∣∣T1 > c1, T2 > c2) =

(
C̃ (c1, c2)

)k
k + 1

(2.3)

−k
(
C̃ (c1, c2)

)k−1

ϕ
(
C̃ (c1, c2)

)∫ 1

0

vk−1

ϕ′
(
vC̃ (c1, c2)

)dv
+k
(
C̃ (c1, c2)

)k−1
∫ 1

0

vk−1ϕ
(
vC̃ (c1, c2)

)
ϕ′
(
vC̃ (c1, c2)

) dv, k ≥ 1

Proof. see [16]. �

Based on the results discussed previously, we can show

Corollary 2.1. Let (T1, T2) be a random pair whose distribution can be modelled
by an Archimedean copula. Assuming that (T1, T2) is subject to dependent or in-
dependent right censoring by a censoring vector (C1, C2) that follows an arbitrary
bivariate continuous distribution, then we have:

(1) For k ≥ 1, the kth moments of V when only T1 is right-censored is

E(V k
∣∣T1 > c1, T2 = t2) =

(
C̃ (c1, t2)

)k
−k
(
C̃ (c1, t2)

)k
ϕ′
(
C̃ (c1, t2)

)∫ 1

0

vk−1

ϕ′
(
vC̃ (c1, t2)

)dv.
(2) For k ≥ 1, the kth moments of V when only T2 is right-censored is

E(V k
∣∣T1 = t1, T2 > c2) =

(
C̃ (t1, c2)

)k
−k
(
C̃ (t1, c2)

)k
ϕ′
(
C̃ (t1, c2)

)∫ 1

0

vk−1

ϕ′
(
vC̃ (t1, c2)

)dv.
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Proof. For k > 1 the kth moments is defined by:

E(V k
∣∣T1 > c1, T2 = t2) =

∫ C̃(c1,t2)

0

vkdF1 (v, c1, t2) ,

based on theorem given by Wang, we use the conditional distribution of V when
only T1 is censored (V |T1 > c1, T2 = t2), we have

E(V k
∣∣T1 > c1, T2 = t2) =

∫ C̃(c1,t2)

0

vkdF1 (v, c1, t2)

=

∫ C̃(c1,t2)

0

vk

−ϕ
′′ (v)ϕ′

(
C̃ (c1, t2)

)
(ϕ′ (v))2

 dv

= I

To simplify I we pass directly to integration by parts, and we have:

I =


vkϕ′

(
C̃ (c1, t2)

)
ϕ′ (v)

C̃(c1,t2)

0

− k
∫ C̃(c1,t2)

0

vk−1
ϕ′
(
C̃ (c1, t2)

)
ϕ′ (v)

dv

 ,

it follows by changing variables:

I = (C̃ (c1, t2))k − k(C̃ (c1, t2))kϕ′
(
C̃ (c1, t2)

)∫ 1

0

vk−1

ϕ′(vC̃ (c1, t2))
dv,

which is the kth moments of the variable V , where only T1 is censored. Because
of the symmetry of the copula, the same proof used previously can apply for
equation 2 of Corollary1 to get the kth moments of the variable V , where only
T2 is censored. �

3. PARAMETERS ESTIMATION

As an application of our results proved in the previous section, we propose a
simple way of estimating the unknown parameters in Archimedean copula mod-
els. We set up the procedure based on the classical moments method. Assume
that Z1:n < ... < Zn:n the order statistics, pertaining to the sample {Zi, δi; 1 ≤ i ≤
n} with their associated concomitants δ[i:n], ..., δ[n:n]. Then, δ[j:n] = δi if Zj:n = Zi
for 1 ≤ j ≤ n. Since we are focusing on the datasets that contain extreme values
that include distributions such as Burr, Fréchet, generalized Pareto...etc. How-
ever, the selected Pareto model is well known as a heavy-tailed censored data
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model and it is obvious that the heavy-tailed distribution class plays a signifi-
cant role in the theory of extreme value. Then it would be natural to assume
that both survival functions S1 = 1 − F1 and S2 = 1 − F2 are regularly varying
at infinity with tail indices γ1 > 0 and γ2 > 0 respectively. In other word, if
we assume that both F1 and F2 are heavy-tailed (mentioned that F1 and F2 are
completely known), so there exist two constants γ1 > 0 and γ2 > 0 such that:
limt→∞

S1(tx)
S1(t)

= x
−1
γ1 and limt→∞

S2(tx)
S2(t)

= x
−1
γ2 , x > 0. By a logical sequence and

since F1 and F2 are heavy-tailed, then the censoring distribution is assumed to
be heavy tailed too (ie: the CDF of the observed Z’s noted by H and given by
H̄ = S1S2 is heavy-tailed too), hence: limt→∞

H̄(tx)

H̄(t)
= x

−1
γ , x > 0. Therefore,

the extreme value index of the distribution function (d.f.) of (Z, δ) denoted by
γ and given by γ = γ1γ2

γ1+γ2
(see Resnick, 2006 [17] and Gomes and Neves [8]

two examples of censored data with heavy tails). Let (T1, T2) random variables
whose distribution can be modelled by an Archimedean copula and is subject
to dependent or independent right censoring, V = C̃ (S1(t1), S2(t2)) is a condi-
tionally distributed variable follows a so-called Kendall distribution KC with the
density function: kC (t) = ϕ(t)ϕ′′(t)

(ϕ′(t))2
, defined on (0, 1]. We noted Mk(V |c1, t2) the

kth-moments of V , when only T1 censored and is given by:

Mk(V |c1, t2) = E(V k|T1 > c1, T2 = t2), for k ≥ 1.

Relying on the results in Corollary2.1 we have:

Mk(V |c1, t2) = E(V k|T1 > c1, T2 = t2) =
(
C̃ (c1, t2)

)k
(3.1)

−k
(
C̃ (c1, t2)

)k
ϕ′
(
C̃ (c1, t2)

)∫ 1

0

vk−1

ϕ′
(
vC̃ (c1, t2)

)dv.
Assuming that V belongs to a parametric family Vθ = C̃θ(u, v)θ∈Rd, then it follows
that ϕ = ϕθ and KC = Kθ, for the unknown parameter θ ∈ Rd.

If we suppose that Mk(V |c1, t2) = Mk(θ|c1, t2), the equation (3.1) can be writ-
ten as:

Mk(θ|c1, t2) =
(
C̃θ (c1, t2)

)k
− k

(
C̃θ (c1, t2)

)k
· ϕ′θ

(
C̃θ (c1, t2)

)∫ 1

0

vk−1
θ

ϕ′θ

(
vθC̃θ (c1, t2)

)dvθ.
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As a result and because of the copula symmetry, the equation (2) in Corollary1
via :

Mk(θ|t1, c2) =
(
C̃θ (t1, c2)

)k
− k

(
C̃θ (t1, c2)

)k
· ϕ′
(
C̃θ (t1, c2)

)∫ 1

0

vk−1
θ

ϕ′
(
vθC̃θ (t1, c2)

)dvθ,
which shows the kthmoments of V , when only T2 is censored. Given, the empir-
ical version of the moment estimator presented by M̂k(V̂ |Hj):

M̂k(V̂ |Hj) =
1

N

n∑
i=1

(C̃n(Ŝi (ti))|Hj)
k, for k ≥ 1, j = 1; 2,

where V̂ is the survival empirical copula C̃n and Hj represent each case of cen-
soring (H1 means only T1 is censored). Then, as the natural estimators of mo-
ments copula, it is necessary to solve the equation system given by

Mk(θ|Hj) = M̂k(V̂ |Hj), for θ = (θ1, ..., θd) and j = 1; 2.

To obtain the unique solution θ̂CCM = (θ̂1, ..., θ̂d) called the censored copula
moment (CCM) estimator of θ.

3.1. APPLICATION: ILLUSTRATIVE EXAMPLES. From now, only T1 considered
as a censored variable. Therefore, two models evaluated, the first is for the
Clayton model of one-parameter and the second is for the Gumbel model of two
parameters.

• Clayton model

For the Clayton model of one-parameter the survival copula is known by

C̃α(u, v) = u+ v − 1 + ((1− u)−α + (1− v)−α − 1)
−1
α ,

with generator ϕα(t) = t−α − 1, α > 0. Applying Corollary1, we can simplify the
estimating equations as follow:

(3.2) E(V k
∣∣T1 > c1, T2 = t2) = (m)k − kmkϕ′ (m)

∫ 1

0

vk−1

ϕ′ (vm)
dv,

for k > 0 and when m = C̃ (c1, t2), represent the ordinary copula. If we simplify
more the formula (6) we can obtain:

E(V k
∣∣T1 > c1, T2 = t2) = (m)k − kmk−α−1

∫ 1

0

vk−1

(vm)−α−1
dv.
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By an elementary calculation we get the kth moments Mk(α) = mk − kmk−1

k+α+1
,

where m = C̃ (c1, t2) . Hence, for k = 1 the first moments is normally given by
M1(α) = m − 1

α+2
, which allows us easily find the unique estimator of α given

by α̂ = 2− 1

m−M̂1
.

• Gumbel model

The second model is about the Gumbel copula family in the bivariates case and
for two parameters, which known by:

Cα,β (u, v) =

(((
u−α − 1

)β
+
(
v−α − 1

)β) 1
β

+ 1

)− 1
α

,

with the generator: ϕα,β(t) = (t−α − 1)β, where α > 0 and β ≥ 1 (see [6]).
Obviously, the survival copula of the Gumbel family given by:

C̃α,β (u, v) = u+ v − 1 +

(((
(1− u)−α − 1

)β
+
(
(1− v)−α − 1

)β)1/β

+ 1

)−1/α

.

By analogy, the kth moments, is given by:

Mk(θ| c1, t2) = mk − k(β − 1) (m−α − 1)
β

αm2α+1

Γ (1− β) Γ
(

1
α

(k + αβ + 1)
)

Γ
(

1
α

(k + 2α + 1)
) ,

where θ = (α, β). As a result, the two first moments M1 , M2 are given by:
(3.3)

M1(θ| c1, t2) = M1(α, β) = m− (β−1)(m−α−1)
β

αm2α+1

Γ(1−β)Γ( 1
α

(αβ+2))
Γ( 2

α
(α+1))

= M1(α, β)

M2(θ| c1, t2) = M2(α, β) = m2 − 2(β−1)(m−α−1)
β

αm2α+1

Γ(1−β)Γ( 1
α

(αβ+3))
Γ( 1

α
(2α+3))

= M2(α, β)
.

Consequently, the estimator θ̂ of θ is the unique solution of the system:{
M1(θ) = M̂1

M2(θ) = M̂2

.

4. SIMULATION STUDIES

Taking into consideration that only T1 to be right-censored. A simulation
study was carried out to evaluate the performance of the proposed estimators,
based on the Monte Carlo procedure under the Gumbel Archimedean depen-
dence assumption. The results are shown in Tables 1–4 accordingly. We first
generate bivariate data from the Gumbel copula model of T1 and T2 with Pareto
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TABLE 1. Moments estimator performance based on Clayton sur-
vival copula of one parameter under singly right censored vari-
able.

τ = 0.05 , α = 0.1

N n = 30 n = 50 n = 100 n = 500 n = 1000

% of censures R.Bias RMSE R.Bias RMSE R.Bias RMSE R.Bias RMSE R.Bias RMSE
5% -0.0547 0.0640 -0.0513 0.0615 -0.0549 0.0631 -0.0535 0.0626 -0.0542 0.0625

10% -0.0532 0.0621 -0.0520 0.0609 -0.055 0.0632 -0.0529 0.0620 -0.0548 0.0642

15% -0.0554 0.0642 -0.0538 0.0627 -0.0539 0.0632 -0.0532 0.0623 -0.0541 0.0630

20% -0.0536 0.0624 -0.0543 0.0632 -0.0525 0.0614 -0.0530 0.0619 -0.0553 0.0638

τ = 0.5 , α = 0.2

5% -0.0257 0.0298 -0.0260 0.0301 -0.0253 0.0291 -0.0255 0.0299 -0.027 0.0311

10% -0.0262 0.0304 -0.0257 0.0299 -0.0260 0.0299 -0.0264 0.0305 -0.0267 0.0308

15% -0.0262 0.0302 -0.0262 0.0301 -0.0254 0.0297 -0.0258 0.0299 -0.0254 0.0295

20% -0.0257 0.0299 -0.0257 0.0299 -0.0257 0.0300 -0.0257 0.0299 -0.0261 0.0302

τ = 0.7 , α = 0.4

5% -0.0130 0.0149 -0.0126 0.0146 -0.0125 0.0145 -0.0131 0.0150 -0.0127 0.0148

10% -0.0126 0.0145 -0.0129 0.0149 -0.0126 0.0146 -0.0123 0.0144 -0.0129 0.0149

15% -0.0132 0.0151 -0.0126 0.0146 -0.0124 0.0144 -0.0125 0.0145 -0.0126 0.0146

20% -0.0127 0.0147 -0.0126 0.0147 -0.0130 0.0149 -0.0127 0.0148 -0.0126 0.0146

margins of parameters γ1 and γ2 respectively. We also generate the censoring
variable C1 whose marginal distribution is a Pareto with γc parameter. We sup-
pose that γ1 = γ2 = 0.3 and that the corresponding percentage of observed data
is given by p1 = γc

γ1+γc
, we choose parameter values corresponding to p1 values

0.95, 0.90, 0.85, 0.80, and we solve the equation p1 = γc
γ1+γc

to get the pertaining
γc-values. Based on the parameters estimate procedure in Section 3, 1000 repli-
cas to be generated for each common size n varied for n = 30, 50, 100, 500, 1000,
to pick our final performance as empirical evidence of the results gained across
all replicates. Table 1 describes the results obtained for the Clayton model of
one-parameter (3.2) with unit Pareto margins of shape parameter 0.3, whose
estimator looked with α̂ = 2 − 1

m−M̂1
. Where we can see the R.Bias and the

RMSE are very close to zero. Once the rate of dependence τ is increased, we
see an improvement in the results of the estimated parameters α̂ due to a large
decrease in R.Bias and RMSE, which are inversely proportional readings.

Now, by considering the second model of the Gumbel survival copula of
two parameters, where the two first moments are formulated as (3.3). Given
Kendall’s tau τα,β = 4E(Vα,β) − 1 as an association index (a function of the
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TABLE 2. The true parameters of the survival Gumbel copula.

τ α β

0.05 0.1 1.00

0.5 0.2 1.82

0.7 0.4 2.78

dependency parameter in Archimedean copula models), we select the survival
copula parameter values (α, β) that correspond to specified values of τ by using
the select values 0.05, 0.5 and 0.7 of Kendall’s tau dependence assumption values
and the transformed of the underlying survival Gumbel copula

Vα,β = u+ v − 1 +

(((
(1− u)−α − 1

)β
+
(
(1− v)−α − 1

)β)1/β

+ 1

)−1/α

,

as shown in Table 2.

Table 3: Moments estimator performance based on
Gumbel survival copula of two parameters under singly
right censored variable and for weak dependence.

τ = 0.05, α = 0.1⇒ β = 1.00

% of censoring 20

Sample c1 α̂ β̂

Size R.Bias RMSE R.Bias RMSE

30 0.11681 -0.05381 0.06285 0.13100 0.01145

50 0.07223 -0.05428 0.06293 0.09702 0.01185

100 0.03696 -0.05455 0.06302 0.12730 0.01179

500 0.00796 -0.05241 0.06136 0.11346 0.01171

1000 0.00411 -0.05310 0.06181 0.11126 0.01178

% of censoring 15

30 0.15716 -0.05364 0.06258 0.14563 0.01153

50 0.09968 -0.05506 0.06414 0.17947 0.01192

100 0.05382 -0.05405 0.06289 0.14270 0.01125

500 0.01168 -0.05338 0.06219 0.12725 0.01156

1000 0.00591 -0.05223 0.06111 0.13337 0.01216
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% of censoring 10

30 0.22207 -0.05170 0.06076 0.16483 0.01172

50 0.14458 -0.05233 0.06110 0.16214 0.01164

100 0.08509 -0.05438 0.06300 0.14554 0.01151

500 0.01801 -0.05562 0.06412 0.16037 0.01148

1000 0.00892 -0.05353 0.06223 0.14950 0.0117

% of censoring 5

30 0.31617 -0.05347 0.06244 0.17334 0.01160

50 0.25135 -0.05312 0.06190 0.17205 0.01181

100 0.15138 -0.05363 0.06259 0.17993 0.01146

500 0.03666 -0.05295 0.06245 0.1544 0.01162

1000 0.01841 -0.05247 0.06124 0.15832 0.01170

Table 4: Moments estimator performance based on
Gumbel survival copula of two parameters under singly
right censored variable and for moderate dependence.

τ = 0.5, α = 0.2⇒ β = 1.82

% of censoring 20

Sample c1 α̂ β̂

Size R.Bias RMSE R.Bias RMSE

30 0.12019 -0.02632 0.03015 0.06926 0.00642

50 0.07406 -0.02598 0.03007 0.08484 0.00645

100 0.03829 -0.02558 0.02983 0.08158 0.00641

500 0.00804 -0.02591 0.03011 0.10276 0.00637

1000 0.00394 -0.02579 0.02979 0.08549 0.00643

% of censoring 15

30 0.15611 -0.02605 0.03027 0.0989 0.00657

50 0.10008 -0.02498 0.02906 0.09554 0.00633

100 0.05478 -0.02615 0.03037 0.12623 0.00641

500 0.01088 -0.02536 0.02957 0.09632 0.00631

1000 0.00546 -0.02605 0.03012 0.08785 0.00632
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% of censoring 10

30 0.21223 -0.2556 0.02972 0.17075 0.00637

50 0.14818 -0.02544 0.02948 0.09582 0.00644

100 0.08047 -0.02526 0.02945 0.13741 0.00644

500 0.01811 -0.02714 0.03121 0.09872 0.00636

1000 0.00915 -0.02675 0.03072 0.09565 0.00637

% of censoring 5

30 0.30813 -0.02537 0.02939 0.16263 0.00644

50 0.23892 -0.02488 0.02905 0.19983 0.00646

100 0.15392 -0.02639 0.03044 0.09317 0.00640

500 0.03543 -0.02568 0.02995 0.10464 0.00630

1000 0.01844 -0.02517 0.02931 0.10486 0.00637

Table 5: Moments estimator performance based on
Gumbel survival copula of two parameters under singly
right censored variable and for strong dependence.

τ = 0.7, α = 0.4⇒ β = 2.78

% of censoring 20

Sample c1 α̂ β̂

Size R.Bias RMSE R.Bias RMSE

30 0.11466 -0.01275 0.01476 0.14167 0.00377

50 0.07528 -0.0126 0.01465 0.10573 0.00393

100 0.03747 -0.01287 0.01483 0.08515 0.00389

500 0.00787 -0.01251 0.01446 0.11032 0.00391

1000 0.00421 -0.01285 0.01478 0.08713 0.00385

% of censoring 15

30 0.15831 -0.01260 0.01459 0.14577 0.00394

50 0.10332 -0.01282 0.01485 0.10507 0.00387

100 0.05540 -0.01303 0.01502 0.13646 0.00385

500 0.01108 -0.01221 0.01427 0.10486 0.00391

1000 0.00590 -0.01276 0.01473 0.10388 0.00389
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% of censoring 10

30 0.21203 -0.01244 0.01443 0.12436 0.00384

50 0.14910 -0.01261 0.01460 0.16765 0.00384

100 0.08393 -0.01285 0.01475 0.15731 0.00389

500 0.01785 -0.01252 0.01455 0.1095 0.00395

1000 0.00872 -0.01297 0.01509 0.11251 0.00392

% of censoring 5

30 0.31116 -0.0126 0.01457 0.1568 0.00391

50 0.24405 -0.01236 0.01448 0.17432 0.00389

100 0.15254 -0.01259 0.01466 0.10309 0.00383

500 0.03668 -0.01306 0.01504 0.11537 0.00387

1000 0.01838 -0.01271 0.01469 0.10606 0.00386

Tables 3-5 shows the results obtained of CCM estimator
(
α̂, β̂

)
of (α, β) based

on survival copula under the censored variable T1, generated from the Gumbel
copula model of two parameters given by 3.3 with unit Pareto margins of shape
parameter 0.3. By looking at three different values of dependency weak (0.05)

moderate (0.5) and strong (0.7), the R.Bias and the RMSE of the two parameters
estimate α̂ and β̂ were calculated and are usually given lower values especially
when the dependency increases.

5. APPLICATION TO A REAL DATA SET

In this part of the paper, we examine the performance of our estimation pro-
cedure for the real data set of diabetic retinopathy, which is available in the R
software via the survival package [22,23]. Diabetic retinopathy is a disease that
affects people with diabetes and can outcome in vision loss and blindness. In
the study a significant number of diabetic patients (times of follow-up for 197
diabetic patients under 60 years old , who represent a 50% sample of high risk
patients for loss of vision) was followed for an extended period.

The primary aim of the study was to assess the efficacy of photocoagulation as
a treatment for proliferative retinopathy. For each patient, one eye was treated
with laser photocoagulation, and the other eye was taken as a control. To model
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this data, the evaluation that piques our interest is concerned by (2.3), where
the two variables are both censored.

To fit the failure times (T1, T2), we use a bivariate Gumbel family of two pa-
rameters with extreme value margins (Pareto (γ = 0.3)) for both T1 and T2.
Taking T1 as the time to visual loss for the treatment eye and T2 the time to
visual loss for the control eye. The percentage of censure times for T1 is 73%
(143 observations) and 49% (96 observations) for T2.

a. Scatter plots b. Cens and obs data for T1 c. Cens and obs data for T2

FIGURE 1. Censored and observed points for each T1 and T2 sepa-
rately of bivariate survival Gumbel copula.

To model this data, we ran the algorithm presented in section3, by considering
Kendall’s tau as the association index (a function of the dependency parameter).

Table 6: Relative bias and RMSE of Moments estimator based on a Gumbel survival

copula model from the Diabetic Retinopathy study data.

τ = 0.7 , α = 0.1⇒ β = 2.78

sample % of α̂ β̂ Association τ Association τ

Size cens R.Bias RMSE R.Bias RMSE before cens after cens
5% -0.0126 0.0146 0.3941 0.0042 0.6967 0.6412

n = 50 10% -0.0126 0.0146 0.4147 0.0041 0.7056 0.5925
15% -0.0128 0.0148 0.3547 0.0041 0.7002 0.5373
20% -0.0125 0.0145 0.3440 0.0042 0.7001 0.4930
5% -0.0125 0.0146 0.4243 0.0043 0.7004 0.6415

n = 100 10% -0.0122 0.0143 0.3818 0.0041 0.6994 0.5849
15% -0.0133 0.0152 0.3613 0.0042 0.7016 0.5376
20% -0.0130 0.0149 0.3585 0.0042 0.6982 0.4859
5% -0.0125 0.0146 0.4102 0.0042 0.7007 0.6426

n = 500 10% -0.0131 0.0150 0.3784 0.0043 0.7000 0.5872
15% -0.0126 0.0146 0.3648 0.0041 0.7000 0.5369
20% -0.0130 0.0150 0.3415 0.0042 0.6998 0.4885
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5% -0.0127 0.0147 0.4077 0.0042 0.7003 0.6409
n = 1000 10% -0.0128 0.0148 0.3841 0.0042 0.7001 0.5881

15% -0.0125 0.0145 0.3573 0.0042 0.6999 0.5361
20% -0.0125 0.0145 0.3388 0.0042 0.7003 0.4891

To assess the performance of the considered estimator, we have used the
RMSE and the relative bias (R.Bais) define by:

R.Bais =
1

N

[∑N
i=1 θ̂i − θ

]
θ

, RMSE=

√√√√ 1

N

N∑
i=1

(
θ̂i − θ

)2

,

where θ̂i is the CCM estimator (from the considered model) of θ.
Figure1 (a) shows the scatter plots of the survival Gumbel copula with two pa-

rameters. Figure 1 (b) and Figure 1 (c) shows the censored and observed data
of the bivariate survival Gumbel copula for each variable T1 and T2 respectively.
Table 6 shows the relative bias (R.Bias) and the RMSE of the parameters es-
timates under different doubly right-censoring values, the dependency value
before and after censoring (Association τ before cens, after cens). For this data
set, the estimator gave the smaller relative bais and RMSE values, which proves
its effectiveness and robustness.

6. CONCLUSION AND PERSPECTIVE

In this paper, we have presented a semi-parametric estimation method of a
survival copula C̃ based on the classical method of moments under individually
censored of (T1, T2). As a logical continuation of results established by Idiou
et al 2020 [16], general formulas are given for marginal survival copula C̃ of
such data by the assumption that their underlying copula is Archimedean. Two
models are proposed for this study, the Clayton model of one-parameter and
the Gumbel model of two-parameters proved our theoretical results obtained.
Under the Archimedean dependence structure assumption for censored data,
a simulation study evaluates the performance of our estimator, relative bias,
and RMSE formulas for estimator are evaluated. This study shows that the
new estimator works well, where the values obtained are tending towards zero
for each case of small and even large samples. The methodology presented in
section 3, was applied to real data from the Diabetic Retinopathy Study, which
is available in the "survival" package [22], [23] of the R software. For this data
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set, the estimator gave the smaller relative bias and RMSE values, which proves
its effectiveness and robustness.

Consequently, this method is preferable if we compare it with the maximum
likelihood method and other methods ( [7], [4]), because of its easy analytical
mathematical form.

Our main result for this study is based on the copula approaches and the
survival analysis, under the Archimedean dependence structure assumption for
censored data. Based on these results, we can establish a new methods checking
process of Archimedean copula models for censored variables. This is one of our
recent research areas and the idea was already established in another paper that
is under preparation.
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