

Advances in Mathematics: Scientific Journal **10** (2021), no.7, 2919–2931 ISSN: 1857-8365 (printed); 1857-8438 (electronic) https://doi.org/10.37418/amsj.10.7.1

# COMBINATORIAL APPROACH TO ENUMERATE THE TOPOLOGIES ON FINITE SET $(X_n)$

Yaqoub Ahmed<sup>1</sup> and M. Aslam

ABSTRACT. In this article,  $Top(X_n)$  is the collection of all topologies on a given set  $X_n$  having cardinality n. We introduce the method to find the number of topologies of finite sets of cardinality up to 5 by combinations and counting principles, which enable us to enumerate the classes of homeomorphic disconnected topologies as well as the connected topologies. Moreover we study the graphical aspects of the connected and disconnected topologies.

## 1. INTRODUCTION

From a Combinatorial point of view, it is interesting to determine how many different topologies there are on a set  $X_n$  having n elements, denoted by  $Top(X_n)$ and the class of homeomorphic topologies are denoted by  $\tau_n$  where  $n \ge 2$ . We refer such kind of classes as homeomorphic classes. In this article  $\tau_1$  is fixed for discrete and  $\tau'_1$  for anti-discrete topology. Moreover  $\tau_0$ - topology is from Separation axioms of topology. The problem of enumerating the number of topologies of finite sets is considered both theoretically and computationally. Different Mathematicians used different techniques to find the answer of this long

<sup>&</sup>lt;sup>1</sup>corresponding author

<sup>2020</sup> Mathematics Subject Classification. 11B50, 11B05.

*Key words and phrases.* Topologies on Finite Sets, Connected topology, Homeomorphic classes, graphs.

Submitted: 08.06.2021; Accepted: 27.06.2021; Published: 04.07.2021.

standing open problem. Stanley [1] used the correspondence between finite  $\tau_0$ topologies and partial order sets to find all non-homeomorphic topologies of sets of n elements. He determined that which topologies are  $\tau_0$  and which are not. Brikmann [2] has investigated the number  $|Top(X_n)|$  of different topologies of set of n-elements by exhaustive enumeration for n < 16. The general question is still uncertain whether a formula for  $|Top(X_n)|$  will ever be obtained, although asymptotic estimates exist. Erne, showed in [7] that  $|Top(X_n)|$  is asymptotically equal to  $|\tau_0|$ , the number of  $\tau_0$ -topologies (or equivalently partial orders) on set of n-elements. The enumeration of topologies on sets of n elements can be refined by counting  $\tau(n, k)$ , the number of topologies on n points having k open sets. The most important contributions are due to Erné and Stege, who in [4] computed the values of  $\tau(n,k)$ , for  $n \leq 11$  and arbitrary k, by using Stirling formula of second kind S(n,k), as well as the related numbers of  $\tau_0$  and connected topologies, and the corresponding numbers of homeomorphism classes. Further Benoumhani [3] find  $\tau(n,k)$  for  $k \leq 12$  and Erné and Stege computed the numbers  $\tau(n, k)$  for  $k \leq 23$  in [8].

In this article we introduced a new dimension to calculate  $|Top(X_n)|$ , where  $n \leq 5$ , by combinations and counting principles. Further this methodology is helpful to find out the enumerations of connected topologies as well as number of homeomorphic disconnected topologies. Further we induce the graphical approach in these connected and disconnected topologies which is helpful to elaborate this technique graphically.

For completeness, we recall some preliminaries and notations that are useful for the development of this paper. A topological space  $(X, \tau)$  is said to be disconnected if it is the union of two disjoint nonempty open sets. Otherwise,  $(X, \tau)$  is said to be connected. In this paper we use the symbols of  $S(orS_i), D(orD_i), T(orT_i), F(orF_i), (i \in N)$  for set of one, two, three and four elements respectively.  $\langle Y \rangle$  is the symbol for describing all topologies by that set Y, and it is interesting observation that the class of topologies where  $\langle Y \rangle$ exists than these are collection of connected topologies, otherwise they are disconnected. Moreover  $\langle Z \rangle_d$  denotes the discrete topology of the set Z. Here  $\tau_A, \tau_D$  are denotation of anti-discrete and discrete topologies where  $\tau_A$  is connected and  $\tau_D$  is disconnected topology. For graphical representation we use  $\tau_i$ , where  $i \in N$  and  $i \geq 2$ , to be the vertices. The vertex  $\tau_i$  make edge with  $\tau_j$  for

 $i \neq j$  when both are connected topologies A, similarly for disconnected topologies B. They makes complete bipartite graphs. Further,  $G = A \times B$  becomes the complete graph of all classes of topologies excluding  $\tau_1$  and  $\tau'_1$ .

We start our enumeration from  $Top(X_3)$ , since this calculation can be easily checked for n < 3.

### **2.** TOPOLOGIES ON $X_3$ AND THEIR GRAPHS

In this section, we make the classes of connected and disconnected topologies of  $X_3$  and compute their numbers by combinations.

(1)  $\tau_1 = \tau_A, \tau'_1 = \tau_D$ 

Here  $\tau_A, \tau_D$  are in-discrete and discrete topologies, therefore  $|\tau_1 \cup \tau'_1| = 2$ .

- (2)  $\tau_2 = \{\phi, X, \langle S \rangle\}$ Here *S* denotes the singleton sets, therefore  $|\tau_2| = C_1^3 = 3$ .
- (3) τ<sub>3</sub> = {φ, X, < D >}
  Here < D > denotes the set of two elements and the number of all topologies of D are | < D > | = |Top(X<sub>2</sub>)| = 4, therefore |τ<sub>3</sub>| = C<sub>2</sub><sup>3</sup> × 4 = 12.

- (5) τ<sub>5</sub> = {φ, X, D<sub>1</sub>, D<sub>2</sub>, S}
  Here we collect two D<sub>i</sub> such that D<sub>1</sub> ∩ D<sub>2</sub> = S therefore |τ<sub>3</sub>| depends upon the selection of S since it fix the selection of D<sub>1</sub>, D<sub>2</sub> therefore by counting principle we have |τ<sub>5</sub>| = C<sub>1</sub><sup>3</sup> = 3.
- (6) τ<sub>6</sub> = {φ, X, < D<sub>1</sub> ><sub>d</sub>, D<sub>2</sub>} Here we have the same settings as in previous and we discrete each D individually, which gives that |τ<sub>6</sub>| = C<sub>1</sub><sup>3</sup> × 2 = 6.

Here the total number of topologies are  $|Top(X_3)| = 29$ , and  $\tau_4, \tau_5, \tau_6$  are classes of disconnected homeomorphic topologies. In the graphical representation fig(B) is graph of classes of connected topologies, fig (A) is for disconnected topologies and fig (G) is product of *A* and *B*.



# **3.** Topologies on $X_4$ and their graphs

In this section, we make the classes of connected and disconnected topologies of  $Top(X_4)$  and compute their numbers by combinations.

(1)  $\tau_1 = \tau_A, \tau'_1 = \tau_D$ 

Here  $\tau_A, \tau_D$  are in-discrete and discrete topologies and therefore  $|\tau_1 \cup \tau'_1| = 2$ .

(2)  $\tau_2 = \{\phi, X, \langle S \rangle\}$ Here *S* denotes the singleton sets, therefore  $|\tau_2| = C_1^4 = 4$ .

$$|\tau_3| = C_2^4 \times 4 = 24 \text{ since } | < D > | = |\tau(X_2)| = 4.$$
(4)  $\tau_4 = \{\phi, X, < T > \}$ 

Here we collect every topology of each triton, which are  $|\tau_4| = 4 \times 29 = 116$ since  $|\langle T \rangle| = |Top(X_3)| = 29$ .

(5) 
$$\tau_5 = \{\phi, X, S, S^c = T\}$$
  
Here  $S \notin T$  then by combination, we get that  $|\tau_5| = C_1^4 = 4$ .

(6) 
$$\tau_6 = \{\phi, X, D, D^c\}$$

Here we collect the topologies which includes ditons and its complements then  $|\tau_6| = \frac{1}{2} \times C_2^3 = 3$ .

In the following three collections (7-9), we have the setting where  $D \nsubseteq T$  and  $T \cap D = S$ 

- (7)  $\tau_7 = \{\phi, X, T, D, S\}$ Here  $T \cap D = S$  implies  $D \notin T$  then we can select S and D in  ${}^4C_1$  and  ${}^3C_2$ ways respectively therefore  $|\tau_7| = C_1^4 \times C_2^3 = 12$ .
- (8) τ<sub>8</sub> = {φ, X, T, , D, D<sup>c</sup>, S}
  Here we get the same settings as of previous and include D<sup>c</sup> then by same calculation we have |τ<sub>8</sub>| = 12.
- (9) τ<sub>9</sub> = {φ, X, T, < D ><sub>d</sub>}
  We take discrete topology of ditons in this collection and get the same calculation to obtain |τ<sub>9</sub>| = 12.

From (10-16), we have settings of two tritons such that  $T_1 \cap T_2 = D$ 

- (10)  $\tau_{10} = \{\phi, X, T_1, T_2, < D >\}$  Here we have two tritons such that  $T_1 \cap T_2 = D$ then by combination we get that  $|\tau_{10}| = C_2^4 \times 4 = 24$  since  $| < D > | = |\tau(X_2)| = 4$ .
- (11)  $\tau_{11} = \{\phi, X, T_1, T_2, D, \langle D^c \rangle_d\}$  Here we include complement of D, as in  $|\tau_8|$  and discrete it, this gives that  $|\tau_{11}| = C_2^4 = 6$ , as D can be selected in  ${}^4C_2$  ways.
- (12)  $\tau_{12} = \{\phi, X, T_1, T_2, D, S\}$ , where  $T_1 \cap T_2 = D$  and  $S \not\subseteq D$  which gives that  $|\tau_{12}| = C_2^4 \times 2 = 12$ .
- (13)  $\tau_{13} = \{\phi, X, T_1, T_2, D, D_1, S\}$ , where we include  $D_1$  in previous settings such that  $D_1 \cap D = S$  and  $D_1 \neq D^c$  then by calculation we get that  $|\tau_{13}| = C_2^4 \times C_1^2 \times 2 = 24$ .
- (14)  $\tau_{14} = \{\phi, X, T_1, T_2, < D >_d, D_1, S\}$  It has same setting of open sets as in previous and we discrete *D* separately here, which gives that  $|\tau_{14}| = 24 \times 2$ = 48.
- (15)  $\tau_{15} = \{\phi, X, \langle T_1 \rangle_d, T_2\}$  Here we discrete each *T* individually, and calculate that  $|\tau_{15}| = C_3^4 \times 3 = 12$ .

In the following classes (16-19),  $D_1 \cap D_2 \cap D_3 = S$ 

- (16)  $\tau_{16} = \{\phi, X, T_1, T_2, T_3, D_1, D_2, D_3, S\}$  We take  $T_1, T_2, T_3$  and their intersections so we get that  $|\tau_{16}| = C_1^4 = 4$ , since  $T_1, T_2, T_3$  can be selected in  ${}^4C_3$  ways and  $D_1, D_2, D_3$  and S are constructed in natural way.
- (17)  $\tau_{17} = \{\phi, X, T_1, T_2, T_3, < D_1 >_d, D_2, D_3, S\}$  where  $D_1 \cap D_2 \cap D_3 = S$  and discrete each diton individually then by combination we get that  $|\tau_{17}| = 4 \times 3 = 12$

- (18)  $\tau_{18} = \{\phi, X, T_1, T_2, D, \langle T_3 \rangle_d\}$  where  $T_1 \cap T_2 = D$  which gives that  $|\tau_{18}| = 4 \times 3 = 12$
- (19)  $\tau_{19} = \{\phi, X, T_1, T_2, T_3, D_1, D_2, D_3, S, D_4\}$ where  $D_4 \neq D_i i \in \{1, 2, 3\}$  and  $i \neq j$  this gives that  $S_1$  could have three possibilities therefore  $|\tau_{19}| = 4 \times 3 = 12$

Here the total number of topologies are 355, and  $\tau_2$ ,  $\tau_3$ ,  $\tau_4$  and  $\tau_{10}$  are connected, while all others are disconnected. In the graphical representation fig(1) is graph of classes of connected topologies, fig (2) is for disconnected topologies and fig (3) is product of *A* and *B*.



# 4. Topologies of $X_5$ $(Top(X_5))$

In this section, we make the classes of connected and disconnected topologies of  $\tau_5$  and compute their numbers by combinations.

(1)  $\tau_1 = \tau_A, \tau'_1 = \tau_D$  where  $\tau_A, \tau_D$  are in-discrete and discrete topologies, therefore  $|\tau_1 \cup \tau'_1| = 2$ .

(3)  $\tau_3 = \{\phi, X, < D > \}$ 

< D > denotes all topologies of D sets of two elements, hence by combination  $|\tau_3| = C_2^5 \times |Top(X_2)| = C_2^5 \times 4$ , this implies that  $|\tau_3| = 40$ .

(4) 
$$\tau_4 = \{\phi, X, < T > \}$$

< T > denotes all topologies of T, sets of three elements, hence by combination  $|\tau_4| = C_3^5 \times$  number of all topologies of  $T = C_3^5 \times 29$ , this implies that  $|\tau_4| = 290$ .

(5) 
$$\tau_5 = \{\phi, X, < F > \}$$

< F > denotes all topologies of F, the sets of four elements, hence by combination  $|\tau_3| = C_4^5 \times$  number of all topologies of  $F = C_4^5 \times 355$ , this implies that  $|Top_5| = 1775$ .

(6) τ<sub>6</sub> = {φ, X, S, S<sup>c</sup> = F}
 S<sup>c</sup> denotes the compliment of singletons which becomes unique forton sets for each singleton, hence by combination |τ<sub>6</sub>| = C<sub>1</sub><sup>5</sup> = 5.

(7) 
$$\tau_7 = \{\phi, X, D, D^c = [T]\}$$
  
The selection of  $D$  is  $C_2^5$  ways then  $D^c$  is selected in unique way, hence by combination  $|\tau_7| = C_2^5 = 10$ .

- (8)  $\tau_8 = \{\phi, X, T_1, T_2, S\}$  where  $T_1 \cap T_2 = S$ S is selected in  $C_1^5$  ways and  $T_1, T_2$  are selected in  $\frac{1}{2}C_2^4$ . Then by combination we have  $|\tau_8| = C_1^5 \times \frac{1}{2}C_2^4 = 15$ .
- (9)  $\tau_9 = \{\phi, X, T_1, T_2, S, D\}$  where  $T_1 \cap T_2 = S$ , and  $D \subseteq T_1 \cup T_2$ S is selected in  $C_1^5$  ways and D is selected in  $\frac{1}{2}C_2^4$  then  $T_1, T_2$  exists in unique way. Then by combination we get that  $|\tau_9| = C_1^5 \times C_2^4 = 30(orC_3^5 \times C_2^3 = 30)$ .
- (10)  $\tau_{10} = \{\phi, X, F, D, S\}$  where  $F \cap D = S$ ,  $D \nsubseteq F$ F can be selected in  $C_4^5$  ways as  $F \cap D = S$  therefore D can be selected in  $C_1^4$  ways. Then by combination we have  $|\tau_{10}| = C_4^5 \times C_1^4 = 20$ .
- (11)  $\tau_{11} = \{\phi, X, F, \langle D \rangle_d\}$  where  $F \cap D = S$ ,  $D \notin F$ Here  $\langle D \rangle_d$  is denotation of discrete topology of diton D. Then by using the previous settings of  $\tau_{10}$  we have  $|\tau_{11}| = C_1^5 \times C_3^4 = 20$ .
- (12)  $\tau_{12} = \{\phi, X, F, D, D^c, S\}$  where  $F \cap D = S$ ,  $D \nsubseteq F$ Then by settings of  $\tau_{10}$  we get that  $|\tau_{12}| = C_1^5 \times C_3^4 = 20$

From (13-20), we have collection of topologies with setting  $F \cap T = D$ 

- (13) τ<sub>13</sub> = {φ, X, F, T, < D >} where F ∩ T = D, i.e. T ⊈ F
  Here D can be selected in C<sub>4</sub><sup>5</sup> ways and D can be determined in C<sub>2</sub><sup>4</sup> ways then since |⟨D⟩| = 4, therefore we get that C<sub>4</sub><sup>5</sup> × C<sub>2</sub><sup>4</sup> × 4 = 120).
- (14)  $\tau_{14} = \{\phi, X, F, \langle T \rangle_d\}$ where  $F \cap T = D$  and  $\langle T \rangle_d$  denotes the discrete topology of triton, then as previous calculation we get that  $|\tau_{14}| = C_4^5 \times C_2^4 = 30$ .
- (15)  $\tau_{15} = \{\phi, X, F, T, D, D_1, S\}$  where  $F \cap T = D, T = D \cup D_1$ , and where then by calculations we have  $|\tau_{15}| = C_1^5 \times C_1^4 \times C_1^3 = 60(orC_2^5 \times C_2^3 \times C_1^2)$ .
- (16)  $\tau_{16} = \{\phi, X, F, T, \langle D \rangle_d, D_1\}$  In the settings of (15)  $\langle D \rangle_d$  is discrete topology on  $D_1$  and by same calculations we get that  $|\tau_{16}| = C_1^5 \times C_1^4 \times C_1^2 = 60$ .
- (17)  $\tau_{17} = \{\phi, X, F, T, D, \langle D_1 \rangle_d\}$ . Here the same setting as (16) and same calculations give  $|\tau_{17}| = 60$ .
- (18)  $\tau_{18} = \{\phi, X, F, T, D, S = F^c\}$ so  $|\tau_{18}| = C_4^5 \times C_2^4 = 30 = C_1^5 \times C_2^4.$
- (19)  $\tau_{19} = \{\phi, X, F, T, D, T^c = D_1\}$  where  $F \cap T = D, T \notin F, D_1 \subseteq F$ , and  $D_1 \cap D = \phi$  then by combination, we have  $|\tau_{19}| = C_4^5 \times C_2^4 = 30$ .
- (20)  $\tau_{20} = \{\phi, X, F, T, D, F^c, T^c, D^c\}$  where *F* can be selected in  $C_4^5$  ways, T can be selected in  $C_1^2$  ways, while *D* is selected uniquely therefore  $|\tau_{20}| = C_4^5 \times \frac{1}{2}C_2^4 = 15$ .

From (21-24), we collect the topologies with one *F* and two  $T_i$ , where  $T_1 \subseteq F$ ,  $T_2 \nsubseteq F$ ,  $T_1 \cap T_2 = S$  and  $F \cap T_2 = D$ 

- (21)  $\tau_{21} = \{\phi, X, F, T_1, T_2, S, D\}$  then by combination we calculate  $|\tau_{21}| = C_1^5 \times C_1^4 \times C_2^3 = 60(orC_4^5 \times C_3^4 \times C_1^3).$
- (22)  $\tau_{22} = \{\phi, X, F, T_1, T_2, S, < D >_d\}$  these are calculated as  $|\tau_{22}| = C_1^5 \times C_1^4 \times C_2^3 = 60.$
- (23)  $\tau_{23} = \{\phi, X, F, T_1, T_2, S, < D >_d, T_1^c\}$  as in previous settings we get that  $|\tau_{23}| = 60$ .
- (24)  $\tau_{24} = \{\phi, X, F, T_1, T_2, S, D, T_2^c\}$  here we include the open sets  $T_2^c$  and by same calculations as previous, we have  $|\tau_{24}| = 60$ .
- (25)  $\tau_{25} = \{\phi, X, F, T_1, T_2, D, T_3, D_1, S\}$  Here we have three tritons such that  $T_1, T_2 \subseteq F, T_3 \notin F, T_1 \cap T_3 = S, T_2 \cap T_3 = D_1 = F \cap T_3,$  $T_1 \cap T_2 \cap T_3 = S, T_1 \cap T_2 = D$  then *F* can be selected in  $C_4^5$  ways,  $T_1, T_2$  can

COMBINATORIAL APPROACH TO ENUMERATE THE TOPOLOGIES ON FINITE SET  $(X_n)$  2927

be selected in  $C_2^4$  ways while  $T_3$  can be selected in  $C_2^3 \times C_1^2$  ways therefore  $|\tau_{25}| = C_4^5 \times C_2^4 \times C_2^4 = 180.$ 

From (26-48), we have collections of topologies with two  $F_i$  where  $i \in \{1, 2\}$  such that  $F_1 \cap F_2 = T$ .

- (26)  $\tau_{26} = \{\phi, X, F_1, F_2, \langle T \rangle\} T$  can be selected in  $C_3^5$  ways,  $F_1, F_2$  can be selected in unique way therefore we get that  $|\tau_{26}| = C_3^5 \times |Top(X_3)| = C_3^5 \times 29 = 290.$
- (27)  $\tau_{27} = \{\phi, X, F_1, F_2, T, S\}$  where  $S \notin T$  then by using combination we have  $|\tau_{27}| = C_3^5 \times 2 = 20.$
- (28)  $\tau_{28} = \{\phi, X, F_1, F_2, T, D, S\}$  where  $D \nsubseteq T, T \cap D = S$  then by T can be selected in  $C_3^5$  ways and D can be selected in  $C_1^3 \times C_1^2$  ways, hence we get that  $|\tau_{28}| = C_1^5 \times C_3^5 \times 2 = 60$  (or  $C_3^5 \times C_1^3 \times C_1^2$ ).
- (29)  $\tau_{29} = \{\phi, X, F_1, F_2, T, < D >_d\}$  then as previous setting of open sets except of  $< D >_d$  and same calculations we obtain  $|\tau_{29}| = 60$ .
- (30)  $\tau_{30} = \{\phi, X, F_1, F_2, T, < T^c = D >_d\}$ . Using previous settings we get that  $|\tau_{30}| = C_3^5 = 10$ .
- (31)  $\tau_{31} = \{\phi, X, \langle F_1 \rangle_d, F_2\}$  then as above, therefore  $|\tau_{31}| = C_3^5 \times 2 = 20$ , since  $F_1$  can be replaced by  $F_2$ .
- (32)  $\tau_{32} = \{\phi, X, F_1, F_2, T, < T_1 >_d\}$  where  $F_1 \cap F_2 = T, T_1 \neq T$  as  $T_1$  can be selected in unique way therefore we have  $|\tau_{32}| = C_3^5 \times 9 = 90$ .
- (33)  $\tau_{33} = \{\phi, X, F_1, F_2, T, T_1, D_1, D_2, S\}$  where  $T \cap T_1 = S = D_1 \cap D_2, D_1 \cup D_2 = T_1F_i \cap T_1 = D_i, i \in \{1, 2\}$  then we calculate that  $|\tau_{33}| = C_1^5 \times C_2^4 \times 2 = 60(orC_3^5 \times C_1^3 \times 2) = 60.$
- (34)  $\tau_{34} = \{\phi, X, F_1, F_2, T, T_1, S, \langle D_1 \rangle_d, D_2\}$  Here we have same setting as in previous and taking discrete topology of  $D_1, D_2$  separately, hence we have  $|\tau_{34}| = 60 \times 2 = 120$ .
- (35)  $\tau_{35} = \{\phi, X, F_1, F_2, T, T_1, S, D_1, D_2, T_1^c\}$ . In view of previous setting, we get that  $|\tau_{35}| = C_4^5 \times C_3^4 \times C_1^3 = 60$ .
- (36)  $\tau_{36} = \{\phi, X, F_1, F_2, T, T_1, < D >\}$  where  $T \cap T_1 = D$ . As  $|\langle D \rangle| = 4$  then  $|\tau_{36}| = C_2^5 \times C_1^3 \times C_1^2 \times 4 = 240 (or C_4^5 \times C_3^4 \times C_2^3 \times 4).$
- (37)  $\tau_{37} = \{\phi, X, F_1, F_2, T, T_1, D, S\}$  then include *S* in previous settings such that  $S \notin D, S \subseteq T_1 \text{ or } T_2$  then  $|\tau_{37}| = C_3^5 \times C_2^3 \times C_1^2 \times 2 = 120(\text{ or } C_4^5 \times C_3^4 \times C_2^3 \times 2) = 120.$

- (38)  $\tau_{38} = \{\phi, X, F_1, F_2, T, T_1, D, < D_1 >_d\}$  keeping in view the previous setting, we include  $D_1$  such that  $D_1 = (T_1 \cup T) - D$  then  $D_1$  can be selected in unique way therefore we calculate that  $|\tau_{38}| = C_3^5 \times C_2^3 \times C_1^2 = 60(orC_4^5 \times C_3^4 \times C_2^3) = 60.$
- (39)  $\tau_{39} = \{\phi, X, F_1, F_2, T, T_1, D, T_1^c, S\}$ . Here we include  $\tau_c$  in previous settings then  $T \cap T_1^c = S$  and the number of these topologies are  $|\tau_{39}| = C_3^5 \times C_2^3 \times C_1^2 = 60(orC_4^5 \times C_3^4 \times C_1^3)$ .
- (40) τ<sub>40</sub> = {φ, X, F<sub>1</sub>, F<sub>2</sub>, T, T<sub>1</sub>, D, D<sub>1</sub>, S}. If D<sub>1</sub> ∩ D = S then keeping in view of previous setting then we observe that T can be selected in C<sub>3</sub><sup>5</sup> ways and T<sub>1</sub> can be selected in C<sub>2</sub><sup>3</sup> × C<sub>1</sub><sup>2</sup> ways and D<sub>1</sub> can be selected in C<sub>1</sub><sup>2</sup> × C<sub>1</sub><sup>2</sup> ways therefore |τ<sub>40</sub>| = C<sub>3</sub><sup>5</sup> × C<sub>2</sub><sup>3</sup> × C<sub>1</sub><sup>2</sup> × C<sub>1</sub><sup>2</sup> × C<sub>1</sub><sup>2</sup> = 240(or2 × C<sub>1</sub><sup>5</sup> × C<sub>1</sub><sup>4</sup> × C<sub>1</sub><sup>3</sup> × C<sub>1</sub><sup>2</sup>).
- (41)  $\tau_{41} = \{\phi, X, F_1, F_2, T, T_1, \langle D \rangle_d, D_1\}$  By keeping in view the previous settings and construct discrete topologies of  $D, D_1$  separately we have  $|\tau_{41}| = 240 \times 2 = 480$ .
- (42)  $\tau_{42} = \{\phi, X, F_1, F_2, T, T_1, D, D_1, S_1, D_2, S_2\}$  where  $D_1, D_2 \subseteq T \cup T_1, D_1 \cap D_2 = \phi, D \cap D_i = S_i \text{ for } i \in \{1, 2\}, S_1 \cup S_2 = D$  then we observe that  $S_1, S_2$  can be selected in  $C_1^5 \times C_1^4$  ways and  $D_1$  can be selected in  $C_1^3 \times C_1^2$  and  $D_2$  can be selected in  $C_1^2$  ways therefore we have  $|\tau_{42}| = C_1^5 \times C_1^4 \times C_1^3 \times C_1^2 \times 2 = 240(orC_4^5 \times C_3^4 \times C_2^3 \times C_1^2 \times 2).$
- (43)  $\tau_{43} = \{\phi, X, F_1, F_2, < T >_d, T_1\}$  where  $F_1 \cap F_2 = T, T_1 \cap T = D$  then we have  $|\tau_{43}| = C_4^5 \times C_3^4 \times C_2^3 = 60 (or C_3^5 \times C_2^3 \times C_1^2)$ .
- (44)  $\tau_{44} = \{\phi, X, F_1, F_2, T, T_1, D_1, T_2, D_2, S\}$  where  $T \cap T_i = D_i$  for  $i \in \{1, 2\}$ and  $D_1 \cap D_2 = S = T_1 \cap T_2$  then we observe that S can be selected in  $C_1^5$  ways and  $D, D_1$  can be selected in  $C_1^4 \times C_1^3$  while  $T_1, T_2$  and  $F_1, F_2$  can be constructed in unique way under given construction therefore we have  $|\tau_{44}| = C_1^5 \times C_1^4 \times C_1^3 = 60.$
- (45)  $\tau_{45} = \{\phi, X, F_1, F_2, T, T_1, D, D^c = T_2, D_1, < D_2 >_d\}$  where  $T \cap T_1 = D, F_1 \cap T_2 = D_1, F_2 \cap T_2 = D_2$  such that  $D_2 \subset T_1 \cup T_2$  then by calculations we get that  $|\tau_{45}| = C_3^5 \times C_2^3 \times C_1^2 = 60(orC_4^5 \times C_3^4 \times C_2^3).$
- (46)  $\tau_{46} = \{\phi, X, F_1, F_2, T, T_1, D_1, D'_1, S_1, T_2, D_2, S_2\}$ . Here we have  $T \cap T_2 = D_2, T_1 \cap T_2 = S_2, T_1 \cap T = S_1, D_1 \cap D'_1 = S_1$  then under given construction, T can be selected in  $C_3^5$  ways,  $T_1, T_2$  can be selected in  $C_1^3 \times C_1^2$  ways such that  $D = T \cap T_2$  and  $D_2^c = T_1$ , then selection of  $F_1, F_2$  are collected in unique way and all the entries of  $\tau_{46}$  are consequences of unions and intersection processes therefore  $|\tau_{46}| = C_3^5 \times C_1^3 \times C_1^2 = 60(orC_4^5 \times C_3^4 \times C_2^3)$ .

- (47)  $\tau_{47} = \{\phi, X, F_1, F_2, T, T_1, T_2, D_1, D_2, D_3, S\}$  Here we select two tritons  $T_1$  and  $T_2$  which satisfies  $T_2 \cap T = D_2, T_1 \cap T_2 = D_3, T_1 \cap T = D_1$  and  $D_1 \cap D_2 \cap D_3 = S$  then we calculate that  $|\tau_{47}| = C_1^5 \times C_1^4 \times C_1^3 \times C_1^2 = 120(orC_3^5 \times C_2^3 \times C_1^2 \times C_1^2) = 120.$
- (48)  $\tau_{48} = \{\phi, X, F_1, F_2, T, T_1, T_2, < D_1 >_d, D_2, D_3, S\}$  Here we have same settings as in last one, except the discrete ditons each time seperately, and we get that  $|\tau_{48}| = 120 \times 3 = 360$ .

# From (49 to 61), we select the homeomorphic topologies of $F_1, F_2, F_3$ such that their intersections are three $T_1, T_2, T_3$

- (49)  $\tau_{49} = \{\phi, X, F_1, F_2, F_3, T_1, T_2, T_3, < D >\}$  where  $T_1 \cap T_2 \cap T_3 = D$  and construction of is  $C_2^5$  ways and the remaining can be constructed in unique ways therefore  $|\tau_{49}| = C_2^5 \times 4 = 40$ .
- (50)  $\tau_{50} = \{\phi, X, F_1, F_2, F_3, T_1, T_2, < T_3 >_d\}$  where  $T_1 \cap T_2 \cap T_3 = D$  and we discrete each  $T_i$  separately, which gives that  $|\tau_{50}| = 10 \times 3 = 30$
- (51)  $\tau_{51} = \{\phi, X, F_1, F_2, F_3, T_1, T_2, T_3, D, < D^c >_d\}$  Here we take same setting as previous and include  $D^c$  and discrete it, which gives that  $|\tau_{51}| = C_2^5 = 10$
- (52)  $\tau_{52} = \{\phi, X, F_1, F_2, F_3, T_1, T_2, T_3, D, S\}$  where we include a singleton S such that  $S \not\subseteq D$  By combination we have  $|\tau_{52}| = C_2^5 \times C_1^3 = 30$
- (53)  $\tau_{53} = \{\phi, X, F_1, F_2, F_3, T_1, T_2, T_3, D, \langle D_1 \rangle_d\}$  We include an extra diton  $D_1$ in  $\tau_{51}$  such that  $D \cap D_1 = \phi$  then these type of topologies are  $|\tau_{53}| = C_2^5 \times C_2^3 = 30$
- (54)  $\tau_{54} = \{\phi, X, F_1, F_2, F_3, T_1, T_2, T_3, D, D_1, S\}$  Here we include an extra  $D_1$  in  $\tau_{51}$  such that  $D \cap D_1 = S$  then we calculate that  $|\tau_{54}| = C_2^5 \times C_1^2 \times C_1^3 = 60$
- (55)  $\tau_{55} = \{\phi, X, F_1, F_2, F_3, T_1, T_2, T_3, D, < D_1 >_d\}$  Here, we have same setting as in previous and discrete each  $D, D_1$  separately, which gives us  $|\tau_{55}| = 60 \times 2 = 120$
- (56)  $\tau_{56} = \{\phi, X, F_1, F_2, F_3, T_1, T_2, T_3, D, T_4, D_1, D_2, S\}$  Here we include a  $T_4$  in  $\tau_{51}$ such that  $T_1 \cap T_4 = D_1, T_2 \cap T_4 = D_2, T_3 \cap T_4 = S = T_4 \cap D = S$  then  $\tau_4$  can be selected in  $C_2^3$  ways, we get that  $|\tau_{56}| = C_2^5 \times C_1^2 \times C_2^3 = 60(or5 \times C_1^4 \times C_2^3)$
- (57)  $\tau_{57} = \{\phi, X, F_1, F_2, F_3, T_1, T_2, T_3, < D >_d, T_4, D_1, D_2\}$  Here we discrete each diton from previous settings which gives that  $|\tau_{57}| = 60 \times 3 = 180$
- (58)  $\tau_{58} = \{\phi, X, F_1, F_2, F_3, T_1, T_2, T_3, D, < T_4 >_d\}$  Here we discrete  $T_4$  and this gives  $|\tau_{58}| = 60$

- (59)  $\tau_{59} = \{\phi, X, F_1, F_2, F_3, < T_1 >_d, T_2, T_3, D, T_4, D_1, D_2\}$  This have same setting as of  $\tau_{56}$  and if we discrete  $\tau_1$  and  $\tau_2$ . We cannot discrete  $T_3$  since it disturbs the construction of  $\tau_{60}$  by increasing the numbers of F and  $|\tau_{59}| = 60 \times 2 =$ 120
- (60)  $\tau_{60} = \{\phi, X, F_1, F_2, F_3, < T_1 >_d, < T_2 >_d, T_3, D, T_4, D_1, D_2\}$  Here we discrete both  $\tau_1$  and  $\tau_2$  at the same time, while combination gives us  $|\tau_{60}| = 60$
- (61)  $\tau_{61} = \{\phi, X, F_1, F_2, F_3, T_1, T_2, T_3, D, D_1, D_2, S_1, S_2\}$  Here  $D_1 \cap D_2 = \phi, D \cap D_i = S_i$  which gives that  $|\tau_{61}| = C_2^5 \times C_2^3 \times C_1^2 = 60(orC_1^5 \times \frac{1}{2}C_1^4 \times C_1^3 \times C_1^2)$
- (62)  $\tau_{62} = \{\phi, X, F_1, F_2, F_3, F_4, T_1, T_2, T_3, T_4, T_5, T_6, D_1, D_2, D_3, D_4, S\}$  Here we take four F's and their intersection are six T's whose intersections are four D's. By calculations we get that  $|\tau_{62}| = C_1^5 = 5$
- (63)  $\tau_{63} = \{\phi, X, F_1, F_2, F_3, F_4, T_1, T_2, T_3, T_4, T_5, T_6, D_1, D_2, D_3, < D_4 >_d, S\}$  Here we discrete each  $D_i, i \in \{1, 2, 3, 4\}$  separately and get that  $|\tau_{63}| = 5 \times 4 = 20$
- (64)  $\tau_{64} = \{\phi, X, F_1, F_2, F_3, F_4, T_1, T_2, T_3, T_4, T_5, < T_6 >_d, D_1, D_2, D_3, D_4, S\}$  Here we discrete each  $T_i, i \in \{1, 2, 3, 4, 5, 6\}$  separately and get that  $|\tau_{64}| = 5 \times 6^{=}30$
- (65)  $\tau_{65} = \{\phi, X, F_1, F_2, F_3, < F_4 >_d, T_1, T_2, T_3, T_4, T_5, T_6, D_1, D_2, D_3, D_4, S\}$  Here we discrete each  $F_i, i \in \{1, 2, 3, 4\}$  separately and get that  $|\tau_{65}| = 5 \times 4 = 20$ From the above discussion we conclude the following.

**Theorem 4.1.**  $Top(X_5)$  can be partitioned in to 57 homeomorphic disconnected classes and  $|Top(X_5)| = 6942$ .

We conclude this paper with the following interesting open problem.

**Open Problem 1:** We believe that our method of finding topologies have potential to provide line of direction for development of Algorithm which is indeed responsible for finding topologies on a given set  $X_n$  having cardinality n.

**Open Problem 2:** From group theory it follows that the action of a group G on a given set X partition the set X into equivalence classes (referred as orbits). Des it possible to identify a group G which decompose  $Top(X_n)$  into homeomorphic classes.

## 5. CONCLUSION

This article has provided combinatorial approach to enumeration of topologies. An interesting calculations of number of topologies through combinations

provides the homeomorphic classes of topologies. The side result of this computational work gives interesting graphical approach to these homeomorphic classes. This method of finding topologies pave a new path for developing the computational algorithm to find topologies of set of cardinality n.

#### REFERENCES

- R. STANLEY: On the number of open sets of finite topologies, J. Combinatorial Theory 10 (1971), 75 – 79.
- [2] G. BRINKMANN, B.D. MCKAY: Counting finite posets and topologies, Order 8 (1991), 247–265.
- [3] M. BENOUMHANI: The number of topologies on a finite set, J. Integer Seq. 9 (2006), 1–9.
- [4] M. ERNÉ, K. STEGE: Counting finite posets and topologies, Order8 (1991), 247–265-9.
- [5] M. ERNÉ, K. STEGE: *Counting finite posets and topologies*, Tech. Report **236**, University of Hannover, (1990).
- [6] M. ERNÉ: On the cardinalities of finite topologies and the number of antichains in partially ordered sets, Discrete Math. **35** (1981) 119–133.
- [7] M. ERNÉ: *Struktur- und Anzahlformeln für Topologien auf endlichen Mengen*, PhD thesis, Universität Münster, 1972.
- [8] M. ERNÉ, K. STEGE: Combinatorial applications of ordinal sum decompositions, Ars Combin. 40 (1995), 65–88.
- [9] D.J. KLEITMAN, B.L. ROTHSCHILD: *The number of finite topologies*, Proc. Amer. Math. Soc. **25** (1970), 276–282.
- [10] D.J. KLEITMAN, B.L. ROTHSCHILD: Asymptotic enumeration of partial orders on a finite set, Trans. Amer. Math. Soc.205 (1975), 205–220.

DEPARTMENT OF MATHEMATICS. G.C. UNIVERSITY LAHORE, PAKISTAN. *Email address*: yaqoubahmedkhan@gmail.com

DEPARTMENT OF MATHEMATICS. G.C. UNIVERSITY LAHORE, PAKISTAN. *Email address*: aslam298@gcu.edu.pk