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Islom N. Bozorov1, Usmon R. Shadiev, and Gayerat R. Yodgorov

ABSTRACT. In this paper, we consider the four-particle Schrödinger operator
corresponding to the Hamiltonian of a system of four arbitrary quantum par-
ticles via a three-particle contact interaction potential on a three-dimensional
lattice. The finiteness of the number of eigenvalues of the Schrödinger op-
erator lying to the left of the essential spectrum for zero value of the total
quasi-momentum is proved.

1. INTRODUCTION

The spectral properties of many-particle Schrödinger operators in Euclidean
space are well studied in the books [9], [15] and [14]. For a system of many
particles with arbitrary strongly decreasing interactions, the finiteness of the
discrete spectrum was established by Zhislin [4], [5] and Yafaev [17].

In the articles [1] and [8], the finiteness of the three-particle bound states is
proved for the three-dimensional discrete Schrödinger operator on the condition
that the operators describing the two-particle subsystems have no virtual levels.

1corresponding author
2020 Mathematics Subject Classification. 44A55, 81Q10.
Key words and phrases. Schrödinger operator, essential spectrum, eigenvalue, compact oper-

ator, positive operator.
Submitted: 22.06.2021; Accepted: 08.07.2021; Published: 10.07.2021.

2933



2934 I. Bozorov, U. Shadiev, and G. Yodgorov

The finiteness of the discrete spectrum of Schrödinger operators corresponding
to the systems of the three-particles are investigated in [7], [10] and [11].

In the paper [2], the discrete Schrödinger operator acting in the Hilbert space
is considered, which corresponds to the Hamiltonian of a system of four identical
particles (bosons) interacting via pair contact attraction potentials on the lattice.
It is proved that the number of eigenvalues lying to the left of the essential
spectrum is finite for any value of µ > 0 (µ is the interaction energy of two
bosons), and their absence is established for sufficiently small µ > 0.

In this paper, we consider the four-particle Schrödinger operator correspond-
ing to the Hamiltonian of a system of four arbitrary quantum particles with a
three-particle contact interaction potential on a three-dimensional lattice. The
finiteness of the number of eigenvalues of the Schrödinger operator lying to the
left of the essential spectrum is proved for any value of µα > 0, α = 1, ..., 4 (µα
is the interaction energy of three particles) and zero value of the total quasi-
momentum.

2. FORMULATION OF THE MAIN RESULTS

Let L2((T3)3) be the Hilbert space of square-integrable functions defined on
(T3)3, T = (−π, π].

We consider the family of operators H(K), K ∈ T3 (four-particle discrete
Schrödinger operator) corresponding to the Hamiltonian of a system of four
arbitrary quantum particles with a three-particle contact interaction potential
on a three-dimensional lattice, where H(K) acts in the Hilbert space L2((T3)3)

by the formula (see [13], [16])

H(K) = H0(K)−
4∑

α=1

µαVα,

µα is an interaction energy of particles β, γ and θ, β < γ < θ, {α, β, γ, θ} =

{1, 2, 3, 4}, the operators H0(K) and Vα are defined by the formulas(
H0(K)f

)
(p) = EK(p)f(p), p = (p1, p2, p3), pi ∈ T3,

EK(p) =
3∑
i=1

εi(pi)+ε4(K−p1−p2−p3), εα(p) =
1

mα

3∑
i=1

(1−cos pi), α = 1, ..., 4,
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mi mass i-th particle,

(V1f)(p) = (2π)−6
∫

(T3)2

f(p1, q2, q3)dq2dq3,

(V2f)(p) = (2π)−6
∫

(T3)2

f(q1, p2, q3)dq1dq3,

(V3f)(p) = (2π)−6
∫

(T3)2

f(q1, q2, p3)dq1dq2,

(V4f)(p) = (2π)−6
∫

(T3)2

f(q1, q2, p1 + p2 + p3 − q1 − q2)dq1dq2.

We denote by A
1
2 the positive square root of the operator A ≥ 0, and by

σ(A) and σess(A), respectively, the spectrum and the essential spectrum of the
operator A.

Note that the operator Vα is a positive operator and the equality V
1
2
α = Vα,

α = 1, ..., 4 holds, i.e. Vα is projector. Therefore, the positive square root of the
operator µαVα is equal to the operator

√
µαVα, α = 1, ..., 4.

LetHα(K) = H0(K)−µαVα. The operatorHα(K) is called the channel operator
corresponding to the Hamiltonian of the system {α}, {β, γ, θ}, {α, β, γ, θ} =

{1, 2, 3, 4}.
We set

Wα := Wα(K, z) = (I − µαV
1
2
α R0V

1
2
α )−1, R0 := R0(K, z) = (H0(K)− zI)−1,

where z /∈ σ(Hα(K)), α = 1, ..., 4, I is identity operator in L2((T3)3).
By virtue of the lemma 3.1 (see below) the operator Wα(K, z) exists if and

only if z /∈ σ(Hα(K)), in addition Wα(K, z) is a positive operator for all z <

τα(K), τα(K) = inf σess(Hα(K)).

Let τK = inf
4⋃

α=1

σ
(
Hα(K)

)
. We define the matrix operators acting in the

Hilbert space L(4)
2 ((T3)3) = L2((T3)3)⊗ L2((T3)3)⊗ L2((T3)3)⊗ L2((T3)3) as

A(K, z) = W(K, z)L(K, z), z ∈ C\
4⋃

α=1

σ
(
Hα(K)

)
,

B(K, z) = W
1
2 (K, z)L(K, z)W

1
2 (K, z), z < τK ,
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where

L(K, z) =


0

√
µ1µ2V1R0V2

√
µ1µ3V1R0V3

√
µ1µ4V1R0V4√

µ2µ1V2R0V1 0
√
µ2µ3V2R0V3

√
µ2µ4V2R0V4√

µ3µ1V3R0V1
√
µ3µ2V3R0V2 0

√
µ3µ4V3R0V4√

µ4µ1V4R0V1
√
µ4µ2V4R0V2

√
µ4µ3V4R0V3 0

 ,

W(K, z) =


W1 0 0 0

0 W2 0 0

0 0 W3 0

0 0 0 W4

 .

Note that each nonzero element ViR0(K, z)Vj, i 6= j of the matrix operator
L(K, z) is an integral operator and its kernel is a continuous function on the
(T3)3 × (T3)3 for each z /∈ C\

⋃4
i=1 σ

(
Hi(K)

)
. Therefore ViR0(K, z)Vj belongs

to the Hilbert-Schmidt class. Hence, the operator L(K, z) is compact. It follows
from the boundedness of W(K, z) that the operator A(K, z) is compact [16].

Remark 2.1. The equation A(K; z)ϕ = ϕ is an analogue of the Faddeev equation,
which is obtained for the three-particle continuous Schrödinger operator (see [9]).

Note that for any K ∈ T3 the essential spectrum σess
(
H(K)

)
of the operator

H(K) coincides with the union of the spectra channel operators (see [12], [16]),
i.e.

σess
(
H(K)

)
=

4⋃
α=1

σ
(
Hα(K)

)
,

(2.1) σ(Hα(K)) = σess(Hα(K)) =
⋃
p∈T3

{
σ
(
hα(K − p)

)
+ εα(p)

}
,

where the notation A+b means that A+b = {λ+ b : λ ∈ A}, the operator hα(k)

acts in the space L2((T3)2) by(
hα(k)f

)
(pβ, pγ) =

[
εβ(pβ) + εγ(pγ) + εθ(k − pβ − pγ)

]
f(pβ, pγ)−

− µα
(2π)6

∫
(T3)2

f(q1, q2)dq1dq2, {α, β, γ, θ} = {1, 2, 3, 4}.

The main results of this work are the following statements.
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Lemma 2.1. Suppose that the family of operators B(K, z), z < τK uniformly
converges to some operator B(K, τK) as z → τK − 0. Then the operator H(K) on
the interval (−∞, τK) can have only a finite number of eigenvalues.

Using the Lemma 2.1, we obtain

Theorem 2.1. For all µ = (µ1, µ2, µ3, µ4), where µα ≥ 0, α = 1, ..., 4 the operator
H(0), 0 = (0, 0, 0) can have only a finite number of eigenvalues lying to the left of
the essential spectrum.

3. PROOF OF THE MAIN RESULTS

The rest of the work is devoted to the proof of the main results.

Lemma 3.1. The operator Wα(K, z) exists if and only if z /∈ σ
(
Hα(K)

)
, in addi-

tion, Wα(K, z) is a positive operator for all z < τα(K).

Proof. Let z 6∈ σess
(
Hα(K)

)
. Since

H0(K)− Vα − zI =
(
H0(K)− zI

)[
I −R0(K, z)Vα

]
,

the operator Hα(K) − zI is invertible if and only if I − R0(K, z)Vα is invert-

ible. The equality σ
(
R0(K, z)Vα

)
\ {0} = σ

(
V

1
2
α R0(K, z)V

1
2
α

)
\ {0} gives that

1 ∈ σ
(
R0(K, z)Vα

)
if and only if 1 ∈ σ(V

1
2
α R0(K, z)V

1
2
α ). Therefore, the operator

I − R0(K, z)Vα is invertible if and only if the operator I − V
1
2
α R0(K, z)V

1
2
α is in-

vertible. Since V
1
2
α R0(K, z1)V

1
2
α < V

1
2
α R0(K, z2)V

1
2
α for z1 < z2 < mK , we have

I − V
1
2
α R0(K, z1)V

1
2
α > I − V

1
2
α R0(K, z2)V

1
2
α .

Hence we obtain the assertion of the Lemma 3.1. �

We denote by N(K; z), z < τK the number of eigenvalues of the operator
H(K) lying to the left of z. Let A be a self-adjoint operator acting in the Hilbert
space H, and let HA(λ), λ > sup σess(A) be the subspace consisting of the ele-
ments of f ∈ H satisfying the inequality (Af, f) > λ(f, f).

We set
n(λ,A) = sup

HA(λ)
dimHA(λ).

The number n(λ,A) coincides with the number of eigenvalues of the operator
A lying to the right of λ.
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We set

N(K, z) = n
(
− z,−H(K)

)
, −z > −τK .

Lemma 3.2. For each z < τK , the equality

(3.1) N(K, z) = n
(
1,B(K, z)

)
holds.

Proof. We prove lemma by the method used in [7]. Assume f ∈ HH(z), z < τ,

i.e., ((
H0(K)− zI

)
f, f
)
< (V f, f), V = µ1V1 + µ2V2 + µ3V3 + µ4V4.

Therefore,

(y, y) <
(
R

1
2
0 (K, z)V R

1
2
0 (K, z)y, y

)
, y =

(
H0(K)− zI

) 1
2f.

Thus N(K, z) ≤ n
(
1, R

1
2
0 (K, z)V R

1
2
0 (K, z)

)
.

Arguing similarly, we obtain the converse statement

N(K, z) ≥ n
(
1, R

1
2
0 (K, z)V R

1
2
0 (K, z)

)
.

This implies the equality

N(K, z) = n
(
1, R

1
2
0 (K, z)V R

1
2
0 (K, z)

)
.

We consider the equation for the eigenfunctions f ∈ L2((T3)2) of the operator

R
1
2
0 V R

1
2
0 , R

1
2
0 := R

1
2
0 (K, z)

(3.2) λf = R
1
2
0

[
µ1V1 + µ2V2 + µ3V3 + µ4V4

]
R

1
2
0 f, λ > 1.

Let

(3.3) ϕi = µ
1
2
i V

1
2
i R

1
2
0 f.

Taking into account the equality V
1
2
i = Vi, i = 1, ..., 4 and (3.3), we write equality

(3.2) in the form

λf = R
1
2
0

[
µ

1
2
1 V1ϕ1 + µ

1
2
2 V2ϕ2 + µ

1
2
3 V3ϕ3 + µ

1
2
4 V4ϕ4

]
.
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Substituting this expression in (3.3), we obtain the system of integral equations

λϕ1 = µ
1
2
1 V1R0

(
µ

1
2
1 V1ϕ1 + µ

1
2
2 V2ϕ2 + µ

1
2
3 V3ϕ3 + µ

1
2
4 V4ϕ4

)
,

λϕ2 = µ
1
2
2 V2R0

(
µ

1
2
1 V1ϕ1 + µ

1
2
2 V2ϕ2 + µ

1
2
3 V3ϕ3 + µ

1
2
4 V4ϕ4

)
,

λϕ3 = µ
1
2
3 V3R0

(
µ

1
2
1 V1ϕ1 + µ

1
2
2 V2ϕ2 + µ

1
2
3 V3ϕ3 + µ

1
2
4 V4ϕ4

)
,

λϕ4 = µ
1
2
4 V4R0

(
µ

1
2
1 V1ϕ1 + µ

1
2
2 V2ϕ2 + µ

1
2
3 V3ϕ3 + µ

1
2
4 V4ϕ4

)
,

,

i.e., the equation

(3.4) λΦ = T(K, z)Φ,

has a nontrivial solution Φ = (ϕ1, ϕ3, ϕ3, ϕ4), where the operator T(K, z) acts in
L
(4)
2 ((T3)3) as

T(K, z) =


µ1V1R0V1

√
µ1µ2V1R0V2

√
µ1µ3V1R0V3

√
µ1µ4V1R0V4√

µ2µ1V2R0V1 µ2V2R0V2
√
µ2µ3V2R0V3

√
µ2µ4V2R0V4√

µ3µ1V3R0V1
√
µ3µ2V3R0V2 µ3V3R0V3

√
µ3µ4V3R0V4√

µ4µ1V4R0V1
√
µ4µ2V4R0V2

√
µ4µ3V4R0V3 µ4V4R0V4

 .

It is easy to check that the equations (3.4) and (3.2) are equivalent. From this
we obtain the equality

N(K, z) = n
(
1,T(K, z)

)
.

If we show that

n
(
1,T(K, z)

)
= n

(
1,W

1
2 (K, z)L(K, z)W

1
2 (K, z)

)
,

then Lemma 3.2 will be proved.
Suppose f ∈ HT(K,z)(1), that is

(
T(K, z)f, f

)
> (f, f) or([

E− V
1
2R0V

1
2

]
f, f
)
< (L(K, z)f, f),

where E is the identity operator in L(4)
2 ((T3)3) and

V
1
2R0V

1
2 =


µ1V1R0V1 0 0 0

0 µ2V2R0V2 0 0

0 0 µ3V3R0V3 0

0 0 0 µ4V4R0V4

 .

Hence,

(ϕ, ϕ) <
(
W

1
2 (K, z)L(K, z)W

1
2 (K, z)ϕ, ϕ

)
, f = W

1
2 (K, z)ϕ.
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Thus, n
(
1,T(K, z)

)
≤ n

(
1,W

1
2 (K, z)L(K, z)W

1
2 (K, z)

)
.

Arguing similarly, we obtain the converse statement

n
(
1,T(K, z)

)
≥ n

(
1,W

1
2 (K, z)L(K, z)W

1
2 (K, z)

)
.

This implies the equality (3.1). �

Proof of the Lemma 2.1. Note that for any z ≤ τK the operator B(K; z) is a
compact and continuous operator-valued function for z ≤ τK . Therefore, using
the Weyl inequality [3]

n(a+ b, A+B) ≤ n(a,A) + n(b, B)

for compact operators A,B and according the Lemma 3.2 we obtain the proof
of the Lemma 2.1 [7].

In what follows we assume that K = 0, 0 = (0, 0, 0). We set

∆µα(k; z) = 1− µαFα(k; z), Fα(k; z) =
1

(2π)6

∫
(T3)2

dq1dq2
εαk (q1, q2)− z

,

z ∈ C \ [mα(k),Mα(k)], where mα(k) = min
p,q∈T3

εαk (p, q), Mα(k) = max
p,q∈T3

εαk (p, q).

Lemma 3.3. The number z ∈ C\σess(hα(k)) is an eigenvalue of the operator hα(k)

if and only if ∆µα(k; z) = 0.

A similar lemma is proved in [6].
The Lemma 3.3 and the equality (2.1) imply

Lemma 3.4. For the spectrum of the operator Hα(0) = H0(0) − µαVα, α ∈
{1, 2, 3, 4} the equality

σ
(
Hα(0)

)
= [0,M0] ∪ σα

holds, where σα =
{
z ∈ C\[0,M0] : ∆α

(
p; z−εα(p)

)
= 0 for at least one p ∈ T3

}
.

Let

fα(x, z) =

∫
T2

dsdt
1
mβ

(1− cos s) + 1
mγ

(1− cos t) + 1
mθ

(1− cos(s+ t+ x)− z
,

x ∈ T, z < 0.

Then the function fα(x, z) is analytic on T for each z < 0.

Proposition 3.1. Let z < 0. Then max
x

fα(x, z) = fα(0, z).
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Proof. A simple calculation shows that from the monotonicity of the function
fα(x, ·) on (−∞, 0). Therefore, if the function fα(·, z) for each z < 0 reaches its
maximum value at the point x′, then it reaches its maximum value for all z′ 6= z,

z′ < 0 at the same point x′.
Suppose that fα(x′, z) = max

x
fα(x, z) > fα(0, z) for z < 0. Then lim

z→−0
fα(x′, z)

exists and it is finite, and lim
z→−0

fα(0, z) = +∞. Therefore, there exists z∗ < 0

such that fα(x′, z∗) < fα(0, z∗). This contradiction proves Proposition 3.1. �

From the Proposition 3.1, we obtain the following

Corollary 3.1. Let z ≤ 0 and max
p
Fα(p; z) = Fα(p′; z). Then p′ = 0.

It follows from the Corollary 3.1 that if σα 6= ∅, then inf σα = z, ∆α(0; z) = 0.

From here and the Lemma 3.4 we have

Proposition 3.2. For all µα ≥ 0 the equality

τα =: τα(0) = inf σ
(
Hα(0)

)
= min{0, λα},

holds, where λα such that ∆µα(0;λα) = 0, herewith τα = τα(µα) ≤ 0.

The expression for the essential spectrum of the operator H(K) implies

τ0 = inf σess
(
H(0)

)
= min{τ1, τ2, τ3, τ4}.

We denote

µα(z) =
[ 1

(2π)3
Fα(0; z)

]−1
, z ≤ 0.

A simple calculation shows that

∆µα(k; z) =


> 0 for µα < µα(z),

0 for µα = µα(z),

< 0 for µα > µα(z).

Lemma 3.5. There exists a number C > 0 such that, for all µα ≥ 0, α = 1, ..., 4

and z ≤ τα the inequality

(3.5) ∆µα

(
p; z − εα(p)

)
≥ Cp2

holds.
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Proof. The function ∆µα

(
p; z−εα(p)

)
is continuous in z and p, and strictly mono-

tonically decreases in z < τα for any fixed p ∈ T3. Hence, if µα < µα(0), then

∆µα

(
p; z − εα(p)

)
> ∆µα(0)

(
p; 0− εα(p)

)
≥ ∆µα(0)

(
0; 0− εα(0)

)
= 0.

Therefore, inequality (3.5) for µα < µα(0) holds.
Let µα ≥ µα(0). Then µα(τα)Fα

(
0; τα

)
= 1 and ∆µα(p; z−εα(p)) ≥ ∆µα(τα)

(
p; τα−

εα(p)
)
. By the Corollary 3.1, we have

∆µα(τα)

(
p; τα − εα(p)

)
= µα(τα)Fα(0; τα)− µα(τα)

(2π)6

∫
(T3)2

dq1dq2
εα(p) + εαp (q1, q2)− τα

≥ µα(τα)

(2π)6

∫
(T3)2

dq1dq2
εα0(q1, q2)− τα

− µα(τα)

(2π)6

∫
(T3)2

dq1dq2
εα(p) + εα0(q1, q2)− τα

= εα(p)
µα(τα)

(2π)6

∫
(T3)2

dq1dq2
(εα(p) + εα0(q1, q2)− τα)(εα0(q1, q2)− τα)

.

(3.6)

Since the point p = 0 is the unique nondegenerate minimum point for the func-
tion εα(·), there exists C > 0 such that for all p ∈ T3 the inequality

(3.7) εα(p) ≥ Cp2

holds. Therefore, the integral∫
(T3)2

dq1dq2
(εα(p) + εα0(q1, q2)− τα)(εα0(q1, q2)− τα)

converges for all τα ≤ 0 and p ∈ T3. From here and according to (3.7) from the
inequality (3.6) we obtain the inequality (3.5) for µα ≥ µα(0). �

Using Vα = V 2
α and performing elementary calculations on integral equations,

it is easy to check that the operator Wα(0, z) acts as

Wα(0, z) = I + µα∆−1α VαR0(0, z)Vα,

where ∆−1α is the operator of multiplication by [∆µα(p; z − εα(p))]−1. Moreover,
the operator Wα(0, z) is continuous in z < τα ≤ 0.

Lemma 3.6. For all z < τα, the operator W
1
2
α (z) =: W

1
2
α (0, z) represents as

W
1
2
α (z) = [µα∆−1α ]

1
2Mα(z)

1
2Vα + W̃α(z),
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where Mα(z) is operator of multiplication by the function VαR0(0, z)ϕ0, ϕ0 ≡ 1,

W̃α(z) is a bounded operator for each z ∈ (−∞, τα], and the operator function
W̃α(·) is continuous on the interval (−∞, τα].

Proof. Note that the operator [µα∆−1α ]
1
2Mα(z)

1
2Vα is a positive root of the posi-

tive operator µα∆−1α VαR0(0, z)Vα. From here and according to the well-known
inequality [3]

‖B
1
2 − A

1
2‖ ≤ ‖B − A‖

1
2 ,

for all positive operators A and B, we have

‖W
1
2
α (z)− [µα∆−1α ]

1
2Mα(z)

1
2Vα‖ ≤ I.

This gives the representation

W
1
2
α (z) = [µα∆−1α ]

1
2Mα(z)

1
2Vα + W̃α(z).

The nonzero elements W
1
2
α V

1
2
α R0V

1
2
β W

1
2
β , α 6= β of the matrix operator B(0, z)

have the form

W
1
2
α V

1
2
α R0V

1
2
β W

1
2
β = µ

1
2
αµ

1
2
βW

1
2
α (z)Kαβ(z)W

1
2
β (z), Kαβ(z) = VαR0(0, z)Vβ,

α 6= β. �

Lemma 3.7. Let µα ≥ 0, α = 1, ..., 4. Then W
1
2
α (z)Kαβ(z)W

1
2
β (z), α 6= β is a

compact operator for z ∈ (−∞, τ0] and the operator function W
1
2
α (·)Kαβ(·)W

1
2
β (·),

α 6= β is continuous on the interval (−∞, τ0].

Proof. According to the Lemma 3.6, we write

W
1
2
α (z)Kαβ(z)W

1
2
β (z)

=
[
µα∆−1α

] 1
2Mα(z)

1
2Kαβ(z)Mβ(z)

1
2
[
µβ∆−1β

] 1
2 + W̃α(z)Kαβ(z)Mβ(z)

1
2
[
µβ∆−1β

] 1
2

+
[
µα∆−1α

] 1
2Mα(z)

1
2Kαβ(z)W̃β(z) + W̃α(z)Kαβ(z)W̃β(z).

The operators Mα(z) and W̃α(z) are bounded for all z ≤ τ0 and α = 1, ...4.

Therefore, taking into account the commutativity of the operators Mα(z) and

µα∆−1α , according to the last equality, for the compactness of the operator W
1
2
α (z)

Kαβ(z)W
1
2
β (z), z ≤ τ0 it suffices to show that the operators Kαβ(z),

[
µα∆−1α

] 1
2

Kαβ(z), Kαβ(z)
[
µβ∆−1β

] 1
2 and

[
µα∆−1α

] 1
2Kαβ(z)

[
µβ∆−1β

] 1
2 are compact for all z ≤

τ0. These operators belong to the Hilbert-Schmidt class for all z ≤ τ0. Indeed,
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for convenience, we show this for α = 1 and β = 2. The operator K12(z) acts in
L2((T3)3) as

(K12(z)f)(p1, p2, p3) =

∫
(T3)2

∫
(T3)2

(2π)−12f(q1, q
′
2, q3)dq1dq2dq

′
2dq
′
3

ε1(p1) + ε2(q′2) + ε3(q′3) + ε4(p1 + q2 + q′3)− z
.

According to (3.7), the kernel

K12(z; p1, q
′
2, q3) =

∫
T3

(2π)−12dq′3
ε1(p1) + ε2(q′2) + ε3(q′3) + ε4(p1 + q2 + q′3)− z

of the integral operator K12(z) is bounded for all p1, q′2, q3 ∈ T3 and z ≤ τ0.

Therefore, the operator K12(z) belongs to the Hilbert-Schmidt class for all z ≤
τ0.

Since [µα∆−1α ]
1
2 is a multiplication operator, according to the Lemma 3.5, from

the boundedness of the kernel of the operator K12(z), we obtain boundedness of
the kernels of the operators [µα∆−11 ]

1
2K12(z), K12(z)[µ2∆

−1
2 ]

1
2 and [µ1∆

−1
1 ]

1
2K12(z)

1
2 , respectively, by functions C√

p21
, C√

p22
and C√

p21

√
p22

for all p1, p2 ∈ T3 and z ≤ τ0.

Therefore, the operators [µα∆−11 ]
1
2K12(z), K12(z)[µ2∆

−1
2 ]

1
2 and [µ1∆

−1
1 ]

1
2K12(z)

1
2 belong to the Hilbert-Schmidt class for all z ≤ τ0.

Thus, we have proved that W
1
2
1 (z)K12(z)W

1
2
2 (z) is a compact operator for all

z ≤ τ0.

By similar way are proved the compactness of the operators W
1
2
α (z)Kαβ(z)

W
1
2
β (z), α 6= β for all z ≤ τ0.

The kernel of the integral operator W
1
2
α (z)Kαβ(z)W

1
2
β (z), α 6= β is contin-

uous in T3 × T3 for all z < τ0. Therefore, the function W
1
2
α (·)Kαβ(·)W

1
2
β (·),

α 6= β is continuous on the interval (−∞, τ0). The continuity of the function

W
1
2
α (·)Kαβ(·)W

1
2
β (·), α 6= β, at the point z = τ0 follows from the dominated con-

vergence theorem. �

From the Lemma 3.7 we obtain

Lemma 3.8. For each µ = (µ1, µ2, µ3, µ4) with µα ≥ 0, α = 1, ..., 4, the family
of operators B(0, z), z < τ0 uniformly converges to some operator B(0, τ0) for
z → τ0 − 0.

The proof of the Theorem 2.1 follows from the Lemmas 3.8 and 2.1.
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