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ABSTRACT. In this paper, we constructed relationships with the differents 2D
elasticity tensor invariants. Indeed, let A be a 2D elasticity tensor. Rotation
group action leads to a pair of Lax in linear elasticity. This pair of Lax leads
to five independent invariants chosen among six. The definite positive criteria
are established with the determined invariants. We believe that this approach
finds interesting applications, as in the one of elastic material classification or
approaches in orbit space description.

1. INTRODUCTION

If, in relation to some orthogonal basis, the components of the stress and
strain tensors are σij and εij, respectively, Hooke’s law takes the form σij =

Aijklεkl where Aijkl are the components of the fourth-order elasticity tensor A.
The components of A satisfy the symmetry relations Aijkl = Ajikl = Aijlk =

Aklij, which arise from the symmetry of the stress and strain tensors and the
requierement that no net work be done by an elastic material in a closed loadind
cycle.
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In elasticity, the materials are described by the orbits of the rotation group
action on the space of elastic coefficients systems. Their description is done by
determination of a finite system of polynomial invariants which separate the
orbits.

Although the 3D problem has already been studied by Pratz [1], Cowin [2],
Boehler, Kirillov Jr. and Onat [3], Ostrasablin [4], Bona, Bucataru and Slawinski
[5], the aim is to solve it exhaustively for the 2D. Curiously, no many attention
has been paid in the literature to it, except Vanucci [6] and Vanucci et al [7]
following the polar method proposed by Verchery [8]. Recently, Auffray and
Ropars [9], Auffray, kolev and Petito [10] de Saxcé and Vallée [11] proposed
the study of the 2D case by an alternative method.

In the present work, we treat the planar case (d = 2) although some results
are more general and, as we hope, our method could be generalized to the case
d = 3. Thus, characterizing the elastic materials amounts to find a convenient
parameterization of this set by local charts. In this paper, we have calculated
the five invariants of A which can be used to designate a certain generic set of
materials. Our method is structured as follows. we study the mapping provided
from the action of rotation matrix on the elasticity tensor. The calculus are done
on the basis of two deviatoric and one spheric matrices. The choice of this basis
is not only judicious for the calculus of the invariants but also for the invariants
definite positive criteria.

2. DEFINITIONS AND ASSIGNMENTS

2.1. Rotation group action on the elasticity tensor. Let EL be a 2D strain
space. This space is three-dimensional and it is a Euclidean space if we consider
the scalar product:

EL× EL −→ R

(ε, ε′) 7−→ tr(εε′)

An elasticity tensor can be regarded as a self-adjoint linear mapping A : EL −→
EL.
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We define a SO(2) group action on the six-dimensional vector space of elas-
ticity tensors by:

∀ ε ∈ EL,∀ R ∈ SO(2) : AR(ε) = RA(R−1εR)R−1.

We denote by R(A) = AR this action. For R1 and R2, two rotations, we can
verify that

(R1R2)(A)(ε) = R1R2A
(
R−12 R−11 εR1R2

)
R−12 R−11

= R1

[
R2A(R

−1
2

(
R−11 εR1

)
R2)R

−1
2

]
R−11

= R1

[
R2(A)

(
R−11 εR1

)]
R−11

= R1 (R2 (A)) (ε).

Then, for the elasticity tensors, the action satisfies the group action law

(R1R2)(A) = R1(R2(A)).

2.2. Derivative of a rotation. Consider in 2D a rotaion of SO(2) with the angle
θ. This rotation can be expressed:

R = cos θI2 + sin θJ = exp(θJ),

where

I2 =

[
1 0

0 1

]
and J =

[
0 −1
1 0

]
.

If we derive the above expression of R with respect to θ, we obtain

dR

dθ
= RJ = JR and

dR−1

dθ
= −JR−1 = −R−1J.

2.3. Pair of Lax in linear elasticity. The derivative with respect to θ of the
expression AR(ε) = RA(R−1εR)R−1 is

dAR(ε)

dθ
= JRA(R−1εR)R−1 −RA(R−1εR)R−1J +RA(R−1(εJ − Jε)R)R−1

= JAR(ε)− AR(ε)J + AR(εJ − Jε).

We introduce the linear mapping M of EL into EL defined by:

Mε = εJ − Jε
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then dAR

dθ
= ARM −MAR

AR|θ=0 = A.

This pair of Lax proves that

AR = e−θMAeθM .

Thereby, the group SO(2) action is factorized on the elasticity tensors.

3. PROPERTIES OF THE LINEAR MAPPING M

(1) The linear mapping M is anti-self-adjoint
Indeed, if ε and ε′ are two elements of EL, then

tr [M(ε)ε′] = tr [(εJ − Jε)ε′]

= tr [ε(Jε′ − ε′J)]

= −tr [εM(ε′)] .

Thus M is the opposite of its adjoint M∗.
(2) The application eθM is an element of SO(2).

Indeed,
(a) (

eθM
)∗
eθM = eθM

∗
eθM

= e−θMeθM = IE

where IE is the identity application of EL.
(b) det

(
eθM

)
= eθtrM = e0 = 1.

(3) The kernel of the mapping M is KerM = RI2
(4) Mapping M expression in the renormed basis of Voigt.

If we consider the Voigt basis [12] of EL, consisting of

E ′1 =

[
1 0

0 0

]
E ′2 =

[
0 0

0 1

]
E ′3 =

1√
2

[
0 1

1 0

]
,

the matrix of M is the skew-symmetric matrix 0 0
√
2

0 0 −
√
2

−
√
2
√
2 0

 .
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(5) Expression of M in the basis consisting of a spheric deformation and two
deviatoric matrices

We choose now two unitary orthogonal deviatoric matrices

E1 =
1√
2

[
−1 0

0 1

]
E2 =

1√
2

[
0 1

1 0

]

and a unitary spherical deformation

E3 =
1√
2

[
1 0

0 1

]
,

for the basis of EL. This basis is orthonormed. In this basis:

ME1 = E1J − JE1 = 2E2

ME2 = E2J − JE2 = −2E1

ME3 = E3J − JE3 = 0.

The linear mapping M is now represented by the matrix:

2

0 −1 0

1 0 0

0 0 0

 =

 0

2J 0

0 0 0

 .
(6) Expression of eθM in the basis consisting of a spheric deformation and two

deviatoric matrices
In the basis (E1, E2, E3), the matrix of eθM is 0

e2θJ 0

0 0 1



4. ELASTICITY TENSOR INVARIANTS

Usually, the elasticity tensor A is defined as a fourth order tensor.
We regard this tensor as a linear self-adjoint mapping of EL into EL, i.e as a
second order symmetric mixed tensor.
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Let us choose (E1, E2, E3) as a basis of EL and let us denote byA11 A12 A13

A21 A22 A23

A31 A32 A33

 =

 A13

Â A23

A31 A32 A33


the matrix representing A in this basis.

The invariants of A are the functions of A invariants for the action 0

e−2θJ 0

0 0 1


 A13

Â A23

A31 A32 A33


 0

e2θJ 0

0 0 1

 =

 e−2θJÂe2θJ e−2θJ

[
A13

A23

]
[
A13 A23

]
e2θJ A33

 .

The matrices

 0

e−2θJ 0

0 0 1

 are the elements of an one-dimensional subgroup

of SO(3) and also of GL(3) [13]. A subgroup of this subgroup leads to an
important number of invariants.

Here, there are the three invariants of SO(3):

- the trace of A: A11 + A22 + A33;
- the trace of A2 : (A11)

2 + (A22)
2 + 2 (A12)

2 + 2 (A13)
2 + 2 (A23)

2 + (A33)
2;

- the determinant of A : A11A22A33+2A12A23A13−(A23)
2A11−(A13)

2A22−
(A13)

2A33.

There are other invariants too:

- the trace of Â : A11 + A22;
- the determinant of Â: A11A22 − (A12)

2;
- the coefficient A33;

- the square of the length of

[
A13

A23

]
: (A13)

2 + (A23)
2 ;

- the square of the length of Â

[
A13

A23

]
: (A11A13 + A12A23)

2+(A12A13 + A22A23)
2.

We can construct even more invariants:

- the trace of A3 instead of the determinant of A;
- the trace of Â2 instead of the determinant of the matrix Â;
- etc.

We have determined
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- the first degree invariants:

A11 + A22 + A33

A11 + A22

A33

- the second degree invariants:

(A11)
2 + (A22)

2 + (A33)
2 + 2 (A12)

2 + 2 (A13)
2 + 2 (A23)

2

(A11)
2 + (A22)

2 + 2 (A12)
2

A11A22 − (A12)
2

(A13)
2 + (A23)

2

- the third degree invariants:

det A

tr
(
A3
)2

- a fourth degree invariant

(A11A13 + A12A23)
2 + (A12A13 + A22A23)

2

Some algebraic relations, called syzygies, between the invariants are already
apparent ( see [14–18] for other results).

5. SYZYGIES

(1) First degree syzygies

A11 + A22 + A33 = (A11 + A22) + A33

(2) Second degree syzygies
It is clear that

(A11)
2 + (A22)

2 + (A33)
2 + 2 (A12)

2 + 2 (A13)
2 + 2 (A23)

2

=
[
(A11)

2 + (A22)
2 + 2 (A12)

2]+ 2
[
(A13)

2 + (A23)
2]+ (A33)

2
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and that

2
[
A11A22 − (A12)

2]
= −

[
(A11)

2 + (A22)
2 + 2 (A12)

2]+ (A11)
2 + (A22)

2 + 2A11A22

=
(

trÂ
)2
− tr

(
Â2
)

This is the classical syzygie.

2det Â =
(

trÂ
)2
− tr

(
Â2
)

concerning the 2×2 symmetric matrices which can be deduced from the
Hamilton-Cayley theorem(

det Â
)
I2 =

(
trÂ
)
Â−

(
Â
)2

by taking the trace.
(3) Third degree syzygies

Considering the Hamilton-Cayley theorem for the 3 × 3 symmetric
matrices

(det A) I3 =
(trA)2 − tr (A2)

2
A− (trA)A2 + A3

and taking the trace, we establish a relation between det A, tr A, tr(A2),
and tr(A3):

3det A =
(trA)2 − tr (A2)

2
(trA)− (trA) tr

(
A2
)
+ tr

(
A3
)
.

Let us remark that

2A12A13A23 − A11 (A23)
2 − A22 (A23)

2

= det A− A33

(
A11A22 − (A12)

2)
= det A− A33det Â

is a simple third degree invariant.
(4) An additional syzygie

It exists a syzygie between the fourth degree invariant and the other
invariants.

Let us prove that the fourth degree invariant is[
tr
(
Â2
)
+ det Â

] [
(A13)

2 + (A23)
2]+ (trÂ

) [
det A− A33det Â

]
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Proof. Let us develop the fourth degree invariant expression:

(A11A13 + A12A23)
2 + (A12A13 + A22A23)

2

=
[
(A11)

2 + (A13)
2]+ [(A12)

2 + (A22)
2] (A23)

2 + 2 (A11 + A22)A12A13A23

= (A11 + A22)
[
2A12A13A23 − A11 (A23)

2 − A22 (A13)
2]

+
[
(A11 + A22)A11 + (A12)

2 + (A22)
2] (A13)

2

+
[
(A11 + A22)A22 + (A12)

2 + (A11)
2] (A13)

2

=
(

trÂ
) [

det A− A33det Â
] [

(A12)
2 + (A11)

2 + (A22)
2 + A11A22

]
[
(A13)

2 + (A23)
2]

=
(

trÂ
) [

det A− A33det Â
]
+
[
tr
(
Â2
)
+ det Â

] [
(A13)

2 + (A23)
2]

=
(

trÂ
) [

det A− A33det Â
]
+

1

2

[(
trÂ
)2

+ tr
(
Â
)2] [

(A13)
2 + (A23)

2] .
�

6. THE CHOICE OF INDEPENDENT INVARIANTS

One can retain five invariants:

- two first degree invariants :

A11 + A22

A33

- two second degree invariants:

(A11)
2 + (A22)

2 + 2 (A12)
2

(A13)
2 + (A23)

2

- one third degree invariant

det A = A11A22A33 + 2A12A13A23 − A11 (A23)
2 − A22 (A13)]

2 − A33 (A12))
2

or

det A− A33det Â = 2A12A13A23 − A11 (A23)
2 − A22 (A13)

2 .
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7. THE ISOTROPY OF A

L is isotropic if AR = A, i.e.

AeθM = eθMA.

The derivative of this expression with respect to θ for θ = 0 leads to

AM −MA = 0.

This necessary condition of the A to commute with M is sufficient because A
commutes with eθM .

So,

A is isotropic ⇐⇒ AM −MA = 0.

The details of the calculus of the commutator of the matrices A and M leads to ÂJ − JÂ −J

[
A13

A23

]
[
A13 A23

]
J 0

 .
This commutator is zero if and only if

A22 = A11, A12 = 0, A13 = 0, A23 = 0,

i.e., if, and only if, A has the uniaxial formA11 0 0

0 A11 0

0 0 A33


or, if, and only if,

Aε = A11

(
ε− trε

2
I3

)
+ A33

trε
2
I3.

We remark that in the Voigt basis the matrices of the isotropic tensors are diag-
onal.

Another advantage of our choice of Voigt renormed basis is : the positivity of
the isotropic law is expressed by the inequalities

A11 ≥ 0 A33 ≥ 0.

When A is isotropic, it is rotationally invariant: its six coefficients are invariants.
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8. ORBIT OF AN ANISOTROPIC ELASTICITY TENSOR

Let L be an anisotropic elasticity tensor. Consider the vector space of linear
self-adjoint AZ of EL in EL defined by

AZ (ε) = D (R 7−→ AR (ε)) (I2) (Z)

when Z = θJ describes the Lie algebra of SO(2) ( [20,21]).
This vector space is R (AM −MA). Since the elasticity tensor is assumed

nonisotropic, this space has dimension 1. The orbit of A is

OrbA = {AR|R ∈ SO(2)}

is an one-dimensional variety plunged in a vector space (dimension 6) of elas-
ticity tensors. Its tangent vector space at AR is R (ARM −MAR).

9. INVARIANT CRITERIA OF THE POSITIVITY OF THE ELASTICITY TENSOR

An elasticity tensor is invariant if its matrix A is positive. This will occur if the
invariant A33 is positive and if the 2× 2 symmetric matrix

A33

[
A11 A12

A12 A22

]
−

[
A13

A23

] [
A13 A23

]
is positive [22]. The determinant of this 2× 2 matrix is[

A33A11 − (A13)
2] [A33A22 − (A23)

2]− (A33A12 − A23A13)
2

= A33

[
A11A22A33 − A11 (A23)

2 − A22 (A13)
2 − A33 (A12)

2 + 2A12A23A13

]
= A33det A.

This determinant is an invariant. The trace of this above 2× 2 matrix is

A33 (A11 + A22)−
(
(A13)

2 + (A23)
2) ;

it is also an invariant. Conditions in terms of invariants necessary for the posi-
tivity of the elasticity tensor A are

A33 ≥ 0

A33det A ≥ 0

A33trÂ ≥ (A13)
2 + (A23)

2 .

These conditions are also sufficient.
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10. JOSEF BETTEN METHOD

Let A be an elasticity tensor and Hooke be an isotropic tensor. The Hooke
tensor matrix is  l 0 0

0 l 0

0 0 m

 ,
where l and m are two scalars.

10.1. Invariant polynomial. Property: The two variables polynomial

P (l,m) = det (A− Hooke)

is invariant under the action of SO(2) defined at paragraph 2.1. Therefore its
coefficients are invariant.

Proof. As

AR = e−θMAeθM and Hooke = e−θMHooke eθM

we deduce

det (AR − Hooke) = det (A− Hooke) .

�

10.2. Invariant polynomial coefficients. If we develop the P (l,m) polyno-
mial, we have

P (l,m) = det A+
[
(A13)

2 + (A23)
2 − A33 (A11 + A22)

]
l

+
[
(A12)

2 − A11A22

]
m+ A33l

2 + (A11 + A22) lm−ml2.

We then find the five invariants

A33, A11 + A22, (A12)
2 − A11A22, (A13)

2 + (A23)
2 and det A.

Remark 10.1. Josef Betten works in the renormed Voigt basis for which the Hooke
tensor is non diagonal and there it becomes a little bit difficult to develop the
invariant polynomial into power. The previous property validates his method.
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11. CONCLUSION

We have essentially determined the elasticity tensor invariants grace to the
pair of Lax which is highlighted in the paragraph 2.1. This pair of Lax subsists in
3D. We think that the applied method in 2D can be deployed for the invariants
of the 3D elasticity tensor. For the 2D, we were fortunate that the method has
put into play a subgroup to a parameter of SO(2). For 3D, the method will be
a little difficult to implement because we must take into account a subgroup to
three parameters of SO(6). This technic effort won’t be necessary because the
method of Josef Betten is unable to provide a sufficient number of invariants.
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