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ON A RESCALED NONLOCAL DIFFUSION PROBLEM WITH NEUMANN
BOUNDARY CONDITIONS

Cesar A. Gomez S.1 and Jesus A. Caicedo U.

ABSTRACT. In this work, we consider the rescaled nonlocal diffusion problem
with Neumann Boundary Conditions

uεt(x, t) =
1

ε2

∫
Ω

Jε(x− y)(uε(y, t)− uε(x, t))dy

+
1

ε

∫
∂Ω

Gε(x− y)g(y, t)dSy,

uε(x, 0) = u0(x),

where Ω ⊂ RN is a bounded, connected and smooth domain, g a positive
continuous function, Jε(z) = C1

1
εN
J( zε ), Gε(x) = C1

1
εN
G(xε ), J and G well

defined kernels, C1 a normalization constant. The solutions of this model have
been used without prove to approximate the solutions of a family of nonlocal
diffusion problems to solutions of the respective analogous local problem. We
prove existence and uniqueness of the solutions for this problem by using the
Banach Fixed Point Theorem. Finally, some conclusions are given.
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1. INTRODUCTION

Equations of the form

(1.1)


ut(x, t) = J ∗ u− u =

∫
Ω

J(x− y)[u(y, t)− u(x, t)]dy,

(x, t) ∈ Ω× (0, T ),

u(x, 0) = u0(x), x ∈ Ω,

where J is a non-negative, smooth, symmetric radially and strictly decreasing

function, with
∫
Rn

J(x)dx = 1, supported in the unitary ball, Ω ⊆ R, are consid-

ered as non local diffusion equations. The equation (1.1) has been derived in
the reference [1], as an analogous of the classic heat equationut(x, t) = 4u(x, t), (x, t) ∈ R× (0, T ),

u(x, 0) = u0(x), x ∈ Ω.

About (1.1), the non local concept refers to the fact that the density u, does not
depend only of the point (x, t) locally, but also on all values of u in a neighbor-
hood of x through the convolution term∫

Ω

J(x− y)u(y, t)dy.

In this model, if u is thought as the density of a population in a point x in a time
t and J(x − y) as the probability distribution of jumping from a point y to x,
then the previous convolution is the rate at which the individuals are arriving at
the location x from all other positions y.

Remark 1.1. In this case, it is not permitted jump to x from outside of Ω.

In a similar way,

−
∫

Ω

J(y − x)u(x, t)dy

is the rate at which individuals are leaving the position x to go to other places y.
Then in the absence of external forces, we conclude that the density u satisfies
the equation (1.1).

Remark 1.2. In this case, individuals are not allowed to jump out of Ω.



ON A RESCALED NONLOCAL DIFFUSION PROBLEM 3015

The Remarks 1.1 and 1.2, guarantees the mass conservation∫
Ω

u(x, t)dx =

∫
Ω

u0(x)dx.

Variants of the equation (1.1) have been used to model phenomena in various
branches of the pure and applied sciences [2], [3], [4] y [5]. A wide variety of
analytical studies have been performed on various non-local models, [6], [7],
[8], [9], [10], [11], [12], [13], [14], [15], [16], [17], [18], [19], [20], [21],
[22], [23], [24]. For example, the authors in [23] have studied the nonlocal
diffusion problemut(x, t) =

∫
Ω

J(x− y)(u(y, t)− u(x, t))dy +

∫
∂Ω

G(x− y)g(y, t)dSy,

u(x, 0) = u0(x),

where Ω ⊆ RN is a smooth, bounded and connected domain, the kernel J :

RN → R is a continuous, nonnegative and radially symmetric function, with
compact support in the unit ball such that∫

RN

J(z)dz = 1,

the kernel G(x) with the same characteristics of the kernel J , the initial data
u0(x) non negative and g(y, t) ∈ L∞loc[(0,∞);L1(∂Ω)]. In this model, the indi-
viduals can only jump within Ω (what is reflected in the first integral over Ω),
and on ∂Ω is imposed that the number of individuals come in (if g is positive)
is G(x − y)g(x, y). This is what in the non-local case, is known as Neumann
conditions. The authors studied the existence and uniqueness of solutions for
u0 ∈ L1(Ω), they proved a comparison principle and studied the asymptotic be-
havior of the solutions as t→∞. In [24], the authors showed that the solution
to the classic Neumman problem

(1.2)


ut(x, t)−4u(x, t) = 0, (x, t) ∈ Ω× (0, T ),

∂u(x, t)

∂η
= g(x, t), (x, t) ∈ ∂Ω× (0, T ),

u(x, 0) = u0(x), x ∈ Ω,
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can be approximated by the solutions of the family of nonlocal diffusion equa-
tions

(1.3)


uεt(x, t) =

1

ε2

∫
Ω

Jε(x− y)(uε(y, t)− uε(x, t))dy

+
1

ε

∫
∂Ω

Gε(x− y)g(y, t)dSy,

uε(x, 0) = u0(x),

where Jε(z) = C1
1
εN
J( z

ε
), Gε(x) = C1

1
εN
G(x

ε
), C1 a normalization constant. They

showed that the corresponding solutions uε, converge to the solution of (1.2),
when the parameter ε go to zero, in the sense of the weak star convergence, in
the L∞ topology.

The goal of this work, is to prove that the problem (1.3) has an unique solu-
tion uε ∈ C[[0,∞);L1(Ω)], for all u0 ∈ L1(Ω) and for each g ∈ L∞loc[(0,∞);L1(∂Ω)].
Whit this end, we will use the Banach Fixed Point Theorem.

2. PRELIMINARY RESULTS

We will use the Banach fixed point theorem to show the existence and unique-
ness of solutions for the equation (1.3). For this purpose, given t0 > 0 fix, we
will consider the following Banach space defined by

Bt0 = C([0, t0];L1(Ω)),

with the norm given by

|||w||| = max
0≤t≤t0

||w(·, t)||L1(Ω) = max
0≤t≤t0

∫
Ω

|w(·, t)|dx = max
0≤t≤t0

∫
Ω

|w(x, t)|dx.

We put u instead of w and t instead of s in (1.3) to obtain,

(2.1)


wεs(x, s) =

1

ε2

∫
Ω

Jε(x− y)[wε(y, s)− wε(x, s)]dy

+
1

ε

∫
∂Ω

Gε(x− y)g(y, s)dSy.

wε(x, 0) = w0(x) = u0(x),
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here dSy it is the surface differential. Integrating (2.1) from 0 to t we have

wε(x, s) = w0(x) +
1

ε2

∫ t

0

∫
Ω

Jε(x− y)[wε(y, s)− wε(x, s)]dyds

+
1

ε

∫ t

0

∫
∂Ω

Gε(x− y)g(y, s)dSyds.

Now, we define the operator T : Bt0 −→ Bt0 as

Tw0,g = w0(x) +
1

ε2

∫ t

0

∫
Ω

Jε(x− y)[wε(y, s)− wε(x, s)]dyds

+
1

ε

∫ t

0

∫
∂Ω

Gε(x− y)g(y, s)dSyds.

Lemma 2.1. The operator Tw0,g is well defined as an application from Bt0 to Bt0.

Proof. Let g ∈ L∞loc[(0,∞);L1(∂Ω)], 0 < t1 < t2 ≤ t0, wε ∈ Bt0, ||Jε||∞ = K1 y
||Gε||∞ = K2. After calculations, we obtain∣∣∣∣∣∣∣∣Tw0,g[w

ε(x, t1)]− Tw0,g[w
ε(x, t2)]

∣∣∣∣∣∣∣∣
L1(Ω)

=

∫
Ω

∣∣∣∣Tw0,g[w
ε(x, t1)]− Tw0,g[w

ε(x, t2)]

∣∣∣∣dx
=

∫
Ω

∣∣∣∣ 1

ε2

∫ t2

t1

∫
Ω

Jε(x− y)[wε(y, s)− wε(x, s)]dyds

+
1

ε

∫ t2

t1

∫
∂Ω

Gε(x− y)g(y, s)dSyds

∣∣∣∣dx
≤ (t2 − t1) max

{
1,
K1

ε2
|Ω|, K2

ε
|Ω|
}{

2|||w|||+ ||g||L∞[(0,t0);L1(∂Ω)]

}
.

From the above inequality it follows that the operator is continuous in t ∈
(0, t0]. For continuity at 0, we see that∣∣∣∣∣∣∣∣Tw0,g[w

ε(x, t)]− w0(x)]

∣∣∣∣∣∣∣∣
L1(Ω)

=

∫
Ω

∣∣∣∣Tw0,g[w
ε(x, t)]− w0(x)]

∣∣∣∣dx
=

∫
Ω

∣∣∣∣w0(x) +
1

ε2

∫ t

0

∫
Ω

Jε(x− y)[wε(y, s)− wε(x, s)]dyds

+
1

ε

∫ t

0

∫
∂Ω

Gε(x− y)g(y, s)dSyds− w0(x)

∣∣∣∣dx
≤ (t) max

{
1,
K1

ε2
|Ω|, K2

ε
|Ω|
}{

2|||w|||+ ||g||L∞[(0,t0);L1(∂Ω)]

}
.
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Reasoning as before, we have∣∣∣∣∣∣∣∣Tw0,g[w
ε(x, t)]− w0(x)]

∣∣∣∣∣∣∣∣
L1(Ω)

≤ (t) max

{
1,
K1

ε2
|Ω|, K2

ε
|Ω|
}{

2|||w|||+ ||g||L∞[(0,t0);L1(∂Ω)]

}
.

We thus obtain that the operator is continuous in t ∈ [0, t0]. In this way, Tw0,g

apply Bt0 over Bt0 and then it is well defined. �

Lemma 2.2. Let w0, u0 ∈ L1(Ω), g, h ∈ L∞[(0, t0);L1(∂Ω)] y wε, zε ∈ Bt0. Then,
there exists a constant C = C(Ω, Jε, Gε) such that

|||Tw0,g[w
ε(x, t)]− Tz0,h[zε(x, t)]|||

≤ ||w0 − z0||L1(Ω) + Ct0{|||wε − zε|||+ ||g − h||L∞[(0,t0);L1(∂Ω)]}.
(2.2)

Proof. Proceeding as in previous lemma, we have∣∣∣∣∣∣∣∣Tw0,g[w
ε(x, t)]− Tz0,h[wε(x, t)]

∣∣∣∣∣∣∣∣
L1(Ω)

=

∫
Ω

∣∣∣∣Tw0,g[w
ε(x, t)]− Tz0,h[zε(x, t)]

∣∣∣∣dx
=

∫
Ω

∣∣∣∣(w0(x)− z0(x))

+
1

ε2

∫ t

0

∫
Ω

Jε(x− y)[(wε(y, s)− zε(y, s)− (wε(x, s)− zε(x, s))]dyds

+
1

ε

∫ t

0

∫
∂Ω

Gε(x− y)[g(y, s)− h(y, s)]dSyds

∣∣∣∣dx,
and therefore

≤||w0(x)− z0(x)||L1(Ω)

+
1

ε2

∫
Ω

∫ t

0

∫
Ω

|Jε(x− y)||(wε(y, s)− zε(y, s))|dydsdx

+
1

ε2

∫
Ω

∫ t

0

∫
Ω

|Jε(x− y)||(wε(x, s)− zε(x, s))|dydsdx

+
1

ε

∫
Ω

∫ t

0

∫
∂Ω

|Gε(x− y)||g(y, s)− h(y, s)|dSydsdx,



ON A RESCALED NONLOCAL DIFFUSION PROBLEM 3019

from which,∣∣∣∣∣∣∣∣Tw0,g[w
ε(x, t)]− Tz0,h[wε(x, t)]

∣∣∣∣∣∣∣∣
L1(Ω)

≤ ||w0(x)− z0(x)||L1(Ω) + max{1, K1

ε2
|Ω|}(t0)

{∫
Ω

|(wε(y, s)− zε(y, s))|dy

+

∫
Ω

|(wε(x, s)− zε(x, s))|dx
}

+ max{1, K2

ε
|Ω|}(t0)

∫
∂Ω

|g(y, s)− h(y, s)|dSy,

≤ ||w0(x)− z0(x)||L1(Ω) + Ct0

{
|||wε − zε|||+ ||g − h||L∞[(0,t0);L1(∂Ω)]

}
,

with

C = max

{
1, 2

K1

ε2
|Ω|, K2

ε
|Ω|

}
.

�

3. EXISTENCE AND UNIQUENESS OF SOLUTIONS OF EQ.(1.3).

Theorem 3.1. For u0 ∈ L1(Ω), there exists a unique solution uε ∈ C[[0,∞);L1(Ω)]

of the problem (1.3).

Proof. In accordance with the Lemma (2.2), if we choose t0 small enough, such
that Ct0 < 1 and we do z0 ≡ w0 ≡ u0, g = h in (2.2), we obtain

|||Tw0,g[w
ε(x, t)]− Tw0,h[z

ε(x, t)]||| ≤ Ct0‖||wε − zε|||.

As we have taken Ct0, such that 0 < Ct0 < 1, then, Tu0,g is a strict contraction
in the Banach space Bt0 , and by the Banach Fixed Point Theorem, Tu0,g has a
unique fixed point, in the interval [0, t0]. To extend the solution to the interval
[0,∞), we can take as initial data uε(x, t0) ∈ L1(Ω) and if uε ∈ Bt0 is such
|||uε||| < ∞, an a similar argument exposed in the previous lemmas, allows to
extend the solution up to interval [0, t1), with t1 > t0. Iterating this procedure,
we obtain a definite solution in [0,∞). �
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4. CONCLUSIONS

By using the Banach’s Fixed Point Theorem we have proved the existence
and uniqueness of solutions for a rescaled nonlocal diffusion problem equation
(1.3). The results, join to those obtained in reference [24], show us that the non-
local problems can be use to approximate solutions to respective local problem.
Clearly, this is a very interesting fact. The relevance of the nonlocal problems
is the widely new applications that are appearing in many branch of the pure
and applied sciences. The calculations presented have been taken following the
reference [25] and following the ideas presented here, we can to extend the
study of nonlocal problems to other interesting models, for instance changing
the domain Ω by other more general domains or decomposing ∂Ω.
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