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STRONG CONVERGENCE OF IMPLICIT ITERATIVE ALGORITHMS FOR
STRICTLY PSEUDO-CONTRACTIVE MAPPINGS

M.O. Aibinu1, S.C. Thakur, and S. Moyo

ABSTRACT. The class of strictly pseudo-contractive mappings is known to have
more powerful applications than the class of nonexpansive mappings in solving
nonlinear equations such as inverse and equilibrium problems. Motivated by
the potency of the class of strictly pseudo-contractive mappings, a generalized
viscosity implicit algorithm is constructed for finding their fixed points in the
framework of Banach spaces. The strong convergence of the newly constructed
sequence to a fixed point of a strictly pseudo-contractive mapping is obtained
under some mild conditions on the parameters and the fixed point is shown
to solve some variational inequality problems. An example is given to illustrate
the convergence analysis of the newly constructed generalized viscosity implicit
algorithm for the class of strictly pseudo-contractive mappings. The example
also shows that the algorithm and the conditions which are imposed on the
parameters are not just optical illusion.

1. INTRODUCTION

Let E be a real Banach space with dual space E∗ and let C be a nonempty
subset of E. The duality mapping J : E → 2E

∗ is defined as

J(x) = {ϕ ∈ E∗ : 〈x, ϕ〉 = ‖x‖‖ϕ‖, ‖x‖ = ‖ϕ‖} ,
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where 〈., .〉 is the duality pairing between E and E∗. F (T ) will denote the set of
fixed point of a mapping T : C → C, which is said to be

(i) Lipschitzian if there exists a constant c > 0 such that for all x, y ∈ C,

‖Tx− Ty‖ ≤ c‖x− y‖;

(ii) nonexpansive if c = 1;

(iii) a contraction if c ∈ [0, 1);

(iv) λ-strictly pseudo-contractive if for each x, y ∈ C, there exists a constant
λ > 0 and j(x− y) ∈ J(x− y) such that

(1.1) 〈Tx− Ty, j(x− y)〉 ≤ ‖x− y‖2 − ‖(I − T )x− (I − T )y‖2,

where I is the identity operator (See Browder and Petryshyn [5]). A
reform of the inequality (1.1) is

(1.2) 〈(I − T )x− (I − T )y, j(x− y)〉 ≥ λ‖(I − T )x− (I − T )y‖2.

The equivalence of (1.1) (and so (1.2)) in the Hilbert spaces is

(1.3) ‖Tx− Ty‖2 ≤ ‖x− y‖2 + c‖(I − T )x− (I − T )y‖2,

where c = (1− 2λ) < 1.

Remark 1.1. Obviously, the class of nonexpansive mappings is a subset of the class
of strictly pseudo-contractive mappings.

Many mathematical models for real life analysis fall under the initial value
problem of the form

(1.4) x′(t) = f (x(t)) , x(t0) = x0.

Most ordinary differential equations are known to defy the analytical methods
for finding their solutions. Numerical methods emerge as essential ways of
dealing with time-dependent ordinary and partial differential equations. Anal-
ysis of the physical processes by computer simulation involves numerical meth-
ods. Most famous among numerical methods are the implicit procedures. Let
T be a nonexpansive mapping associated with a contraction operator f and
{σn}∞n=1 ⊂ (0, 1). The semi-implicit sequence,

(1.5) xn+1 = σnf(xn) + (1− σn)T
(
xn + xn+1

2

)
, n ∈ N,
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was introduced by Xu et al. [20]. The sequence (1.5) was shown to converge to
a fixed point p of T which also solves the variational inequality

(1.6) 〈(I − f)p, x− p〉 ≥ 0, ∀ x ∈ F (T ),

where 〈, 〉 is the inner product. Recently, the convergence of the semi-implicit
sequence

(1.7)

yn = σnf(xn)⊕ (1− σn)T
(
xn⊕xn+1

2

)
,

xn+1 = βnxn ⊕ (1− βn)yn, n ∈ N,

where {βn}∞n=1 ⊂ (0, 1), was considered in a complete CAT(0) spaces by Xiong
and Lan [17]. A generalized form of the semi-implicit sequence (1.5) is

(1.8) xn+1 = σ1
nf(xn) + σ2

nxn + σ3
nT (δnxn + (1− δn)xn+1) , n ∈ N,

where
{
{σi

n}
∞
n=1

}3
i=1

, {δn}∞n=1 ⊂ (0, 1) and
3∑

i=1

σi
n = 1. The sequence (1.8) was

introduced by Ke and Ma [7]. It appears that a lot of research efforts for over a
decade have been devoted on the implicit algorithms for the class of nonexpan-
sive mappings (See e.g, Aibinu [1,3], Xiong and Lan [15,16], Cai et al. [6], Luo
et al. [9] and references therein).

We are motivated by the previous works on the implicit iterative sequence
to study a generalized form of (1.7) for the class of strictly pseudo-contractive
mappings. The strict contraction f in (1.7) is replaced by the generalized con-
traction. Also, the semi-implicit sequence in (1.7) is changed to an arbitrary
real real sequence in (0, 1). Precisely, for a nonempty closed convex subset C
of a uniformly smooth Banach space E and real sequences {δn}∞n=1 , {βn}

∞
n=1 ⊂

[0, 1], {γn}∞n=1 ⊂ [0, 1) and
{
{σi

n}
∞
n=1

}3
i=1
⊂ (0, 1) such that

3∑
i=1

σi
n = 1, the im-

plicit viscosity algorithm is defined from an arbitrary x1 ∈ K by

(1.9)

yn = σ1
nf(xn) + σ2

nxn + σ3
nSn (δnxn + (1− δn)xn+1) ,

xn+1 = βnxn + (1− βn)yn, n ∈ N,

where Snx := γnx+(1−γn)Tx, f is a generalized contraction and T is a λ-strictly
pseudo-contractive mapping. The conditions are established for the strong con-
vergence of the sequence (1.9) to a fixed point p of T and in relation to the
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solution of the variational inequality

(1.10) 〈(I − f)p, J(x− p)〉 ≥ 0, for all x ∈ F (T ).

The importance and application of the class of strictly pseudo-contractive map-
pings in solving several nonlinear problems justify the efforts for this research.
The iteration procedures are succinct and easy to follow. An example is given
to illustrate the convergence analysis of (1.9) for the class of strictly pseudo-
contractive mappings.

2. PRELIMINARIES

The definitions and some known results which are essential in obtaining the
main results of this paper are recalled in this section.

Definition 2.1. Let E and E∗ respectively denote a real Banach space and its dual.
The modulus of smoothness of E is the function ω : R+ → R+ defined by

ω(k) = sup

{
‖x+ ky‖+ ‖x− ky‖

2
− 1 : ‖x‖ = ‖y‖ = 1

}
.

E is said to be uniformly smooth if lim
k→0

ω(k)

k
= 0. In a uniformly smooth Banach

space, the duality mapping J is known to be single valued and uniformly continu-
ous on any bounded subset of E.

Definition 2.2. Let (E, d) be a metric space and C a subset of E. f : C → C is a
mapping defined on C.

(i) f is said to be a Meir-Keeler contraction if for each ε > 0 there exists
δ = δ(ε) > 0 such that for each x, y ∈ C, with ε ≤ d(x, y) < ε+ δ, we have
d(f(x), f(y)) < ε.

(ii) Let N be the set of all positive integers and R+ the set of all positive real
numbers. A mapping ψ : R+ → R+ is said to be an L-function if ψ(0) =
0, ψ(k) > 0 for all k > 0 and for every s > 0, there exists u > s such that
ψ(k) ≤ s for each k ∈ [s, u].

(iii) f : E → E is called a (ψ,L)-contraction if ψ : R+ → R+ is an L-function
and d(f(x), f(y)) < ψ(d(x, y)), for all x, y ∈ E, x 6= y.

The generalized contraction mappings in this paper will refer to Meir-Keeler
contractions or (ψ,L)-contractions. It is assumed that the L-function from the
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definition of (ψ,L)-contraction is continuous, strictly increasing and lim
k→∞

φ(k) =

∞, where φ(k) = k − ψ(k) for all k ∈ R+ (Ke and Ma [7]). Whenever there is
no confusion, φ(k) and ψ(k) will be written as φ k and ψ k, respectively.

The following interesting results about the Meir-Keeler contraction are readily
available.

Proposition 2.1. Let (E, d) be a complete metric space and let f be a Meir-Keeler
contraction on E. Then f has a unique fixed point in E (See Meir and Keeler [10]).

Proposition 2.2. Let E be a Banach space, C a convex subset of E and f : C → C

a Meir-Keeler contraction. Then ∀ ε > 0, there exists c ∈ (0, 1) such that

(2.1) ‖f(u)− f(v)‖ ≤ c‖u− v‖

for all u, v ∈ C with ‖u− v‖ ≥ ε (See Suzuki [13]).

Proposition 2.3. Let (E, d) be a metric space and f : E → E be a mapping. The
following assertions are equivalent (See Lim [8]):

(i) f is a Meir-Keeler type mapping;
(ii) there exists an L-function ψ : R+ → R+ such that f is a (ψ,L)-contraction.

Proposition 2.4. Let C be a nonempty convex subset of a Banach space E, T :

C → C a nonexpansive mapping and f : C → C a Meir-Keeler contraction. Then
Tf and fT are Meir-Keeler contractions (See Lim [8]).

The following Lemmas are needed in the sequel.

Lemma 2.1. Let E be a real smooth Banach space. Suppose one of the followings
holds:

(i) j is uniformly continuous on any bounded subset of E.
(ii) 〈u− v, ju− jv〉 ≤ ‖u− v‖2, for all u, v ∈ E.

(iii) For any bounded subset C1 of E, there is a ω such that

〈u− v, ju− jv〉 ≤ ω (‖u− v‖) , ∨ u, v ∈ C1,

where ω satisfies lim
k→0+

ω(k)

k
= 0.

Then, for any ε > 0 and any bounded subset C2, there is δ such that

‖ku+ (1− k)v‖2 ≤ 2k 〈u, jv〉+ 2kε+ (1− 2k)‖v‖2

for any u, v ∈ C2 and k ∈ [0, δ) (See Park [11]).
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Lemma 2.2. Let {un}∞n=1 and {vn}∞n=1 be bounded sequences in a Banach space E
and {λn}∞n=1 be a sequence in [0, 1] with 0 < lim inf

n→∞
λn ≤ lim sup

n→∞
λn < 1. Suppose

that un+1 = (1−λn)un+λnvn for all n ≥ 0 and lim sup
n→∞

(‖un+1 − un‖ − ‖vn+1 − vn‖) ≤

0. Then lim
n→∞

‖un − vn‖ = 0 (See Suzuki [14]).

Lemma 2.3. Let C be a nonempty closed and convex subset of a uniformly smooth
Banach space E. Let T : C → C be a nonexpansive mapping such that F (T ) 6= ∅
and f : C → C be a generalized contraction mapping. Assume that {xk} defined
by xk = kf(xk) + (1 − k)Txk for k ∈ (0, 1), converges strongly to p ∈ F (T ) as
k → 0. Suppose that {xn} is a bounded sequence such that ‖xn − Txn‖ → 0 as
n→∞. Then (See Sunthrayuth and Kumam [12]),

lim sup
n→∞

〈f(p)− p, J(xn − p)〉 ≤ 0.

Lemma 2.4. Let C be a nonempty closed and convex subset of a uniformly smooth
Banach space E. Let T : C → C be a nonexpansive mapping such that F (T ) 6= ∅
and f : C → C be a generalized contraction mapping. Then {xk} defined by
xk = kf(xk) + (1 − k)Txk for k ∈ (0, 1), converges strongly to p ∈ F (T ), which
solves the following variational inequality (See Sunthrayuth and Kumam [12]):

〈f(p)− p, J(z − p)〉 ≤ 0, ∀ z ∈ F (T ).

Lemma 2.5. Let {σn} be a sequence of nonnegative real numbers satisfying the
property

σn+1 = (1− γn)σn + γnβn, n ∈ N,

where {γn} ⊂ (0, 1) and {βn} ⊂ R such that

(i)
∞∑
n=1

γn =∞,

(ii) lim sup
n→∞

βn ≤ 0.

Then {σn} converges to zero, as n→∞ (See Xu [19]).

3. MAIN RESULTS

Assumption 3.1. Let E be a uniformly smooth Banach space and C be a nonempty
bounded closed convex subset E. Let f : C → C be a generalized contraction
mapping and T a λ-strictly pseudo-contractive mapping defined on C such that
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F (T ) 6= ∅. The real sequences
{
{σi

n}
∞
n=1

}3
i=1

are in (0, 1), {δn}∞n=1 and {βn}∞n=1 are
in [0, 1] and {γn}∞n=1 is in [0, 1). The boundedness and convergence of the iterative
sequence (1.9) are studied under the following conditions:

(i)
3∑

i=1

σi
n = 1;

(ii) lim
n→∞

σ1
n = 0,

∞∑
n=1

σ1
n =∞;

(iii) 0 < lim inf
n→∞

βn ≤ lim sup
n→∞

βn < 1;

(iv) lim
n→∞

σ3
n = 0, lim

n→∞
|σ2

n+1 − σ2
n| = 0;

(v) 0 < δn ≤ δn+1 ≤ δ < 1 for all n ∈ N.
Under the conditions (i)-(v) of Assumption 3.1 stated above, this study establishes
the convergence of the iterative scheme (1.9).

Firstly, Sn is shown to be nonexpansive for all n ∈ N. Indeed, by taking

0 < ε ≤ λ‖Tx− Ty − (x− y)‖2

for all x, y ∈ C and applying Lemma 2.1,

‖Snx− Sny‖2 = ‖(1− γn)x+ γnTx− (1− γn)y − γnTy‖2

= ‖(1− γn)(x− y) + γn(Tx− Ty)‖2

≤ 2γn 〈Tx− Ty, j(x− y)〉+ 2εγn + (1− 2γn)‖x− y‖2

≤ 2γn
(
‖x− y‖2 − λ‖Tx− Ty − (x− y)‖2

)
(3.1)

+2εγn + (1− 2γn)‖x− y‖2

≤ ‖x− y‖2 − 2γnλ‖Tx− Ty − (x− y)‖2 + 2εγn

≤ ‖x− y‖2.

Next is to show that for all v ∈ C, the mapping defined by

u 7→ Tv(u)(3.2)

=: βnv + (1− βn)
[
σ1
nf(v) + σ2

nx+ σ3
nSn (δnv + (1− δn)u)

]
,

for all u ∈ C, is a contraction.
Obviously, for all x, y ∈ C,

‖Tv(x)− Tv(y)‖ = σ3
n(1− βn) ‖Sn(δnv + (1− δn)x)− Sn(δnv + (1− δn)y)‖

≤ σ3
n(1− βn)(1− δn)|x− y‖.(3.3)
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Tv is therefore a contraction with coefficient σ3
n(1 − βn)(1 − δn) ∈ (0, 1) and

Banach’s contraction mapping principle ascertains that Tv has a fixed point. This
indicates that the sequence of iteration (1.9) is well defined. Observe that for
each n ∈ N, x ∈ F (T )⇔ x ∈ F (Sn). Indeed, suppose x ∈ F (T ), then

Snx = γnx+ (1− γn)Tx = γnx+ (1− γn)x = x.

Thus, x ∈ F (Sn). Also, suppose x ∈ F (Sn), then

0 = x− Snx

= x− γnx− (1− γn)Tx

= (1− γn)(x− Tx).(3.4)

Since (1 − γn) 6= 0, (3.4) holds if and only if Tx = x. Thus, x ∈ F (T ). Hence
F (T ) = F (Sn) 6= ∅.

The proof of the following lemmas which are useful in establishing the main
result are given.

Lemma 3.1. Let E be a uniformly smooth Banach space and C be a nonempty
bounded closed convex subset E. Let f : C → C be a generalized contraction
mapping and T a λ-strictly pseudo-contractive mapping defined on C such that
F (T ) 6= ∅. From an arbitrary x1 ∈ C, an iterative sequence {xn}∞n=1 which is
defined by (1.9) is shown to bounded under the conditions (i)-(v) of Assumption
3.1.

Proof. The boundedness of the sequence {xn}∞n=1 is being established here. For
p ∈ F (T ),

‖yn − p‖ = ‖σ1
nf(xn) + σ2

nxn + σ3
nSn(δnxn + (1− δn)xn+1)− p‖

≤ σ1
n‖f(xn)− p‖+ σ2

n‖xn − p‖+ σ3
n‖Sn(δnxn + (1− δn)xn+1)− p‖

≤ σ1
n‖f(xn)− f(p)‖+ σ1

n‖f(p)− p‖+ σ2
n‖xn − p‖

+σ3
n‖δnxn + (1− δn)xn+1 − p‖

= σ1
n‖f(xn)− f(p)‖+ σ1

n‖f(p)− p‖+ σ2
n‖xn − p‖

+σ3
n‖δn(xn − p) + (1− δn)(xn+1 − p)‖
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≤ σ1
nψ‖xn − p‖+ σ1

n‖f(p)− p‖+ σ2
n‖xn − p‖

+σ3
nδn‖xn − p‖+ σ3

n(1− δn)‖xn+1 − p‖

≤
(
σ1
nψ + σ2

n + σ3
nδn
)
‖xn − p‖+ σ1

n‖f(p)− p‖

+σ3
n(1− δn)‖xn+1 − p‖

=
(
σ1
nψ + (1− σ1

n − σ3
n) + σ3

nδn
)
‖xn − p‖

+σ1
n‖f(p)− p‖+ σ3

n(1− δn)‖xn+1 − p‖

=
(
1− σ1

n(1− ψ)− σ3
n(1− δn)

)
‖xn − p‖

+σ1
n‖f(p)− p‖+ σ3

n(1− δn)‖xn+1 − p‖

=
(
1− σ3

n(1− δn)− σ1
nφ
)
‖xn − p‖

+σ1
n‖f(p)− p‖+ σ3

n(1− δn)‖xn+1 − p‖.

Since
{
{σi

n}
∞
n=1

}3
i=1
⊂ (0, 1) and {δn}∞n=1 ⊂ [0, 1], it obvious that 1−σ3

n(1−δn) > 0.

So, it is obtained that

‖yn − p‖ ≤
1− σ3

n(1− δn)− σ1
nφ

1− σ3
n(1− δn)

‖xn − p‖+
σ1
n

1− σ3
n(1− δn)

‖f(p)− p‖.

It is further known from (1.9) that

‖xn+1 − p‖ ≤ βn‖xn − p‖+ (1− βn)‖yn − p‖

=
1− σ3

n(1− δn)− σ1
n(1− βn)φ

1− σ3
n(1− δn)

‖xn − p‖

+
σ1
n(1− βn)

1− σ3
n(1− δn)

‖f(p)− p‖

=

(
1− σ1

n(1− βn)φ
1− σ3

n(1− δn)

)
‖xn − p‖

+
σ1
n(1− βn)φ

1− σ3
n(1− δn)

.φ−1‖f(p)− p‖

≤ max
{
‖xn − p‖, φ−1‖f(p)− p‖

}
.(3.5)

Then by induction, we have

‖xn+1 − p‖ ≤ max
{
‖x1 − p‖, φ−1‖f(p)− p‖

}
.

Thus, {xn}∞n=1 is bounded. It can be inferred that {f(xn)}∞n=1 and {Snwn}∞n=1 are
bounded since {xn}∞n=1 is bounded, where wn =: δnxn+(1− δn)xn+1. Indeed, for
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p ∈ F (T ),

‖f(xn)‖ = ‖f(xn)− f(p) + f(p)‖

≤ ‖f(xn)− f(p)‖+ ‖f(p)‖

≤ ψ‖xn − p‖+ ‖f(p)‖

≤ max
{
ψ‖x1 − p‖, ψφ−1‖f(p)− p‖

}
+ ‖f(p)‖ (by induction).

Also,

‖Sn(δnxn + (1− δn)xn+1)‖ = ‖Sn(δnxn + (1− δn)xn+1)− p+ p‖

≤ ‖Sn(δnxn + (1− δn)xn+1)− Snp‖+ ‖p‖

≤ ‖δnxn + (1− δn)xn+1 − p‖+ ‖p‖

≤ δn‖xn − p‖+ (1− δn)‖xn+1 − p‖+ ||p||

≤ max
{
‖x1 − p‖, φ−1‖f(p)− p‖

}
+ ‖p‖

(by induction).

�

Lemma 3.2. Let E be a uniformly smooth Banach space and C be a nonempty
bounded closed convex subset E. Let f : C → C be a generalized contraction
mapping and T a λ-strictly pseudo-contractive mapping defined on C such that
F (T ) 6= ∅. {δn}∞n=1 ⊂ [0, 1] is a real sequences and wn =: δnxn + (1− δn)xn+1. Let
Q1 = sup

n
‖wn − Sn(wn)‖, then

‖Sn+1(wn+1)− Sn(wn)‖ ≤ (1− δn+1)‖xn+2 − xn+1‖

+δn‖xn+1 − xn‖+ (γn+1 − γn)Q1.(3.6)

Proof.

‖Sn+1(wn+1)− Sn(wn)‖ = ‖Sn+1(wn+1)− Sn+1(wn) + Sn+1(wn)− Sn(wn)‖

≤ ‖Sn+1(wn+1)− Sn+1(wn)‖+ ‖Sn+1(wn)− Sn(wn)‖

= ‖wn+1 − wn‖+ ‖γn+1wn + (1− γn+1)Twn

−γnwn − (1− γn)Twn‖

= ‖wn+1 − wn‖+ ‖(γn+1 − γn)(wn − Twn)‖
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= ‖δn+1xn+1 + (1− δn+1)xn+2 − δnxn − (1− δn)xn+1‖

+‖(γn+1 − γn)(wn − Twn)‖

= ‖(1− δn+1)(xn+2 − xn+1) + δn(xn+1 − xn)‖

+‖(γn+1 − γn)(wn − Twn)‖

≤ (1− δn+1)‖xn+2 − xn+1‖+ δn‖xn+1 − xn‖

+(γn+1 − γn)Q1.

�

Theorem 3.1. Let E be a uniformly smooth Banach space and C be a nonempty
bounded closed convex subset E. Let f : C → C be a generalized contraction
mapping and T a λ-strictly pseudo-contractive mapping defined on C such that
F (T ) 6= ∅. The iterative sequence {xn}∞n=1 is defined from an arbitrary x1 ∈ K

by (1.9). The sequence {xn}∞n=1 converges in norm to p ∈ F (T ) which solves the
variational inequality (1.10), given by

〈(I − f)p, J(x− p)〉 ≥ 0, for all x ∈ F (T ).

Proof. The first thing to do here is to show that
lim sup
n→∞

(‖wn+1 − wn‖ − ‖xn+1 − xn‖) ≤ 0 and then lim
n→∞

‖xn+1 − xn‖ = 0.

Let Q2 = max

{
sup
n
‖xn‖, sup

n
‖yn‖, sup

n
‖Snwn‖, sup

n
‖f(xn)‖

}
. It can be obtained

from (1.9) that

‖xn+2 − xn+1‖ = ‖βn+1xn+1 + (1− βn+1)yn+1 − βnxn − (1− βn)yn‖

= ‖βn+1(xn+1 − xn) + (1− βn+1)(yn+1 − yn)

+(βn+1 − βn)xn + (βn − βn+1)yn‖

= βn+1‖xn+1 − xn‖+ (1− βn+1)‖yn+1 − yn‖+ 2|βn+1 − βn|Q2.(3.7)

Also,

‖yn+1 − yn‖ = ‖σ1
n+1f(xn+1) + σ2

n+1xn+1 + σ3
n+1Sn+1wn+1

−σ1
nf(xn)− σ2

nxn − σ3
nSnwn‖
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= ‖σ1
n+1 (f(xn+1)− f(xn)) + σ2

n+1(xn+1 − xn)

+σ3
n+1(Sn+1wn+1 − Snwn) + (σ1

n+1 − σ1
n)f(xn)

+(σ2
n+1 − σ2

n)xn + (σ3
n+1 − σ3

n)Snwn‖

≤ σ1
n+1‖f(xn+1)− f(xn)‖+ σ2

n+1‖xn+1 − xn‖

+σ3
n+1‖Sn+1wn+1 − Snwn‖+ |σ1

n+1 − σ1
n|‖f(xn)‖

+|σ2
n+1 − σ2

n|‖xn‖+ |σ3
n+1 − σ3

n|‖Snwn‖

≤ σ1
n+1ψ‖xn+1 − xn‖+ σ2

n+1‖xn+1 − xn‖

+σ3
n+1 ((1− δn+1)‖xn+2 − xn+1‖+ δn‖xn+1 − xn‖+ (γn+1 − γn)Q1)

+|σ1
n+1 − σ1

n|‖f(xn)‖+ |σ2
n+1 − σ2

n|‖xn‖+ |σ3
n+1 − σ3

n|‖Snwn‖

=
(
σ1
n+1ψ + σ2

n+1 + σ3
n+1δn

)
‖xn+1 − xn‖

+σ3
n+1(1− δn+1)‖xn+2 − xn+1‖+ σ3

n+1|γn+1 − γn|Q1(3.8)

+
(
|σ1

n+1 − σ1
n|+ |σ2

n+1 − σ2
n|+ |σ3

n+1 − σ3
n|
)
Q2.

Substituting (3.7) into (3.8) gives

‖yn+1 − yn‖(3.9)

≤
(
σ1
n+1ψ + σ2

n+1 + σ3
n+1δn

)
‖xn+1 − xn‖

+σ3
n+1(γn+1 − γn)Q1 +

(
|σ1

n+1 − σ1
n|+ |σ2

n+1 − σ2
n|+ |σ3

n+1 − σ3
n|
)
Q2

+σ3
n+1(1− δn+1)βn+1‖xn+1 − xn‖

+σ3
n+1(1− δn+1)(1− βn+1)‖yn+1 − yn‖

+2σ3
n+1(1− δn+1)|βn+1 − βn|Q2

≤
(
σ1
n+1ψ + σ2

n+1 + σ3
n+1δn + σ3

n+1(1− δn+1)βn+1

)
‖xn+1 − xn‖

+

(
|σ1

n+1 − σ1
n|+ |σ2

n+1 − σ2
n|+ |σ3

n+1 − σ3
n|

+2σ3
n+1(1− δn+1)|βn+1 − βn|

)
Q2(3.10)

+σ3
n+1|γn+1 − γn|Q1 + σ3

n+1(1− δn+1)(1− βn+1)‖yn+1 − yn‖.

Let ζn =: |σ1
n+1 − σ1

n| + |σ2
n+1 − σ2

n| + |σ3
n+1 − σ3

n| + 2σ3
n+1(1 − δn+1)|βn+1 − βn|.

Then (3.9) gives
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‖yn+1 − yn‖

≤
σ1
n+1ψ + σ2

n+1 + σ3
n+1δn + σ3

n+1(1− δn+1)βn+1

1− σ3
n+1(1− δn+1)(1− βn+1)

‖xn+1 − xn‖

+
ζn

1− σ3
n+1(1− δn+1)(1− βn+1)

Q2 +
σ3
n+1|γn+1 − γn|

1− σ3
n+1(1− δn+1)(1− βn+1)

Q1

=

(
1−

σ3
n+1(δn+1 − δn) + σ1

n+1(1− ψ)
1− σ3

n+1(1− δn+1)(1− βn+1)

)
‖xn+1 − xn‖

+
ζn

1− σ3
n+1(1− δn+1)(1− βn+1)

Q2 +
σ3
n+1|γn+1 − γn|

1− σ3
n+1(1− δn+1)(1− βn+1)

Q1

=

(
1−

σ3
n+1(δn+1 − δn) + σ1

n+1φ

1− σ3
n+1(1− δn+1)(1− βn+1)

)
‖xn+1 − xn‖

+
ζn

1− σ3
n+1(1− δn+1)(1− βn+1)

Q2 +
σ3
n+1|γn+1 − γn|

1− σ3
n+1(1− δn+1)(1− βn+1)

Q1,

which is equivalent to

‖yn+1 − yn‖ − ‖xn+1 − xn‖ ≤ −
σ3
n+1(δn+1 − δn) + σ1

n+1φ

1− σ3
n+1(1− δn+1)(1− βn+1)

‖xn+1 − xn‖

+
ζn

1− σ3
n+1(1− δn+1)(1− βn+1)

Q2

+
σ3
n+1|γn+1 − γn|

1− σ3
n+1(1− δn+1)(1− βn+1)

Q1.

According to the conditions of Assumption 3.1,

(3.11) lim sup
n→∞

(‖yn+1 − yn‖ − ‖xn+1 − xn‖) ≤ 0.

Lemma 2.2 is implored to get

(3.12) lim
n→∞

‖yn − xn‖ = 0.

A consequence of (3.12) is that

‖xn+1 − xn‖ = ‖βnxn + (1− βn)yn − xn‖

= ‖(1− βn)yn − (1− βn)xn‖

= ‖(1− βn)(yn − xn)‖

≤ (1− βn)‖yn − xn‖ → 0 as n→∞.(3.13)
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By invoking (3.12) and (3.13), it can be deduced from (1.9) that

‖xn − Sn(xn)‖ ≤ ‖xn − yn‖+ ‖yn − Sn(xn)‖

= ‖yn − xn‖+ ‖σ1
nf(xn) + σ2

nxn

+σ3
nSn (δnxn + (1− δn)xn+1)− Sn(xn)‖

≤ ‖yn − xn‖+ σ1
n‖f(xn)− Sn(xn)‖+ σ2

n‖xn − Sn(xn)‖

+σ3
n‖Sn (δnxn + (1− δn)xn+1)− Sn(xn)‖

≤ ‖yn − xn‖+ σ1
n‖f(xn)− Sn(xn)‖+ σ2

n‖xn − Sn(xn)‖

+σ3
n‖δnxn + (1− δn)xn+1 − xn‖

≤ ‖yn − xn‖+ σ1
n‖f(xn)− Sn(xn)‖+ σ2

n‖xn − Sn(xn)‖

+σ3
n(1− δn)‖xn+1 − xn‖.(3.14)

Let 0 < σ2
n ≤ σ < 1 since {σ2

n}
∞
n=1 ⊂ (0, 1). Factorizing (3.14) gives

‖xn − Sn(xn)‖ ≤
1

1− σ2
n

‖yn − xn‖+
σ1
n

1− σ2
n

‖f(xn)− Sn(xn)‖

+
σ3
n(1− δn)
1− σ2

n

‖xn+1 − xn‖

≤ 1

1− σ
‖yn − xn‖+

σ1
n

1− σ
‖f(xn)− Sn(xn)‖(3.15)

+
σ3
n(1− δn)
1− σ

‖xn+1 − xn‖ → 0 as n→∞.

According to Lemma 2.4, define a sequence {xk} by xk = kf(xk)+(1−k)Sn(xk)

for k ∈ (0, 1). Strong convergence of {xk} to p ∈ F (T ) is a solution to the
variational inequality:

〈f(p)− p, J(x− p)〉 ≤ 0, ∀ x ∈ F (T ),

which is equivalent to

〈(I − f)p, J(x− p)〉 ≥ 0, ∀ x ∈ F (T ).

It is fundamental to establish that

(3.16) lim sup
n→∞

〈f(p)− p, J(xn+1 − p)〉 ≤ 0,

where p ∈ F (T ) is the unique fixed point of the generalized contraction PF (T )f(p)

(Proposition 2.4), that is, p = PF (T )f(p).
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Recall that lim
n→∞

‖xn − Sn(xn)‖ = 0 by (3.15), Lemma 2.3 upholds that

lim sup
n→∞

〈f(p)− p, J(xn − p)〉 ≤ 0.

Since ‖xn+1 − xn‖ → 0 as n → ∞ (3.13) and by the uniform continuity
property of the duality mapping,

lim sup
n→∞

〈f(p)− p, J(xn+1 − p)〉 = lim sup
n→∞

〈f(p)− p, J(xn+1 − xn + xn − p)〉

= lim sup
n→∞

〈f(p)− p, J(xn − p)〉 ≤ 0.(3.17)

The next important step is to show that xn → p ∈ F (T ) as n→∞.
To use a method of contradiction, it is assumed that the sequence {xn}∞n=1 does
not converge strongly to p ∈ F (T ). Thus, for a {xn}∞n=1 , there exists a subse-
quence

{
xnj

}∞
j=1

and ε > 0 such that ‖xnj
− p‖ ≥ ε, for all j ∈ N. Therefore,

there exists for this ε an α ∈ (0, 1) such that

‖f(xnj
)− f(p)‖ ≤ c‖xnj

− p‖.

Consequently,

||xnj+1
− p||2

= βnj

〈
xnj
− p, J(xnj+1

− p)
〉
+ (1− βnj

)
〈
ynj
− p, J(xnj+1

− p)
〉

= βnj

〈
xnj
− p, J(xnj+1

− p)
〉
+ σ1

nj
(1− βn)

〈
f(xnj

)− p, J(xnj+1
− p)

〉
+σ2

nj
(1− βnj

)
〈
xnj
− p, J(xnj+1

− p)
〉

+σ3
nj
(1− βnj

)
〈
Snj

(wnj
)− p, J(xnj+1

− p)
〉

= βnj

〈
xnj
− p, J(xnj+1

− p)
〉
+ σ1

nj
(1− βnj

)
〈
f(xnj

)− f(p), J(xnj+1
− p)

〉
+σ1

nj
(1− βnj

)
〈
f(p)− p, J(xnj+1

− p)
〉

+σ2
nj
(1− βnj

)
〈
xnj
− p, J(xnj+1

− p)
〉

+σ3
nj
(1− βnj

)
〈
Snj

(wnj
)− p, J(xnj+1

− p)
〉
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≤ βnj
‖xnj

− p‖‖xnj+1
− p‖+ σ1

nj
(1− βnj

)‖f(xnj
)− f(p)‖‖xnj+1

− p‖

+σ1
nj
(1− βnj

)
〈
f(p)− p, J(xnj+1

− p)
〉

+σ2
nj
(1− βnj

)‖xnj
− p‖‖xnj+1

− p‖

+σ3
nj
(1− βnj

)‖Snj
(wnj

)− p‖‖xnj+1
− p‖

≤ βnj
‖xnj

− p‖‖xnj+1
− p‖+ ασ1

nj
(1− βnj

)‖xnj
− p‖‖xnj+1

− p‖

+σ1
nj
(1− βnj

)
〈
f(p)− p, J(xnj+1

− p)
〉

+σ2
nj
(1− βnj

)‖xnj
− p‖‖xnj+1

− p‖

+σ3
nj
(1− βnj

)‖xnj+1
− p‖

(
δnj
‖xnj

− p‖+ (1− δnj
)‖xnj+1

− p‖
)

=
(
βnj

+ ασ1
nj
(1− βnj

) + σ2
nj
(1− βnj

) + δnj
σ3
nj
(1− βnj

)
)

×‖xnj
− p‖‖xnj+1

− p‖+ σ1
nj
(1− βnj

)
〈
f(p)− p, J(xnj+1

− p)
〉

+σ3
nj
(1− βnj

)(1− δnj
)‖xnj+1

− p‖2

=
βnj

+ ασ1
nj
(1− βnj

) + σ2
nj
(1− βnj

) + δnj
σ3
nj
(1− βnj

)

2

×
(
‖xnj

− p‖2 + ‖xnj+1
− p‖2

)
+ σ1

nj
(1− βnj

)
〈
f(p)− p, J(xnj+1

− p)
〉

+σ3
nj
(1− βnj

)(1− δnj
)‖xnj+1

− p‖2

=
1− (1− βnj

)
(
(1− α)σ1

nj
+ (1− δnj

)σ3
nj

)
2

‖xnj
− p‖2

+
1− (1− βnj

)
(
(1− α)σ1

nj
− (1− δnj

)σ3
nj

)
2

‖xnj+1
− p‖2

+(1− βnj
)σ1

nj

〈
f(p)− p, J(xnj+1

− p)
〉
.

Collect the like terms and simplify to get

||xnj+1
− p||2

≤
1− (1− βnj

)
(
(1− α)σ1

nj
+ (1− δnj

)σ3
nj

)
1 + (1− βnj

)
(
(1− α)σ1

nj
− (1− δnj

)σ3
nj

)‖xnj
− p‖2

+
2(1− βnj

)σ1
nj

1 + (1− βnj
)
(
(1− α)σ1

nj
− (1− δnj

)σ3
nj

) 〈f(p)− p, J(xnj+1
− p)

〉
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=

1−
2(1− βnj

)σ1
nj

1 + (1− βnj
)
(
(1− α)σ1

nj
− (1− δnj

)σ3
nj

)
 ‖xnj

− p‖2

+
2(1− βnj

)σ1
nj

1 + (1− βnj
)
(
(1− α)σ1

nj
− (1− δnj

)σ3
nj

) 〈f(p)− p, J(xnj+1
− p)

〉
.

By Lemma 2.5, xnj
→ p as j → ∞. This is a contradiction. Thus, {xn}∞n=1

converges strongly to p ∈ F (T ). �

Remark 3.1. The following results are deduction from Theorem 3.1 and they also
extend and improve some existing results.

Theorem 3.2. Let E be a uniformly smooth Banach space and C be a nonempty
bounded closed convex subset E. Let f : C → C be a generalized contraction
mapping and Tj a λj-strictly pseudo-contractive mapping defined on C such that
∩M−1j=1 F (Tj) 6= ∅, where M is an integer and 0 ≤ j ≤M − 1. The iterative sequence
{xn}∞n=1 is defined from an arbitrary x1 by

(3.18)

yn = σ1
nf(xn) + σ2

nxn + σ3
nSn (δnxn + (1− δn)xn+1) ,

xn+1 = βnxn + (1− βn)yn, n ∈ N,

where Snx := γnx + (1 − γn)T[n] and T[n] = Tj with j = nMod M, 0 ≤ j ≤
M − 1. The real sequences

{
{σi

n}
∞
n=1

}3
i=1

in (0, 1), {δn}∞n=1 and {βn}∞n=1 in [0, 1]

and {γn}∞n=1 in [0, 1) are assumed to satisfy the following condition:

(i)
3∑

i=1

σi
n = 1;

(ii) lim
n→∞

σ1
n = 0,

∞∑
n=1

σ1
n =∞;

(iii) 0 < lim inf
n→∞

βn ≤ lim sup
n→∞

βn < 1;

(iv) lim
n→∞

σ3
n = 0, lim

n→∞
|σ2

n+1 − σ2
n| = 0;

(v) 0 < δn ≤ δn+1 ≤ δ < 1 for all n ∈ N.

Then the sequence {xn}∞n=1 converges in norm to p ∈ ∩M−1
j=1 F (Tj) which solves the

variational inequality

〈(I − f)p, J(x− p)〉 ≥ 0, for all x ∈ ∩M−1j=1 F (Tj).
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Proof. It suffices to show that Sn is nonexpansive for all n ∈ N. Indeed, for all
x, y ∈ C and any 0 ≤ j ≤M − 1, take

0 < ε ≤ λj‖Tjx− Tjy − (x− y)‖2

and apply Lemma 2.1 to have

‖Snx− Sny‖2 = ‖(1− γn)x+ γnT[n]x− (1− γn)y − γnT[n]y‖2

= ‖(1− γn)(x− y) + γn(T[n]x− T[n]y)‖2

≤ 2γn
〈
T[n]x− T[n]y, j(x− y)

〉
+ 2εγn + (1− 2γn)‖x− y‖2

≤ 2γn
(
‖x− y‖2 − λ‖T[n]x− T[n]y − (x− y)‖2

)
(3.19)

+2εγn + (1− 2γn)‖x− y‖2

≤ ‖x− y‖2 − 2γnλ‖T[n]x− T[n]y − (x− y)‖2 + 2εγn

≤ ‖x− y‖2.

The rest of the proof follows from Theorem 3.1. �

Theorem 3.3. Let E be a uniformly smooth Banach space and C be a nonempty
bounded closed convex subset E. Let f : C → C be a generalized contraction
mapping and T a λ-strictly pseudo-contractive mapping defined on C such that
F (T ) 6= ∅. The iterative sequence {xn}∞n=1 is defined from an arbitrary x1 ∈ K by
(1.9).

(3.20)

yn = σ1
nf(xn) + σ2

nxn + σ3
nSn

(
xn+xn+1

2

)
,

xn+1 = βnxn + (1− βn)yn, n ∈ N,

where Snx := γnx+ (1− γn)T. The real sequences
{
{σi

n}
∞
n=1

}3
i=1

in (0, 1), {δn}∞n=1

and {βn}∞n=1 in [0, 1] and {γn}∞n=1 in [0, 1) are assumed to satisfy the following
condition:

(i)
3∑

i=1

σi
n = 1;

(ii) lim
n→∞

σ1
n = 0,

∞∑
n=1

σ1
n =∞;

(iii) 0 < lim inf
n→∞

βn ≤ lim sup
n→∞

βn < 1;

(iv) lim
n→∞

σ3
n = 0, lim

n→∞
|σ2

n+1 − σ2
n| = 0 for all n ∈ N.
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Then the sequence {xn}∞n=1 converges in norm to p ∈ F (T ) which solves the varia-
tional inequality

〈(I − f)p, J(x− p)〉 ≥ 0, for all x ∈ F (T ).

Proof. The sequence (3.20) is a semi-implicit iteration which is obtained from
(1.9) by setting δn := 2 for all n ∈ N. Hence, the result follows from Theorem
3.1. The result of Theorem 3.3 extends and improves the results of Xiong and
Lan [17]. For instance, Theorem 3.3 admits a generalized contraction opera-
tor which is more broad than the associated contraction operator in (1.2) of
Xiong and Lan [17]. Also, the main results of Xiong and Lan [17] are stated
for a nonexpansive mapping while Theorem 3.3 holds for the class of λ-strictly
pseudo-contractive mappings which are more general. �

Theorem 3.4. Let E be a uniformly smooth Banach space and C be a nonempty
bounded closed convex subset E. Let f : C → C be a generalized contraction
mapping and T a nonexpansive mapping defined on C such that F (T ) 6= ∅. The
iterative sequence {xn}∞n=1 is defined from an arbitrary x1 by

(3.21)

yn = σ1
nf(xn) + σ2

nxn + σ3
nT (δnxn + (1− δn)xn+1) ,

xn+1 = βnxn + (1− βn)yn, n ∈ N.

The real sequences
{
{σi

n}
∞
n=1

}3
i=1

in (0, 1), {δn}∞n=1 and {βn}∞n=1 in [0, 1] are as-
sumed to satisfy the following condition:

(i)
3∑

i=1

σi
n = 1;

(ii) lim
n→∞

σ1
n = 0,

∞∑
n=1

σ1
n =∞;

(iii) 0 < lim inf
n→∞

βn ≤ lim sup
n→∞

βn < 1;

(iv) lim
n→∞

σ3
n = 0;

(v) 0 < δn ≤ δn+1 ≤ δ < 1 for all n ∈ N.
Then the sequence {xn}∞n=1 converges in norm to p ∈ F (T ) which solves the varia-
tional inequality

〈(I − f)p, J(x− p)〉 ≥ 0, for all x ∈ F (T ).

Proof. The class of λ-strictly pseudo-contractive mappings is more general than
the class of nonexpansive mappings. Therefore, the result follows from Theorem
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3.1. The result of Theorem 3.4 extends and improves the results of Ke and
Ma [7], which was obtained in Hilbert spaces and whose algorithm is obtained
from (3.21) when βn =: 0. �

4. NUMERICAL EXAMPLES

An example of a λ-strictly pseudo-contractive mapping is constructed and the
convergence analysis of Theorem 3.1 is illustrated numerically. R is a real line
endowed with the Euclidean norm and T : R→ R is a mapping defined by

(4.1) Tx =

−2x+ 1
3
, x ∈ (−∞, 0],

1
3
(x+ 1), x ∈ (0,∞).

The first step is to show that T is a λ-strictly pseudo-contractive mapping with
λ ∈ (0, 1).

Case (i) : Notice that for all x, y ∈ (−∞, 0],

|Tx− Ty|2 = 4|x− y|2, |(I − T )x− (I − T )y|2 = 9|x− y|2.

Therefore,
|Tx− Ty|2 = |x− y|2 + λ|(I − T )x− (I − T )y|2,

for λ1 := 1
3
.

Case (ii) : For all x, y ∈ (0,∞),

|Tx− Ty|2 = 1

9
|x− y|2, |(I − T )x− (I − T )y|2 = 4

9
|x− y|2.

Therefore,
|Tx− Ty|2 < |x− y|2 + λ|(I − T )x− (I − T )y|2,

for λ2 := 1
4
.

Case (iii) : For all x ∈ (−∞, 0] and y ∈ (0,∞) with λ1 := 1
3
,

|x− y|2 + 1

3
|(I − T )x− (I − T )y|2 = |x− y|2 + 1

3
|3x− 1

3
− (y − 1

3
(y + 1))|

2

= |x− y|2 + 1

27
|9x− 2y|2

= x2 − 2xy + y2 +
1

27

(
81x2 − 36xy + 4y2

)
= 4x2 − 10

3
xy +

31

27
y2.
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Moreover, for all x ∈ (−∞, 0] and y ∈ (0,∞) with λ1 := 1
3
,

|Tx− Ty|2 = | − 2x+
1

3
− 1

3
(y + 1)|

2

=
1

9
| − 6x− y|2

=
1

9

(
36x2 + 12xy + y2

)
= 4x2 +

4

3
xy +

1

9
y2

≤ 4x2 +
4

3
xy +

1

9
y2 − 14

3
xy +

29

27
y2

(Since x ∈ (−∞, 0] and y ∈ (0,∞),)

= 4x2 − 10

3
xy +

31

27
y2

= |x− y|2 + 1

3
|(I − T )x− (I − T )y|2,

Hence, T is a λ-strictly pseudo-contractive mapping with λ := min {λ1, λ2}
and F (T ) =

{
1
2

}
.

Let {σ1
n}
∞
n=1 :=

{
1

n+4

}∞
n=1

, {σ2
n}
∞
n=1 :=

{
n+1
n+4

}∞
n=1

, {σ3
n}
∞
n=1 :=

{
2

n+4

}∞
n=1

and
notice that σ1

n+σ
2
n+σ

3
n = 1 and that they satisfy the conditions of Theorem 3.1.

Furthermore, let f(x) = 1
4
x and βn = δn = γn = 1

2
for all n ∈ N. The analysis

of convergence of the sequence {xn}∞n=1 are displayed in Figures 1, 2 & 3 for
x1 = −1.5, 0 and 2.5 respectively.

5. CONCLUSION

The research efforts for over a decade have been devoted on the class of non-
expansive mappings (See e.g, Aibinu et al. [2], Alghamdi et al. [4], Xiong [18]
and references therein). The class of strictly pseudo-contractive mappings is
known to have more powerful applications than the class of nonexpansive map-
pings. The efficacy of the class of strictly pseudo-contractive mappings in deal-
ing with nonlinear problems such as inverse and equilibrium problems, moti-
vated these research efforts. Some mild conditions are imposed on the param-
eters to obtain the strong convergence of the newly constructed algorithm to a
fixed point of a strictly pseudo-contractive mapping in the framework of Banach
spaces. The given numerical example illustrates the convergence analysis of the
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FIGURE 1. Convergence of sequence of iteration with x1 = −1.5.

FIGURE 2. Convergence of sequence of iteration with x1 = 0.
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FIGURE 3. Convergence of sequence of iteration with x1 = 2.5.

newly proposed generalized viscosity implicit sequence. It is also to eliminate
skepticism about the sequence of iteration and the conditions which are imposed
on the parameters.
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