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ON SOME CHARACTERISTIC CAUCHY PROBLEMS

Jean-André Marti

ABSTRACT. By means of some regularizations for an ill posed Cauchy problem,
we define an associated generalized problem and discuss the conditions for
solvability of it. To illustrate this, starting from the semilinear unidirectional
wave equation with data given on a characteristic curve, we show existence
and uniqueness of the solution in convenient generalized algebras.

1. INTRODUCTION

Many obstructions can be encountered when trying to solve a Cauchy problem
for PDEs with the data given on a characteristic manifold and, a fortiori, to
obtain uniqueness or well posedness in Hadamard sense We can refer to many
works inspired in the real field by the ideas of Egorov [1], Hörmander [2] and
others on the distribution solutions of some Cauchy problems supported in a
half space whose boundary is a characteristic hyperplane.

Here we propose another method, based on a parametric family of geomet-
ric transformations of the characteristic manifold, in continuation of previous
ideas developed in [3, 4, 5, 6, 7] . In order to concentrate on the method and not
on the technicalities, we consider the Cauchy problem for a simple equation,
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namely the transport equation in basic form (Pc) : ∂u/∂t = F (., ., u), u |γ =

v |γ = v where γ of equation x = 0 is obviously globally characteristic for
the Cauchy problem. (Pc) is ill posed but can be associated to a generalized
problem P (D)u = F (u) ,R (u) = v well formulated in convenient algebras
of generalized functions by means of generalized operators F associated to F

and R obtained by replacing the characteristic curve by a family (γε)ε of non
characteristic ones of equation x = lε (t) where (lε)ε is a regularizing family.

2. GENERAL OVERVIEW ON (C, E ,P)-TYPE ALGEBRAS

2.1. Algebraic and topological structures. We suppose that

- K is the real or complex field and Λ a set of indices left-filtering for a
partial order ≺;

- C is a factor ring A/I where I is an ideal of A, a given subring of KΛ;
- A and I are both solid i.e equal to their solid hull;
- (E ,P) is a sheaf of topological K-algebras on a topological space X,the

topology on E (Ω) being given for any open set Ω in X by a family P (Ω)

of seminorms.

Then we set

H(A,E,P) (Ω) =
{

(uλ)λ ∈ [E (Ω)]Λ ∀p ∈ P (Ω) , (p (uλ))λ ∈ A
}
,

J(A,E,P) (Ω) =
{

(uλ)λ ∈ [E (Ω)]Λ ∀p ∈ P (Ω) , (p (uλ))λ ∈ I
}
.

Under some more technical conditions dtailed in [4] we have the following

Theorem 2.1. The factor spaceA = H(A,E,P)/J(A,E,P) is a presheaf with localsation
principle.

The proof is given in [4]. In [7] it is shown that if E is a fine sheaf, then A is
also a fine sheaf.

2.2. Generalized operators and general restrictions. Let Ω be an open subset
of R2 and F ∈ C∞ (Ω× R,R) . We say that the algebra A (Ω) is stable under
F if for all (uε)ε ∈ H (Ω) and all (iε) ∈ J (Ω) we have (F (., ., uε))ε ∈ H (Ω)

and (F (., ., uε + iε))ε − (F (., ., uε))ε ∈ J (Ω) . If A (R2) is stable under F , for
u = [uε] ∈ A (R2), [F (., ., uε)] is a well defined element of A (R2) (i.e. not
depending on (uε)ε ∈ u).
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Definition 2.1. If A (R2) is stable under F , the map F : A (R2) → A (R2) : u =

[uε]→ [F (., ., uε)] is called the generalized map corresponding to F.

Now, consider (lε)ε ∈ C∞ (R)Λ and set Rε : C∞ (R2) → C∞ (R) , g → Rε (g) ,

with Rε (g) : t→ g (t, lε (t)) . We say that (lε)ε is compatible with the generalized
restriction if, for all (uε)ε ∈ H (R2) (resp.(iε) ∈ J (R2) , (uε (., lε (.)))ε ∈ H (R)

(resp. (iε (., lε (.)))ε ∈ H (R) ∈ J (R)).

Definition 2.2. If the family of smooth functions (lε)ε is compatible with the gen-
eralized restriction, the map R : u = [uε] → [uε (., lε (.))] = [Rε (uε)] is called the
restriction mapping corresponding to the family (lε)ε .

Proposition 2.1. Assume that (lε)ε belongs to H (R) and is c-bounded. Then the
family (lε)ε is compatible with generalized restriction.

3. APPLICATION: A CHARACTERISTIC CAUCHY PROBLEM

We deal with the characteristic Cauchy problem for the transport equation
formally written in characteristic coordinates : Pc : ∂u/∂t = F (., ., u) , u

∣∣{x=0} =

f ∈ C∞.We have to formulate some assumptions which will allows us to asso-
ciate to Pc a generalized well posed (Pg) :

3.1. From the ill-posed problem (Pc) to a well-posed one . We replace the
characteristic curve by a family (γε)ε of non characteristic ones of equation
x = lε (t) where (lε)ε is a smooth function c-bounded with strictly positive deriv-
ative and image R, and we suppose that for each K b R and l ∈ N the family
(PK,l (lε))ε is in |A| .

Theorem 3.1. Under the above hypothesis

- The algebra A (R2) is stable under F
- The generalized restriction operator R is well defined for u = [uε]A(R2) by

R (u) := [t→ uε (t, lε (t))]A(R)

We are now enable to associate (Pc) with the generalized problem

(Pg) : ∂u/∂t = F (u) ,R (u) = f.
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3.2. Existence of a solution to (Pg). In order to solve (Pg), we begin to solve
in C∞ (R2) the regularized problem

(P∞) : ∂uε/∂t (t, x)) = F (t, x, uε (t, x)) , uε (t, lε (t)) = f (t) .

Proposition 3.1. Under the above hypothesis the problem (P∞) admits an unique
smooth solution such that

uε (t, x) = f
(
l−1
ε (x)

)
+

∫ t

l−1
ε (x)

F (τ, x, uε (τ, x)) dτ.

The proof uses the classical Picard iteration procedure.

Theorem 3.2. Under the above hypothesis the problem (Pg) admits [uε]A(R2) as
solution where uε is the solution given in proposition 6

The proof follows the same steps as the existence results which can be found
in [6]

3.3. Independance from the regularizing process. The solution of all the
problems regularized by the Colombeau method depends a priori on the choice
of the regularizing process. Indeed in the preceding section we have built the
solution u to (Pg) by making use in a crucial way of the representative (lε)ε.
So even though the map R itself does not depends on the representative of
l = [(lε)ε], we need to prove that our solution is independant of the representa-
tive. A first step in this direction is done by [3] in which the purely characreristic
case is studied. Here we have an analogous result whose proof follows essen-
tially the same lines.

Theorem 3.3. In addition to the previous assumptions suppose that (lε)ε ∈Mτ (R)

and (l−1
ε )ε ∈ Mτ (R). Then, the generalized funtion u = [uε] where uε (t, x) =

f (l−1
ε (x)) +

∫ t
l−1
ε (x)

F (τ, x, uε (τ, x)) dτ depends solely on l = [lε] ∈ Gτ (R) as gen-
eralized function and not on the representative (lε)ε.

3.4. The framework GOM
(R2) and uniqueness. The natural topology of OM

permits to define a new algebra of tempered generalized functions GOM

(
Rd
)

which differs from Gτ
(
Rd
)

but permits a point value characterization [8] and
an extension AOM

(
Rd
)

in the framework of (C,E ,P)-algebras. As GOM

(
Rd
)

is
of (C,E ,P)-type and endowed with the sharp topology, our goal is at least to
recover uniqueness of the solution of (Pg) in this context.
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Define GOM

(
Rd
)

as the quotient algebrasMOM

(
Rd
)
/NOM

(
Rd
)

where

MOM

(
Rd
)

=

{
(uε)ε ∈ OM

(
Rd
)(0,1]

:
(
∀ϕ ∈ S

(
Rd
)) (
∀α ∈ Nd

)
(∃M ∈ N)

(∃ε0) (∀ε < ε0)
(
supx∈Rd

∣∣ϕ (x) ∂αuε (x) ≤ ε−M
∣∣)

}
,

NOM

(
Rd
)

=

{
(uε)ε ∈ OM

(
Rd
)(0,1]

:
(
∀ϕ ∈ S

(
Rd
)) (
∀α ∈ Nd

)
(∀m ∈ N)

(∃ε0) (∀ε < ε0) (supx∈Rd |ϕ (x) ∂αuε (x) ≤ εm|)

}
.

This definition can be compared to the one of Gτ
(
Rd
)
. We can prove that

MOM

(
Rd
)

=Mτ

(
Rd
)

but we only have NOM

(
Rd
)
⊇ Nτ

(
Rd
)
, thus∈ GOM

(
Rd
)

differs from Gτ
(
Rd
)
. On the other hand, along the same lines as [10, Prop. 3.2]

we get

NOM

(
Rd
)

=

{
(uε)ε ∈ OM

(
Rd
)(0,1] (∀α ∈ Nd

)
(∀m ∈ N) (∃p ∈ N) (∃ε0)(

(∀ε < ε0)
(
supx∈Rd (1 + |x|)−p |∂αuε (x)| ≤ εm

)) }
.

By the same Taylor argument as in [11,Thm. 1.2.25] we obtain

Theorem 3.4.

NOM

(
Rd
)

=

{
(uε)ε ∈Mτ

(
Rd
)

(∀m ∈ N) (∃p ∈ N) (∃ε0)(
(∀ε < ε0)

(
supx∈Rd (1 + |x|)−p |uε (x)| ≤ εm

)) } .
We refer to generalized points and point values as developed in [10, §1, 2, 4]

We recall that K̃ = MK/NK is the ring of Colombeau generalized numbers
(K = R,C), and similarly K̃d = K̃d the set of generalized points.

Definition 3.1. An element x̃ = [(xε)ε] ∈ R̃d is of slow scale if for all n ∈ N there
exists ε0 such that for all ε < ε0, we have |xε| ≤ ε−1/n.

Theorem 3.5. Let u = [(uε)ε] ∈ R̃d ∈ GOM

(
Rd
)

and let x̃ = [(xε)ε] be of slow
scale. Then the point value u (x̃) := [(uε (xε))ε] ∈ C̃ is well defined.

Proof. Let (uε)ε ∈ MOM

(
Rd
)

=Mτ

(
Rd
)

be a representative of u. By [11,Prop.
1.2.45], (uε)ε ∈ Mτ

(
Rd
)

implies that (uε (xε))ε ∈ MR, and that (uε (xε)) −
(uε (x′ε))ε ∈ NR if (x′ε)ε is another representative of x̃. It remains to show that
the definition of the point value does not depends on the choice of representative
of u. So let (uε)ε ∈ NOM

(
Rd
)

and m ∈ N. Choose p ∈ N as in the statement of
theorem 9. Then, for sufficiently small ε

|uε (xε)| ≤ εm (1 + |xε|)p ≤ εm (2 |xε|)p ≤ εm
(
2ε−1/p

)p
= 2pεm−1

.Since m ∈ N is arbitrary, (uε (xε))ε ∈ NC. �
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Theorem 3.6. Let u ∈ GOM

(
Rd
)
. Then u = 0 iff u (x̃) = 0 for each slow scale

point x̃.

Proof. If u = 0,then clearly u (x̃) = 0 for each slow scale point (since the defini-
tion of point value does not depend on the representative of u). Conversely let
u (x̃) = 0 for each slow scale point x̃. We first show by contradiction that

(∀m ∈ N) (∃n ∈ N) (∃ε0) (∀ε < ε0)
(

sup|x|≤ε−1/n |uε (x)| ≤ εm
)

.

Assuming the contrary we find M ∈ N, a decreasing sequence (εn)n tending
to 0 and xεn ∈ Rd with |xεn| ≤ ε−1/n and |uεn (xεn)| > εMn , for each n. Let
xε = 0 if ε /∈ {εn : n ∈ N} Then x̃ := [(xε)ε] is of slow scale and (uε (xε))ε /∈ NR,
contradicting u (x̃) = 0. Now, let m ∈ N arbitrary. Choose n as in the previous
equation, Since (uε)ε ∈ MOM

(
Rd
)

= Mτ

(
Rd
)
, there exists N 6∈ N such that,

for small ε, supx∈Rd (1 + |x|)−p |uε (x)| ≤ ε−N . Let p := nm+ nN +N . Then, for
small ε,

supx∈Rd (1 + |x|)−p |uε (x)|

= max
(

sup|x|≤ε−1/n (1 + |x|)−p |uε (x)| , sup|x|≥ε−1/n (1 + |x|)−p |uε (x)|
)

≤ max
(

sup|x|≤ε−1/n (1 + |x|)−p |uε (x)| , supx∈Rd (1 + |x|)−N |uε (x)| ,

sup|x|≥ε−1/n (1 + |x|)N−p |uε (x)|
)

≤ max
(
εm, ε−N

(
ε−1/n

)N−p)
= εm

Hence (uε)ε ∈ NOM

(
Rd
)

by Theorem 9. �

3.5. The main theorem. We begin to give two technical lemmas, the proof of
the first one being a simple adaptation of [11,Thm. 1.2.29].

Lemma 3.1. Let (fε)ε, (gε)ε,
(
f̃ε

)
ε
, (g̃ε)ε ∈ MOM

(
Rd
)

be such that [fε] =
[
f̃ε

]
,

[gε] = [g̃ε]. We have that [fε ◦ gε] = [fε ◦ g̃ε]. If gε preserves slow scale points then[
f̃ε ◦ gε

]
= [fε ◦ gε].

Lemma 3.2. Consider (fε)ε, (gε)ε ∈MOM
(R) with fε and gε bijectives, (fε − gε)ε ∈

NOM
(R) and (f−1

ε )ε, (g−1
ε )ε ∈ MOM

(R). Suppose moreover that (g−1
ε )ε preserves

slow scale points. Then (f−1
ε − g−1

ε )ε ∈ NOM
(R).
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Proof. We have ((f−1
ε − g−1

ε ) ◦ gε)ε = (f−1
ε ◦ gε − Id)ε ∈ NOM

(R) because
(gε − fε)ε ∈ NOM

(R) which implies that [f−1
ε ◦ gε] = [f−1

ε ◦ fε] = [Id]. But
then as f−1

ε ◦ fε = ((f−1
ε ◦ fε) ◦ gε) ◦ g−1

ε and (g−1
ε )ε ∈ MOM

(R) and preserves
slow scale points, then, using the previous Lemma we find that (f−1

ε − g−1
ε )ε ∈

NOM
(R). �

Theorem 3.7. Suppose that (lε)ε is taken in the subset LOM
(R) in MOM

(R) of
families (gε)ε such that g′ε > 0, (g−1

ε )ε preserves slow scale points, limε→0,D′(R)gε =

0. Then if f ∈ OM (R) and F = 0, the generalized function u = [1ε ⊗ f ◦ l−1
ε ]GOM

(R2)

depends only on l = [lε]GOM
(R). Moreover, u is the unique solution to (Pg) in

GOM
(R2)

Proof. Take (lε)ε, (hε)ε ∈ MOM
(R) such that [lε] = [hε] and let u = [uε], v = [vε]

(with (uε)ε, (vε)ε ∈MOM
(R2)) be the corresponding solutions of (Pg). For all ε,

we have

uε (t, x) = f
(
l−1
ε (x)

)
+ µε

(
l−1
ε (x)

) ∫ t

l−1
ε (x)

iε (τ, x) dτ,

vε (t, x) = f
(
h−1
ε (x)

)
+ νε

(
l−1
ε (x)

) ∫ t

h−1
ε (x)

jε (τ, x) dτ,

where (iε)ε, (jε)ε,(µε)ε,(νε)ε ∈ NOM
(R). First we know that (l−1

ε − h−1
ε )ε ∈

NOM
(R) and f ∈ OM (R) so that (f ◦ l−1

ε − f ◦ h−1
ε )ε ∈ NOM

(R) . Futhermore,
as (µε)ε,(νε)ε ∈ NOM

(R), (l−1
ε )ε, (l−1

ε )ε ∈MOM
(R) and they preserves slow scale

points, we have that (µ ◦ l−1
ε )ε, (ν ◦ h−1

ε )ε ∈ NOM
(R). To finish the proof we

have to check that ∫ t

l−1
ε (x)

iε (τ, x) dτ −
∫ t

h−1
ε (x)

jε (τ, x) dτ ∈ c.

We will do that only for the first integal part as they are almost identical. First,
we set, for all ε, kε (t, x) =

∫ t
l−1
ε (x)

iε (τ, x) dτ . Let (tε, xε) ∈ R̃2 be a slow scale

point. Then (xε)ε ∈ R̃ is a slow scale point and (yε)ε = (l−1
ε (xε))ε is also a slow

scale point. We have

∀ε,∃cε ∈ [yε, tε] : kε (tε, xε) =

∫ tε

yε

iε (τ, x) dτ = (tε − yε) iε (cε, xε) ,

but as |cε| ≤ max(|yε| , |tε|), (cε)ε is also a slow scale point. But then [(cε, xε)ε]

is a slow scale point of R̃2 so that (iε (cε, xε))ε ∈ NR and finally (kε (cε, xε))ε ∈
NR. �
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Remark 3.1. However, we cannot prove the existence of a solution to (Pg) in
GOM

(R2) if F 6= 0 as can be seen by taking F (., ., u) = u. Indeed the regularizd
problem becomes (P∞) : ∂uε/∂t (t, x) = uε (t, x), uε (t, εt) = v (t) whose solution is
uε (t, x) = v (x/ε) e−x/εet which clearly is not inMOM

(R2).
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