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EXACT PERIODIC SOLUTIONS OF SECOND-ORDER DIFFERENTIAL
EQUATIONS WITH PIECEWISE CONSTANT ARGUMENTS

Mukhiddin I. Muminov' and Zafar Z. Jumaev

ABSTRACT. In the paper is given a method of finding periodical solutions of
the differential equation of the form z”(¢) + p(t)z"(t — 1) = q(t)z([t]) + f(t),
where [-] denotes the greatest integer function, p(t),q(¢) and f(¢) are continuous
periodic functions of ¢. This reduces n-periodic soluble problem to a system of
n + 1 linear equations, where n = 2, 3. Furthermore, by using the well known
properties of linear system in the algebra, all existence conditions for 2 and 3-
periodical solutions are described, and the explicit formula for these solutions
are obtained.

1. INTRODUCTION

Certain functional differential equation of neutral delay type with piecewise
constant arguments exists in the form of:

(1D 2" (t) + pa"(t — 1) = qu([t]) + £ (D),

where [-] denotes the greatest integer function, p and ¢ are nonzero constants,

and f(t) is a periodic function with positive integer period of 2n.
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In the past, many useful methods such as Hale [1]] and Fink [2]] were devel-
oped to study the almost periodic differential equations. Such equations have
diversified application in the field of biology, neural networks, physics, chem-
istry, engineering, and so on [3]], [4], [5], [6]. Besides, these equations have
combined properties of both differential and difference type. The solutions of
these equations are continuous with the continuous dynamical systems struc-
ture. Certain biomedical and disease dynamics models exploited these equations
due to their resemblance with sequential continuous models [3]].

The natural occurrence of these equations in approximating the partial dif-
ferential equations via piecewice constant arguments has already been demon-
strated [7]]. Meanwhile, the uniqueness of almost periodic solutions to the sec-
ond order neutral delay differential equations of the form (1.1) were studied in
depth [8]- [[16] Despite these studies, the uniqueness of the solution on such
equation remains debatable.

A recently published papers [9], [10] has studied the second order DEPCA.
The periodic solvable problem are reduced to the study a system of linear equa-
tions. Furthermore, by applying the well-known properties of linear system in
algebra, all existence conditions are described for n-periodic solutions that yield
explicit formula for the solutions of DEPCA.

In paper [11] was considered the boundary value problem (BVP) for forced
diffusion equation with piecewise constant arguments. Applying the method
used in [9]] and [10] was obtained existence condition and explicit formula for
the periodic solutions of DEPCA. That allowed to find the exact solutions of BVP.

In this view, this paper reports all conditions for the uniqueness, infiniteness
and emptiness of 2 and 3-periodic solutions of the equation

(1.2) o (t) + p(t)a" (t — 1) = q(t)z([t]) + f(t),

where p, ¢ and f are continuous and n-periodic functions. Applying the method
used in [9] and [[10], an explicit formula for the exact periodic solutions of the
equation is provided. The equivalence of equation to the system of n + 1
linear equations are also demonstrated. The existence condition for the periodic
solution of are described easily using the properties of linear algebraic
system. Some equations having unique and infinite number of periodic solutions
are emphasized.
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2. THE MAIN RESULTS

A function z is said to be a solution of (1.2)) if the following conditions are

satisfied:
(i) z is differentiable on R;

(ii) the second order derivative of x(¢) exists on R except possibly at the
points t = k, k € Z, where one-sided second order derivatives of z(t)

exist;
(iii) x satisfies (1.2)) on each interval (k — 1, k) with integer k € Z.

We first give the existence conditions for 2-periodic solutions of equation ((1.2))

for the cases when p, ¢ and f are 2-periodic functions.

On 2-periodic solutions. Let p,q and f be 2-periodic continuous functions

and r be a 2-periodic solution of (1.2)). Then by the definition of solution
2.1) 2(t)=42'(t+2) forall teR

and z”(t) = 2”(t + 2) on each interval (k, k + 1) with integer k € Z.
It follows from here and that

2.2) a"(t) + p)2"(t = 1) = q(t)x([t]) + f (1),
' 2" (t+ 1)+ p(t + 12" (t) = q(t + Da([t +1]) + f(t + 1).

This gives

(2.3) (1—p(®)p(t+1))z"(t) = q()x([t]) —p(t)q(t+1)z([t+1])+ f(t) —p(t) f(E+1).

Hence (2.3)) yelds

x 1z 1 — 1
(2.4) 2(t) = q(tg(gt]) _ p(t)q(tz()t)([ﬂr ) + f() IJA(Z{(H )’

A(t) =1—p(t)p(t + 1).
Integrating (2.4) on [0,¢),¢ < 2, we obtain

(2.5) z(t) = x(0) + 2'( t+// s)dsdt;.

where

g@z([t])  p@e(t+Dx(t+1])  f)—p@)f(t+1)
(2.6) L(t) = Al — AD) + Al )
or

2.7) z(t) = z(0) + 2/(0)t + Qa(t) + Fa(t),
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(t):/ot/tl qi)fgs ds dt, —// S+1])dsdt1,
/O/Otlf S+1)dsdt1
1)

The function Q5(¢) on ¢ € [0; 1) can be wr1tten as

(t)—/o /Otl Ayt (0 //t S“ P+ 1) w1y € 0: 1),

We represent the function Q,(¢) on t € [1; 2| via the unknown numbers z(0) and

where

x(1) as
as(t) — /0 /On q(s)x(0) —pA(Z;](S + 1)z(1) ds dt,
"t q(s)z(0) — p(s)g(s + 1)z(1)
o A(s) dedh

/ /’“ —p(s)q(s + 1 ) +a(s)e) oo

To find the unknown numbers z(0),
as

2.8) z(t) = z(0) + 2’ (0)t + ago(t)x(0) + ap1 (t)x(1) + Fa(t), te€[0; 1),
' :L’(t) = I(O) + I/(())t + alo(t)I(O) + CLH(t)J?(l) + FQ(t), t e {1, 2],

z(1) and x ( 0) from (2.7), we represent x(t)

where

S
arolt //t (Z))dsdtlJr/t /1/1 SH Pt +1) ooy
an //tlp(s S+1dsdt1 // psals +1) 4o p
+/
1 1

The second equatlon in (2.8) gives

2'(2) = 2'(0) + agx(0) + a1z (1) + Fy(2),
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/ " q(s) p(s)a(s +1) ,
Qg0 = a10(2) = /0 A(s)d _/1 A(S ds,
ag = ay;(2) = — /01 pls)al ds + 1 Z((S

s)
The periodicity of x and continuity of 2’ gave x(0) = z(2) and 2/(0) = 2/(2).
Therefore, (2.8) gives the system of equations for z(0), z(1) and z/(0):

(14 ago(1))x(0) + (=1 + agi(1))z(1) + — (1),

2'(0) =
(2.9) a10(2)z(0) + a11(2)z(1) + 22(0) = —F(2),
ar(0) + anz(l) = —F3(2).

where

Moreover, the existence conditions for (x(0),x(1),2'(0)) will be defined by
Dy (p, q), where Dy(p, q) is a determinant of the matrix

1 +a00(1) —1 —|—a01(1) 1
Mi(p,q) :== | a10(2) a11(2) 2
az0 a1 0

Summarizing we have

Theorem 2.1. Let f be a 2-periodic continuous function and p(t)p(t + 1) # 1 for
t € [0,2]. Then

(i) Equation has a unique 2-periodic solution x if and only if D:(p, q) #

0. The 2-periodic solution x has the form (2.8), where (x(0),z(1),2(0)) is

the solution of (2.9).
(ii) If D1(p,q) = 0 and F = (Fy(1), F»(2), F5(2)) = (0,0,0), then equation
has an infinite number of 2-periodic solutions having the form

Za(t) = a(x(0) + 2'(0) + ago(t)x(0) + an (t)x(1)) + F2(t), te[0;1),

To(t) = a(z(0) + 2/ (0)t + a10(t)x(0) + a11(£)z(1)) + Fy(t), tell;2),
where (x(0), z(1),2'(0)) is an eigenvector of M, (p, q) corresponding to 0, «
is any number.

(iii) If Di(p,q) = 0 and rankM;(p,q) < rank (Ml(p, q)|FT>, where F =
(Fy(1), F»(2), F4(2)), then equation has no 2-periodic solution.

Proof. (i) Let x be a unique 2-periodic solution of (1.2)). Then x can be presented
by (2.8), where (x(0), z(1), 2'(0)) is the solution of (2.9). The linear system (2.9)



3118 M.I. Muminov and Z.Z. Jumaev

has unique solution if and only if D;(p, q) # 0. Hence D;(p, q) # 0. Conversely,
if D1(p,q) # 0, the equation has a unique solution (z(0), z(1),2'(0)). One
can check that the function x having the form is the solution of (1.2). The
uniqueness of solution of is trivial.

(ii) Let Fy(1) = F»(2) = F3(2) = 0. Then equation (2.9) reduces to a non-
homogeneous equation. This equation has non-trivial solution if and only if
Di(p,q) = 0. This non-trivial solution (z(0),z(1),2'(2)) is an eigenvector of
M;(p, q) = 0 corresponding to the number 0. Then the 2-periodic function

za(t) = oz(a:(O) + 2/ (0)t + ago ()2 (0) + am(t)x(l)) L By(t) for teo;1),

Ta(t) = oz(x(()) 42! (0)E + ax(t)a(0) + all(t)x(1)> Y R(t) for tell;?2)

is a solution of (1.2)), where « is any number.

(iii) Let Dy(p,q) = 0 and rankM,(p,q) < rank(Ml(p, q)\FT), where F =
(F5(1), F»(2), F5(2)). Then the linear system has no any solution (z(0),
x(1),2'(2)). Therefore, the equation has no 2-periodic solution.

Theorem is proved. O

We remark that if p(¢) = p, ¢(t) = ¢ are constants then

12p°—q—=2 _ 12p“—pg—2 1
Tabs) ey
_ 19(p—3 19(38p—1
Ml(pv Q) - 2 p2—1 2 p2—1 2
_4q _4q
1+p 1+p 0

One can check that Dy(p,q) = % = 0. Hence, for this case the equation (/1.2
has only unique solution.

3. EXAMPLES

In the following example are given parameters of the equation satisfying the
conditions for (i) of Theorem [2.1

Example 1. Let p(t) = 2, q(t) = sinwt, f(t) = cosnt. For this case

1 2
1_137 _1_537 Yus e
Di(p,g) =| —3= -3 2| = 92
2 2 0
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Then the linear system has a solution (x(0),z(1),2'(2)),

x(0) z(l) =

The 2-periodic solution of the equation is

cos(mt)(6m — 1) — 2sin(nt) — 2wt + m

672 — 7’ 672 — 7’

t) = te|0;1
z(t) m3(6r — 1) ’ 0 1),
o(t) = cos(mt)(6m — 1) + 2sin(wt) + 2nt — 37?7 te L)

m3(6r — 1)
The graph of this solution is shown in the Figure 1.
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FIGURE 1. The graph of z(t).
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The following example has the parameters of the equation satisfying the con-

ditions for (ii) of Theorem|2.1

Example 2. Let p(t) = 5525, q(t) = sin(nt), f(t) = cos(2xt). For this case

27

8r—1 _ 83 1
2(4 87;:11) 2(487;113)
Ml(p7 q) = An—1 T TAn—1 2 )
4 4 0
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Di(p,q) = 0and Fy(t) = —1<C™=1 hence (1) =0, F5(2) =0 and Fj(2) =
0. The eigenvector of M;(p, q) corresponding to 0 is (—i, i, 1). The 2-periodic solu-
tion of equation is

1
= —(2sin(nt) + 2t — ) + 1 — cos(2nt), t€[0,1),
m

1
zo(t) = —E(Zsz'n(mf) + 27t — 3m)a + 1 — cos(2nt), t€[1,2].

Ta (t)

0,4
0,3
0,21

0,14

FIGURE 2. The graph of z,(t) as o = 1.

4. 3-PERIODIC SOLUTIONS

Let f,p, ¢ be continuous 3-periodic functions and = be a 3-periodic solution of
(1.2). It follows from (1.2) and 3-periodicity of x(t), that

q()x([t]) + (1),
gt + Da(t+ 1)) + f(t+1),
gt +2)x([t+2)) + f(t +2)

2"(t) + p(t)z"(t — 1)
a”(t+ 1) + p(t + 12" (1)
2"t +2)+pt+2)2"(t+1)
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0,6

0,4

0,24

-0,2

,0,4_

-0,6-

FIGURE 3. The graph of z,(t) as a = —3.

or
2”(t) +p(t)2" (t +2) = q(t)z([t]) + £ (D),
4.1) pt+1D)2"(t)+2"(t+1) =qt+ Da(t +1]) + f(t+ 1),
pt+2)2"(t+ 1)+ 2"t +2) =q(t +2)z([t +2]) + f(t + 2).

This system of equations with respect to 2”(t), 2" (¢t + 1), 2" (t 4+ 2) is solvable
if, and only if,

1 0 p(t)
Alt) =] pt+1) 1 0 =1+pt)p(t+ p(t+2)#0.

0 pt+2) 1
Then from (4.1) yields
(4.2) 2 (t) = Aggtg),
where

@1@) 0 p(t)
Alp,q) == | 9o(t) 1 U
(

Qpi1(t) =qt+k)x(t+ k) + f(t+ k), k=0,1,2.
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Simple calculations give

2 (t) = ﬁ (a(2((£)) + p(0)p(t + 2t + V([ + 1)
4.3) — p(t)a(t +2)a((t +2]) + F (1)
POt + Df(E 1) — p(t)F(E+2) + (1)
F(t) = AT .

Integrating (4.3)) we obtain

4.4

z(t) = x(0) + 2'( t—l—// |) ds dty
// S—|— detl // S+2 det1+F3(t),

where
Als) = Z((i)) B(s) = p(s)p(s Z(Qs))Q(S +1)
pas+2) o [
C(s) = B Fy(t) = /0 [ PG5y asan

The function z(-) on [0, 1) represents as

2 (t) )+ 2/( t+// s) dsdtyz(0
+// s)dsdtyz(1 // C(s)dsdtz(2) + F3(t)
0 Jo

ZL‘(t) 0 (0)t+a00( ) (0) +a01 1) — CLOQ( ) (2) —f‘Fg( )

(45) aOO / / A dS dtl CL01 / / dS dtl CL02
/ / dS dtl

or
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Using the properties of integral, the equation (4.4) for ¢ € [1,2) can be written
as

2(8) = 2(0) + 2/( t+// 5) ds dty (0 // 5) ds dt,(0)
S T
// 5) ds dty (2 // s) ds dtz(2) — /lt/olC(s)dsdtlx(Q)
_ /1 /1 C(s) ds dty2(0) + Fy(t)

(4.6) z(t) = z(0) + 2'(0)t + a10(t)x(0) + a11 (¢)x(1) + aia(t)z(2) + F3(t),

where

1
CL10 / / A dS dtl + / / dS dtl / / C dS dtl,
0 0
CL11 / / B dS dtl +/ / dS dtl +/ / dS dtl,
0 0
a12 / / C dS dtl / / C dS dtl + / / dS dtl

By similar way the equation (4.4) for ¢ € [2, 3) represents as

2(t) = 2(0) + 2/ (0)t + / / 5) ds dty(0 / / 5) ds dty(0)
/ / s)ds dt,z(1 / / s) ds dt;z(0)
[ [ [ [ s
// s)ds dt (1 +/1 /0 B(s)ds dt (1)
// s)ds dt,z(2 +/2/0 B(s)ds dt1z(1)
// ) ds dtr(2 +/t/“3 ) ds dt12(0)
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/01 " cts)dsdna )—/2/1C(s)dsdt1:c(2)
// C(s)dsdtyz(0 // s)ds dt1x(2)
/ / C'(s) ds dtrz(0 / /tl 5) ds diva(1) + Fy(t).

4.7) z(t) = z(0) + 2'(0)t + ago(t)x(0) + ag1 (¢)x(1) + agn(t)z(2) + F3(t),

where

(120 / / A dS dtl + / / A dS dtl + / / dS dtl
/ / B dS dtl / / C dS dtl / / dS dtl,
a21 / / A dS dtl + / A dS dtl + / / dS dtl
1 1

2 rl t1
/ / B(s)dsdt; + / B(s)dsdt; — / / C(s)dsdty,
1 0 2

4

+

+

2
ags(t / / A(s)dsdty + B )dsdt; + / / s)ds dt,
/ / dS dtl

C dS dtl — / / dS dtl
Note that (4.7) we can find z/(3) as
(4.8) 2'(t) = 2'(0)+ay (1) x(0)+ay, (H)x(1)+an()z(2)+ F5(t), for te€(2,3),

\\C\HH\

where

o) = [ a@yis+ [ Biowas — [ s
a (#) :/12A(s)dsd+/1B( )ds—/tC’(s)ds,

aéQ(t):/QtA(s)ds—I—/ ds—/ (s

The right hand sides of the equations (4.5 contain unknown numbers
x(0),z(1),2(2) and 2/(0), only. Using continuity and periodicity conditions x(-)
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and /(- ) frorn ) we can get a system of linear equations with respect to

z(1), and x ) written as
1 + aoo )2(0) + (=1 + aoi(1))z(1) — agz(1)x(2) + 2'(0) = —F3(1)
4.9) 1+ ap(2 0) +a11(2)z(1) + (=1 + a12(2))z(2) + 22/(0) = —F3(2)
a20(3) (0) + a21(3)x(1) + as2(3)z(2) + 32'(0) = —F3(3)
asoz(0) + as1z(1) + asex(2) = —F3(3),
where

az) = an(3), az = ay(3), azx = ay(3).

We denote by Ds(p, q) a determinant of the matrix Mj;(p, ¢), where

1+ ap(l) —1+an(l) —apz(1) 1

M(p, q) = 1+ ap(2) ar1(2) —1+a;2(2) 2
az(3) as (3) as(3) 3

aso asy ass 0

Now we are able to describe an existence conditions of the 3-periodic solu-

tions of (1.2).

(4.10)
z(t) = x(0) + 2'(0)t + aoo(1)2(0) + ao1 (t)z(1) — aea(t)z(2) + F3(t), t€[0,1)
z(t) = x(0) + 2’(0)t + a10(t)x(0) + ar1(¢)x(1) + ar2(t)x(2) + F3(t), t€[l,2) .
x(t) = x(0) + 2/ (0)t + agx(0) + agx(1) + axnx(2) + F3(t), t€[2,3]

Theorem 4.1. Let f be a 3-periodic continuous function and p(t)p(t+ 1)p(t +2) #
—1fort € [0,3]. Then

(i) Equation has a unique 3-periodic solution x if and only if Ds(p, q) # 0.
The 3-periodic solution x has the form ({.10), where (x:(0),z(1), z(2),2'(0)) is the
solution of (4.9).

(i) If D3(p,q) = 0and F = (F5(1), F5(2), F5(3), F4(3)) = (0,0,0,0), then equa-
tion has an infinite number of 3-periodic solutions having the form
(4.11)

z(t) = alz(0

z(t) = alz(0

) + 2/ (0)t + ago(t)x(0) + agi (£)2(1) — aoa(t)2(2) ) + Fy(t), t€[0,1)
)

2(t) = a(z(0)
z(

+ (
+ 2'(0)t + a10(t)z(0) + a11(t)z(1) + a12(t)z(2) ) + F3(t), tell,2) .
+ 2/ (0) + asoa(0) + asiz(1) + aggx(2)> YR, tel23]

where (z(0),
any number.

1),z(2),2'(0)) is an eigenvector of Ms(p, q) corresponding to 0, « is
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(iii) If Ds(p,q) = 0 and rankM;(p,q) < rank(MglFt>, where F = (Fy(1),
Fy(2), F5(2)), then equation has no 3-periodic solution.

The proof of this theorem is similar to the proof of Theorem

Example 3. Let p(t) =1, q(t) = sin(3°t), f(t) = cos(3t). For this case

243v/3
Then the linear system (4.9) has a solution (x(0), z(1), z(2), 2/(0)),
\/_+47T — ) \/3
20) =~ ( =
(1) = 1 <\/§( 872 +27r—|—3\/—)>
32

3v3 + 472 — 1)V3

©(2) = 16< 2 ) ’
.3 [ (167 — 4xw? + 15437 — 27)V/3

.’L‘(O) == ﬁ 7'(‘4 .

The 3-periodic solution of the equation is

o(t) = gsm(%ﬂ) ( 63 —ﬁ—i-\/g) +gcos(§27rt) (9\/§ 3 1)

32 72 1672 4n 32 7w 1672 A4

27t (9\/§+1)_81\/§ 97 9 V3 3 e,

1287\ on 5lond 12808 3272 168 4

2 872 Arm 32 7 472 Arw

£(t) = %sin(%mﬁ) (_i_\/_§+\/§> +gcos(§27rt) (9\/5_3_1>

5127t T 12808 3202 16n 4

Co128m3 \ on B ’

27t (@ 1>+405¢§ 2 9 VB VB

:v(t)—3928m( 27t) ( 9 _£+\/§> +gcos(§27rt) (9\/3 _i_1>

2 32 7 1672 Ar

27t 3 405v/3 135 9 3 3
\/—+1 + V3 — +\/— V3 te23.
6473 47

51274 12873 3272 ' 16m 4’
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The graph of this solution is shown in the Figure 4.
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FIGURE 4. The graph of z(¢).
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