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STABILITY AND BOUNDEDNESS BEHAVIOUR OF SOLUTIONS OF A
CERTAIN SECOND ORDER NON-AUTONOMOUS DIFFERENTIAL

EQUATIONS

A.L. Olutimo1, O.M. Akinmoladun, and D.L. Enosegbe

ABSTRACT. In this paper, we give sufficient conditions for the stability and ulti-
mate boundedness of solutions to a certain second order non-autonomous dif-
ferential equations with damped and forced functions. Our results improve and
extend some of the stability and boundedness results in the literature which
themselves are extensions of some results cited therein. We give example to
illustrate the result obtained.

1. INTRODUCTION

In [4], the problem of stability of solutions for second order non-autonomous
differential equations of the form

(r(t)x′)′ + φ(t, x, x′)x′ + p(t)f(x) = 0

was studied. The same differential equation had been considered by [10] for the
problem of boundedness of solutions where he used more than one Lyapunov
functions. Furthermore, [2] studied the stability and boundedness of a related
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second order non-autonomous differential equation without damping and sub-
sequently extended and improved their result to a damped case in [3] using a
single complete Lyapunov function with some restrictions to obtain stability and
boundedness results. Other results on non-autonomous nonlinear second order
differential equations include [1], [6], [7], [8], [9], [11], [12] and [13].

In this paper, we consider the following second order non-autonomous differ-
ential equation of the form

(1.1) (α(t)x′)′ + β(t)f(x, x′) = p(t, x, x′)

where α(t), β(t) are positive continuously differentiable functions, f ∈ C(R ×
R,R) and p ∈ C([0,∞)×R×R,R), R the real line−∞ < t <∞. It must be noted
that equation (1.1) is a special case of all the equations studied in [2], [3], [4]
and [10]. Our present study is motivated by these earlier investigations. Analy-
sis of qualitative behavior of solutions of non-autonomous nonlinear differential
equations is usually complicated. This difficulty increases depending on the as-
sumption made on the damped and forced functions and the requirement for
a complete Lyapunov function. (see also [5]). Lyapunov function for non-
autonomous differential equations of the form (1.1) is difficult to obtain and
apply if more satisfactory results are to be obtained. The problem of such sys-
tem behavior of solutions is considered in this study. By defining an explicit
complete Lyapunov function, we establish sufficient conditions under which the
solutions of equation (1.1) are stable and ultimately bounded. An example is in-
cluded to illustrate the results obtained and provide geometric arguments on the
behavior of solutions of the non-autonomous systems of differential equations.
The results obtained here are different and improve the results of [2], [3], [4]
and [10] and some others mentioned in the literature.

2. STATEMENT OF RESULT

Theorem 2.1. In addition to the basic assumptions imposed on the functions
α(t), β(t), f and p, we suppose also that there exist positive constants αo, βo, α1, β1,

δo, c, b, L and αo < βo, δo > 1
2
, βo > 2αo

2b−1 such that the following conditions are
satisfied:

i. 0 < αo ≤ α(t) ≤ α1, 0 < βo ≤ β(t) ≤ β1, α′(t) ≤ β′(t) ≤ 0 for t ∈ I =

[0,∞);
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ii. f(x,0)
x
≥ c, f(x,y)

x
≥ δo, x 6= 0; fy(x, θy) ≥ b;

iii. Φ(t) =
∫ σ2(t)

σ1(t)

∣∣∣∣ β′(s)
β2(s)

∣∣∣∣ds ≤ 1
β2
o

∫ t
0
|β′(s)|ds ≤ L <∞,

where σ1(t) = min{x(0), x(t)} and σ2(t) = max{x(0), x(t)}. Then, every solution
of (1.1) is uniformly asymptotically stable.

For simplicity, we assume the following notation

Φ(t) =

∫ t

0

|ξ(s)|ds, where |ξ(s)| =
∣∣∣∣ β′(s)β2(s)

∣∣∣∣.
Our proof of Theorem 2.1 rests entirely on the following lemma and the scalar

function V = V (t, x, y) defined by

(2.1) V (t, x, y) = e(
Φ(t)
ρ

)U(t, x, y),

where

U(t, x, y) =
1

2
x2 +

α(t)

β(t)
xy +

∫ x

0

f(ϑ, 0)dϑ+
1

2

α(t)

β(t)
y2

and ρ > 0 is an arbitrary fixed constant which will be determined later.

Lemma 2.1. Subject to the conditions of Theorem 2.1 there exist positive constants
D1, D2 depending only on αoβo, c, b such that

(2.2) D1(x
2 + y2) ≤ U(t, x, y) ≤ D2(x

2 + y2).

To verify (2.2) of lemma 2.1 observe first that the expression U in (2.1) may
be arranged in the form

U(t, x, y) =
1

2

(
x+

α(t)

β(t)
y

)2

+ x2
f(x, 0)

x
+

1

2

α(t)

β(t)

(
1− α(t)

β(t)

)
y2,

using i and ii of Theorem 2.1, we have that

U(t, x, y) ≥ 1

2

(
x+

αo
βo
y

)2

+ cx2 +
1

2

αo
βo

(
1− αo

βo

)
y2.

So that,
U(t, x, y) ≥ k1(x

2 + y2),

where k1 = min{c, 1
2
αo
βo

(1− αo
βo

)}.
Thus, it is evident from the terms contained in the above inequality that there

exist a constant D1 > 0 small enough such that

U(t, x, y) ≥ D1(x
2 + y2).
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To prove the right side of inequality (2.2), the hypotheses i - ii and using the
fact that 2|x||y| ≤ x2 + y2 yields for U , term by term∣∣∣∣α(t)

β(t)
xy

∣∣∣∣ ≤ ∣∣∣∣α(t)

β(t)

∣∣∣∣|x||y| ≤ 1

2

α1

β1
(x2 + y2),∫ x

0

f(ϑ, 0)dϑ ≤ 1

2
cx2.

It follows that

U(t, x, y) ≤ 1

2

(
α1

β1
+ c+ 1

)
x2 +

α1

β1
y2

≤ k2(x
2 + y2),

where k2 = max{1
2
(α1

β1
+ c+ 1), α1

β1
}.

If we choose a positive constant D2, then we have

U(t, x, y) ≤ D2(x
2 + y2).

Thus, (2.2) of Lemma 2.1 is established when D1, D2 are finite constants since
e(

Φ(t)
ρ

) is finite and non-negative in (2.1).

Proof. It is convenient to consider equation (1.1) in the equivalent system form

x′ = y,

y′ = −β(t)f(x, y)

α(t)
− α′(t)

α(t)
y +

p(t, x, y)

α(t)
.(2.3)

In order to prove Theorem 2.1, we consider the case where p = 0 in (2.3).
Now, differentiating U in (2.1) along the system (2.3), we have

dU(t, x, y)

dt
= −y[f(x, y)− f(x, 0)]− xf(x, y)− α(t)

β′(t)

β2(t)

(
xy + y2

)
+ xy

− α′(t)

β(t)
xy + α′(t)

β(t)

β2(t)
xy + α′(t)

β(t)

2β2(t)
y2 +

α(t)

β(t)
y2.

By the hypotheses i - ii of Theorem 2.1 and the term

y2
[f(x, y)− f(x, 0)]

y
≥ y2fy(x, θy) ≥ by2

and

x2
f(x, y)

x
≥ δox

2.
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It follows that

dU(t, x, y)

dt
≤ −δox2 − (b− αo

βo
)y2 − αo|ξ(t)|y2 + (1− αo|ξ(t)|)|xy|.

Using the fact that |xy| ≤ 1
2
(x2 + y2), we obtain

dU(t, x, y)

dt
≤ −(δo −

1

2
)x2 − (b− αo

βo
− 1

2
)y2 − αo

2
|ξ(t)|(x2 + 3y2)

dU(t, x, y)

dt
≤ −δ1(x2 + y2)− δ2|ξ(t)|(x2 + y2),

where δ1 = min{δo − 1
2
, (b− αo

βo
− 1

2
)} and δ2 = min{αo

2
, 3αo

2
}. Since

V (t, x, y) = e(
Φ(t)
ρ

)U(t, x, y) in (2.1),

differentiating V in (2.1) and putting ρ = D1

δ2
, we have

dV (t, x, y)

dt
= e

(
δ2Φ(t)
D1

)dU(t, x, y)

dt
+
δ2|ξ(t)|
D1

e
(
δ2Φ(t)
D1

)
U

dV (t, x, y)

dt
= e

(
δ2Φ(t)
D1

)

[
dU(t, x, y)

dt
+
δ2|ξ(t)|
D1

U

]
It follows that

dV (t, x, y)

dt
≤ e

(
δ2Φ(t)
D1

)

[
− δ1(x2 + y2)− δ2|ξ(t)|(x2 + y2) +

δ2|ξ(t)|
D1

U

]
.

In view of inequality (2.2) , we have that

dV (t, x, y)

dt
≤ −δ1e(

δ2Φ(t)
D1

)
(x2 + y2)

dV (t, x, y)

dt
≤ −δ3(x2 + y2),(2.4)

where δ3 = δ1e
(
δ2L
D1

)
> 0.

Thus, in view of (2.2) and (2.4), it shows that the zero solutions of equation
(1.1) are uniformly asymptotically stable.

�

Theorem 2.2. Let all the conditions of Theorem 2.1 be satisfied and in addition
we assume that there exist a finite constant A > 0 such that p satisfies

(2.5) |p(t, x, y)| ≤ A;
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uniformly for all x, y in R. Then, there exist a constant D3 > 0 such that any
solutions (x(t), y(t)) of system (2.3) uniformly ultimately satisfies

|x(t)| ≤ D3, |y(t)| ≤ D3,

for all sufficiently large t, where the magnitude ofD3 depends only on αo, βo, c, b, δo, L
and A.

Proof. As in Theorem 2.1, the proof of Theorem 2.2 depends on the scalar dif-
ferentiable Lyapunov function V (t, x, y) defined in (2.1).

Now, we consider the case p 6= 0 in (2.1) and since V ′((2.3)) ≤ 0 in (2.4) for all
t, x, y, we have that

dV (t, x, y)

dt
≤ −δ3(x2 + y2) +

(|x|+ |y|)
βo

|p(t, x, y)|.

By (2.5) of Theorem 2.2, we get

dV (t, x, y)

dt
≤ −δ3(x2 + y2) + β−1o (|x|+ |y|)A

Using the fact that 2|x||y| ≤ x2 + y2, we have

dV (t, x, y)

dt
≤ −δ3(x2 + y2) +

√
2Aβ−1o (x2 + y2)

1
2

dV (t, x, y)

dt
≤ −δ3(x2 + y2) + δ4(x

2 + y2)
1
2 ,(2.6)

where δ4 =
√

2Aβ−1o .
If we choose

(x2 + y2)
1
2 ≥ δ5 = δ−13 δ4,

the inequality (2.6) implies that

dV (t, x, y)

dt
≤ −δ3(x2 + y2).

Then, there exist a δ6 such that

dV (t, x, y)

dt
≤ −δ6 provided (x2 + y2) ≥ δ6δ

−1
3 .

This completes the proof. �
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3. EXAMPLE

Consider equation (1.1) in the form[(
1

(1 + 4t2)
+

1

2

)
x′
]′

+

(
2

(2 + t2)
+ 2

)(
x+

x

1 + x2
+ x′ + x′2

)
=

1

1 + t2 + x2 + x′2
(3.1)

Or its equivalent system

x′ = y

y′ = −4(1 + 4t2)[1 + (2 + t2)2]

(2 + t2)2(3 + 4t2)

(
x+

x

1 + x2
+ y + y2

)
− 16t

(1 + 4t2)(3 + 4t2)
y

+
2(1 + 4t2)

(3 + 4t2)(1 + t2 + x2 + y2)
.

(3.2)

With the earlier notations, it is easy to see that

1

2
≤ α(t) =

(
1

(1 + 4t2)
+

1

2

)
≤ 3

2
,

2 ≤ β(t) =

(
2

(2 + t2)
+ 2

)
≤ 3,

clearly βo > αo and β′(t) ≤ α′(t) ≤ 0, ∀t ≥ 0.

f(x, y) =

(
x+

x

1 + x2
+ y + y2

)
f(x, 0)

x
=

(
1 +

1

1 + x2

)
≥ 1 = c

f(x, y)

x
=

(
1 +

1

1 + x2
+
y

x
+
y2

x

)
≥ 1 = δo, x 6= 0

f(x, y)− f(x, 0)

y
= y + 1 ≥ 1 = b, y 6= 0.

Also, δo > 1
2

and βo > 2αo
2b−1 .
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Since

Φ(t) =

∫ σ2(t)

σ1(t)

|β′(s)|
β2(s)

ds ≤ 1

β2
o

∫ t

0

|β′(s)|ds ≤ L,

∫ t

0

|β′(s)|ds =

∫ t

0

4s

(2 + s2)2
ds =

t2

2 + t2
≤ 1

3
, t > 0.

Finally,

p(t, x, y) =
1

1 + t2 + x2 + y2
,

|p(t, x, y)| ≤ 1

1 + t2 + x2 + y2
≤ 1

1 + t2

|p(t, x, y)| ≤ 1

1 + t2
≤ 2, t ≥ 0.

Hence, this shows that all the conditions of Theorem 2.1 and Theorem 2.2 are
satisfied. Thus, we conclude that all the solutions of (3.1) or (3.2) equivalently
are uniformly asymptotically stable and ultimately bounded.

4. STABILITY AND BOUNDEDNESS ANALYSIS OF SOLUTIONS OF

NON-AUTONOMOUS SYSTEM (3.2)

(1) In Figure 1, is a graph showing a linear combination θ(t) = C1x(t) +

C2y(t), (C1, C2 are any constants) of the solutions of (3.2) satisfying all
the conditions of Theorem 2.1 for p = 0 tends to almost zero as t ≥ 0

while in Figure 2, the solutions of (3.2) satisfying all the conditions
of Theorem 2.1 for p = 0 tends to zero as t → ∞ and x(t), y(t) are
asymptotically stable as t→∞.

(2) In Figure 3 and Figure 4, the phase-plane shows that under certain con-
ditions in Theorem 2.1 on the damped, forced as well as the nonlinear
function f the solutions of equation (3.2) are asymptotically stable as
the the solution paths converge to (0, 0) as t → ∞. This clearly shows
that the zero solutions of (3.1) or (3.2) equivalently are asymptotically
stable as t→∞.

(3) In Figure 5 and Figure 6, the ultimate boundedness behavior of solutions
x(t) in (green) and y(t) in (blue) respectively in equation (3.2) for p 6= 0

where x(t), y(t) are bounded by a single constant for all t ≥ 0.
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FIGURE 1. The graph of a linear combination θ(t) = C1x(t) +

C2y(t), (C1, C2 are any constants) of the solutions of (3.2) sat-
isfying all the conditions of Theorem 2.1 for p = 0 tends to zero as
t ≥ 0.
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FIGURE 2. The graph of a linear combination θ(t) = C1x(t) +

C2y(t), (C1, C2 are any constants) of the solutions of (3.2) sat-
isfying all the conditions of Theorem 2.1 for p = 0 tends to zero as
t→∞.
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FIGURE 3. The plot showing all the solution paths satisfying the
conditions of Theorem 2.1 for p = 0 in (3.2) converge to (0, 0).

FIGURE 4. Visualizing how the solution paths satisfying the con-
ditions of Theorem 2.1 for p = 0 in (3.2) converge to (0, 0).
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FIGURE 5. The graph of solution x(t) of (3.2) satisfying the con-
ditions of Theorem 2.1 and Theorem 2.2 for p 6= 0 is ultimately
bounded by a single constant as t→∞.
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FIGURE 6. The graph of solution y(t) of (3.2) satisfying the con-
ditions of Theorem 2.1 and Theorem 2.2 for p 6= 0 is ultimately
bounded by a single constant as t→∞.
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