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COMBINED METHOD OF INTEGRAL TRANSFORMS FOR THE
SPHERICALLY SYMMETRIC DROPLET HEATING PROBLEM

Kwassi Anani

ABSTRACT. In this paper, we analysed the spherically symmetric heat diffusion
equation, which governs the temperature distribution inside a heated but non-
evaporating droplet. The spherical droplet, with an initial uniform temperature,
is assumed at rest in an unsteady gas environment. The classical Fourier sine
integral transform (FSIT) and the unilateral Laplace integral transform (LIT)
are successively used to solve the resulting initial-boundary value problem, first
reduced in a dimensionless form. An explicit solution in the Laplace domain
is obtained for the temperature inside the droplet. Then, depending on the
time-varying temperature of the gas environment at the immediate vicinity of
the droplet, an exact series solution and an approximate analytical solution in
short time limits are derived for the droplet internal temperature. In the case of
steady gas environment at constant temperature, the standard series solution
obtained in the literature for the symmetrical problem of heating or cooling of
a solid spherical body, is recovered. The results may be useful for time step
analysis in droplets and sprays vaporization models.

1. INTRODUCTION

The goal of this paper consists in solving, by use of two classical integral trans-
forms, the initial boundary value problem for the heating without evaporation of
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a spherical droplet of radius Rs. Assuming the spherical symmetry of the prob-
lem, the droplet internal temperature Tl(R, t) to be determined is a function
of radial coordinate R and time t, and the heat diffusion equation in spherical
coordinates inside the droplet reads:

(1.1)
∂Tl
∂t
− αl

(
∂2Tl
∂R2

+
2

R

∂Tl
∂R

)
= 0, 0 ≤ R < Rs, t > 0.

Equation (1.1) can be equally written as:

(1.2)
∂Tl
∂t
− αl
R

∂2(RTl)

∂R2
= 0, 0 ≤ R < Rs, t > 0,

where the thermal diffusivity of the liquid is introduced as αl = kl/ρlcl. For
brevity, the specific heat capacity cl, the thermal conductivity kl and the density
ρl of the liquid are assumed to be constant as well as the corresponding ther-
mophysical properties cg, kg and ρg of the gas at the immediate vicinity of the
droplet. The initial and boundary conditions are written as:

(1.3) Tl(R, t = 0) = T 0,

(1.4)
∂Tl
∂R

(R = 0, t) = 0,

(1.5)
∂Tl
∂R

(R = Rs, t) = Qs(t) =
h

kl
(Tg(t)− Ts(t)),

where T 0 is the initial temperature of the droplet, Tg(t) is the time-evolving
temperature of the surrounding gas at the immediate vicinity of the droplet,
Qs(t) is the temperature gradient at the droplet surface, which is connected to
the surface temperature Ts(t) through the convection heat transfer coefficient
h = kg/Rs. Equation (1.5) specifies the energy balance condition at the droplet
surface. The main assumptions for the problem are that the droplet remained
spherical during the heating/cooling process and its surface temperature is uni-
form even if, it can vary with time [1, 2]. This latter assumption permits to
separate the analysis of gas and liquid phases and then to match the solutions at
the droplet surface. Engineering applications are particularly interested in the
values of droplets surface temperature, which determine the rate of evaporation
and break-up of droplets [2].
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From the problem (1.2)-(1.5), equations with non-dimensional variables can
be obtained using the following relations:
(1.6)

r =
R

Rs

, τ =
t

R2
s/αl

, θl =
cl
`

(Tl − T 0), θs =
cl
`

(Ts − T 0), θg =
cl
`

(Tg − T 0),

where ` is the specific heat of evaporation of the droplet. The problem under
consideration can then be recast as:

(1.7)
∂(rθl)

∂τ
− ∂2(rθl)

∂r2
= 0, 0 ≤ r < 1, τ > 0,

with the following initial and boundary conditions:

(1.8) θl(r, τ = 0) = 0,

(1.9)
∂θl
∂r

(r = 0, τ) = 0,

(1.10)
∂θl
∂r

(r = 1, τ) = K(θg(τ)− θs(τ)) = qs(τ),

where K = kg/kl. The function θl ≡ θl(r, τ) to be determined is the droplet
inside temperature distribution at dimensionless time τ and distance r from the
droplet centre. The initial condition for the function θl is simply brought to
θl(r, τ = 0) = 0 and the zero temperature gradient at the droplet centre assures
the spherical symmetry of the problem. The expressions of the dimensionless
temperature gradient qs(τ) and of the surface temperature θs(τ) are related to
each other. The resulting Robin boundary condition can be considered equiva-
lent to the Dirichlet boundary condition θl(r = 1, τ) = θs(τ). However, qs(τ) and
θs(τ) are not known beforehand, and must be determined as part of the solution
of equation (1.7).

Many authors have used various methods to treat the droplet heating/cooling
problem. In Computational Fluid Dynamics (CFD) codes for example, the droplet
transient heating and vaporization are treated as a time step analysis, where the
the droplet radius is assumed fixed during the time step, but the time-evolving
temperature of the surrounding gas-phase mixture can be estimated at each
time step [3]. Likewise, a number of approximate analytical models formulated
through physical considerations, as the power law, the polynomial approxima-
tions and the heat balance integral methods, have being used in consideration
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to the important number of droplets involved in liquid fuel combustion mech-
anisms [4]. However, the exact analytical solution of the symmetrical problem
of heating or cooling of a solid spherical body has been addressed in several
books [5–8], by using the standard method of separation of variables. In the
reference [5] for example, the method of separation of variables and that of the
Laplace integral transform have been used for deriving exact series solutions for
the spherical body heating/cooling problem with prescribed expressions of the
ambient gas temperature. In the same book [5], a series of similar heating or
cooling problems with spherical symmetry and source terms are solved by us-
ing finite integral transforms, while the classical Fourier sine integral applied to
space coordinates has being validated only for infinite and semi-infinite solids.

In the present paper, by using the classical Fourier sine integral transform
(FSIT) in combination with the Laplace integral transform (LIT), explicit so-
lutions in the Laplace and the time domains are obtained for the spherically
symmetric heat diffusion equation inside a droplet suspended in an unsteady
gas environment. In the next section, some basic mathematical definitions and
properties used in the paper are recalled. In sections 3 and 4, The FSIT and the
LIT methods are introduced in the analysis and explicit solutions in the Laplace
domain are derived for the droplet temperature field. In section 5, an exact
series solution and an approximate analytical solution in short time limits are
obtained for the droplet internal temperature in function of the time-varying
temperature of the gas environment. In the case of steady gas environment at
constant temperature, the standard series solution in the time domain for the
symmetrical problem of heating or cooling of a solid spherical body is recovered
(see reference [8] for example). Finally, section 6 outlines the conclusion.

2. BASIC DEFINITIONS AND THEOREMS

Some basic definitions and properties of the classical Fourier sine and the
Laplace integral transforms which are recalled in order to be used further in this
paper. We denoted the exponential function by e instead of exp.

Definition 2.1. (see [9]) For any real-valued function φ(x), absolutely integrable

on [0,+∞[ i.e.
∫ ∞
0

|φ(x)|dx < ∞, its Fourier sine integral transform (FSIT) in
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terms of λ ∈ [0,+∞[ is:

Φs(λ) =

√
2

π

∫ +∞

0

φ(x) sin(λx)dx,

and the inversion formula reads:

φ(x) =

√
2

π

∫ +∞

0

Φs(λ) sin(xλ)dλ.

Remark 2.1. The integral Φ and its derivative converge uniformly with respect to
λ and Φs tends to 0 as λ goes to +∞, since it’s the imaginary part of the classical
Fourier integral transform for which those properties hold.

Definition 2.2. (see [9]) If f(τ) is a function defined in τ ≥ 0, then its unilateral
Laplace integral transform (LIT) is given in the complex p-plane by:

F (p) = L{f(t)} =

∫ ∞
0

f(t)e−ptdt,

provided that f(t) be of exponential order, that is, there are constants C and σ so
that |f(t)| < Ceσt, when t is sufficiently large. The inversion, from the Laplace
domain p to the time domain t is given by the complex integral:

f(t) = L−1{F (p)} =
1

2πi

∫ γ+i∞

γ−i∞
F (p)eptdp,

where γ > σ is chosen so that F (p) converges absolutely on the real part of p line
<(p) = γ, and F (p) is analytic to the right of this line.

Theorem 2.1. (The Initial Value Theorem) If f(t) is a function defined in t ≥ 0

and L{f(t)} = F (p) exists, then

lim
p→∞

pF (p) = lim
t→0

f(t) = f(0).

Proof. (see [10]). �

Theorem 2.2. (The Convolution Theorem) Let f(t) and g(t) be functions defined
in t ≥ 0. If L{f(t)} = F (p) and L{g(t)} = G(p), then

L{f(t) ∗ g(t)} = L{f(t)}L{g(t)} = F (p)G(p).

Or, equivalently,

L−1{F (p)G(p)} = f(t) ∗ g(t),
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where f(t) ∗ g(t) is called the convolution of f(t) and g(t) and is defined by the
integral

f(t) ∗ g(t) =

∫ t

0

f(t− η)g(η)dη.

Proof. (see [10]). �

Theorem 2.3. (Heaviside’s Expansion Theorem) If F (p) = L{f(t)} =
N(p)

D(p)
,

where N(p) and D(p) are polynomials in p and the degree of D(p) is higher than
that of N(p), then

f(t) = L−1{F (p)} =
∑
k≥1

N(pk)

D′(pk)
epkt,

where D′ denotes the derivative of D and pk are the distinct roots of the equation
D(p) = 0.

Proof. (see [10]). �

Remark 2.2. The Heaviside Expansion Theorem can be applied even if N(p) or
D(p) are generalized polynomials with respect to p i.e. some infinite convergent
power series, the exponents of which are positive integers. (see [5])

Lemma 2.1. (Watson’s Lemma) If (i) f(t) = O(eat) as t → ∞, that is, | f(t) |≤
Kexp(at) for t > T where K and T are constants, and (ii) f(t) has the expansion

f(t) = tα

[
n∑
r=0

art
r +Rn+1(t)

]
for 0 < t < T and α > −1,

where | Rn+1(t) |< Atn+1 for 0 < t < T and A is a constant, then the Laplace
transform F (p) = L{f(t)} has the asymptotic expansion:

F (p) =
n∑
r=0

ar
Γ(α + r + 1)

pα+r+1
+ O

(
1

pα+n+2

)
for p→∞,

where the gamma function Γ(p) is defined for the real part of p greater than 0

(<(p) > 0) by:

Γ(p) =

∫ ∞
0

e−ttp−1dt.

Proof. (see [10]). �
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Lemma 2.2. (Converse to Watson’s Lemma) Let f(t) be a continuous function in
[0,+∞[, f(t) = 0 for t < 0, and it exists c > 0 such that ectf(t) ∈ L1[0,+∞[ that
is ectf(t) is absolutely integrable on [0,+∞[. Let F (p) be the unilateral Laplace
integral transform of f(t) i.e. F (p) = L{f(t)}. If

F (p) =
n∑
k=0

ak
Γ(λk)

pλk
+ O

(
1

pλn+1

)
∼

∞∑
n=0

anΓ(λn)p−λn

as p → ∞ uniformly in | arg(z − c) |< π
2

where <(λn) > 0 and <(λn) → ∞ as
n→∞, then as t→ 0+

f(t) =
n∑
k=0

akt
λk−1 + O(tλn+1−1) ∼

∞∑
n=0

ant
λn−1.

Proof. (see [11]). �

3. THE FOURIER SINE INTEGRAL TRANSFORM METHOD

In this section, we apply the classical Fourier sine integral transform to the
problem (1.7)-(1.10). We seek for a solution θl = θl(r, τ) in the form of a con-
tinuously twice differentiable function in the domain τ > 0 and r ∈ [0, 1]. The
surrounding gas temperature θg(τ) is assumed to be bounded and continuous
with time.

Lemma 3.1. Assume that θl = θl(r, τ) be a solution for the problem (1.7)-(1.10).
The Fourier Sine Integral Transform (FSIT) Vs(λ, τ) of the solution θl = θl(r, τ),
defined as:

Vs(λ, τ) =

√
2

π

∫ +∞

0

θl sin(λr)dr =

√
2

π

∫ 1

0

θl sin(λr)dr

is solution of the differential equation:

(3.1)

∂

∂λ

(
∂

∂τ

∂Vs(λ, τ)

∂λ
+ λ2

∂Vs(λ, τ)

∂λ

)
=

√
2

π
(λθs(τ) cosλ− qs(τ) sinλ), λ ≥ 0, τ > 0.

Proof. We are interested in the dimensionless temperature θl(r, τ) inside the
droplet. Thus, θl can be considered null outside the interval [0, 1] without lost
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of generality. Assuming now the existence of a solution for the problem (1.7)-
(1.10), θl should be continuously differentiable for 0 ≤ r ≤ 1 and for τ > 0

according to the same equations (1.7)-(1.10). So, the functions θl, ∂θl∂r ,
∂2θl
∂r2

are
absolutely integrable in respect to r on [0, 1] ⊂ [0,+∞[ and the FSIT of the
temperature function θl ≡ θl(r, τ) is written as:

Vs(λ, τ) =

√
2

π

∫ +∞

0

θl sin(λr)dr =

√
2

π

∫ 1

0

θl sin(λr)dr.

Likewise, the terms mentioned in the dimensionless equation (1.7) are abso-
lutely integrable in respect to r on [0,+∞[. The FSIT will now be applied to
these terms. For convenience, equation (1.7) is first multiplied by r and reads:

(3.2)
r2∂θl
∂τ
− r∂

2(rθl)

∂r2
= 0.

Applying the FSIT (denoted by Fs) to the first term of equation (3.2), we have:

A(λ) = Fs

[
r2∂θl
∂τ

]
=

√
2

π

∂

∂τ

∫ 1

0

θlr
2 sin(λr)dr,

which, as ∂2

∂λ2
sin(λr) = −r2 sin(λr), can be equally written as:

(3.3) A(λ) = −
√

2

π

∂

∂τ

∂

∂λ

∫ 1

0

rθl cos(λr)dr = − ∂

∂τ

∂2

∂λ2
Vs(λ, τ).

The FSIT is also applied to the diffusion term of equation (3.2) and gives:

(3.4) C(λ) = Fs

[
−r∂

2(rθl)

∂r2

]
= −

√
2

π

∫ 1

0

r
∂2(rθl)

∂r2
sin(λr)dr.

In order to perform a first integration by parts, we write:

u1(r) = r sin(λr)⇒ u′1(r) = sin(λr) + rλ cos(λr)

and

v′1(r) =
∂2(rθl)

∂r2
⇒ v1(r) =

∂(rθl)

∂r
.

Equation (3.4) then becomes:

(3.5)

−
√
π

2
C(λ) =

∫ 1

0

r
∂2(rθl)

∂r2
sin(λr)dr = [u1v1]

1
0 −

∫ 1

0

u′1v1dr

=

[
r sin(λr)

∂(rθl)

∂r

]1
0

−
∫ 1

0

∂(rθl)

∂r
sin(λr)dr

−
∫ 1

0

∂(rθl)

∂r
rλ cos(λr)dr = C1 − C2 − C3.
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The term C1 in equation (3.5) is calculated as:

(3.6)
C1 =

[
r sin(λr)

∂(rθl)

∂r

]1
0

=

[
r sin(λr)(θl + r

∂θl
∂r

)

]1
0

= sin(λ)θs(τ) + qs(τ) sin(λ).

The term C2 in equation (3.5) is calculated by integrating by parts as follows:

u′2 =
∂(rθl)

∂r
⇒ u2 = rθl; v2 = sin(λr)⇒ v′2 = λ cos(λr)

and:

(3.7)

C2 =

∫ 1

0

∂(rθl)

∂r
sin(λr)dr = [u2v2]

1
0 −

∫ 1

0

u2v
′
2dr

= [rθl sin(λr)]10 −
∫ 1

0

rθlλ cos(λr)dr

= sin(λ)θs(τ)−
∫ 1

0

rθlλ cos(λr)dr

= sin(λ)θs(τ)−
√
π

2
λ
∂Vs(λ, τ)

∂λ
.

The third term C3 in equation (3.5) can also be calculated by integration by
parts:

u3 = r cos(λr)⇒ u′3 = cos(λr)− λr sin(λr);

v′3 =
∂(rθl)

∂r
⇒ v3 = rθl

and

(3.8)

C3 =

∫ 1

0

∂(rθl)

∂r
rλ cos(λr)dr = λ

∫ 1

0

∂(rθl)

∂r
r cos(λr)dr

= λ

(
[u3v3]

1
0 −

∫ 1

0

u′3v3dr

)
= λ[r2θl cos(λr)]10

+λ

(
−
∫ 1

0

rθl cos(λr)dr + λ

∫ 1

0

r2θl sin(λr)dr

)
= λ

(
cos(λ)θs −

√
π

2

∂Vs(λ, τ)

∂λ
−
√
π

2
λ
∂2Vs(λ, τ)

∂λ2

)
.

So, by successive integration by parts over the droplet radius with considera-
tion to the boundary conditions (1.9)-(1.10), equation (3.4) is transformed by
combination of equations (3.5)-(3.8) into:

(3.9) C(λ) = −
√

2

π
(qs sinλ− λθs cosλ)− ∂

∂λ

(
λ2
∂Vs(λ, τ)

∂λ

)
.
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Using expressions (3.3) and (3.9), the system (1.7)-(1.10) is finally transformed
into equation (3.1). This completes the proof of the lemma. �

Proposition 3.1. The temperature function θl(r, τ), solution of the initial-boundary
value problem (1.7)-(1.10) can be written as:

(3.10)

θl(r, τ) = 1
r
√
π

∫ τ

0

θc(τ − η)
(1− e−

r2

4η )
√
η

dη

+ 1
r
√
π

∫ τ

0

θs(τ − η)
(−e−

1
4η + (r+1)

2
e−

(r+1)2

4η + (1−r)
2

e−
(1−r)2

4η )

2η
3
2

dη

+ 1
r
√
π

∫ τ

0

P (τ − η)
(−e−

1
4η + 1

2
e−

(r+1)2

4η + 1
2
e−

(r−1)2

4η )
√
η

dη,

where P = qs + θs, qs is the temperature gradient at the droplet surface, θc and θs
are respectively the temperatures at the centre and at the surface of the droplet.

Proof. In order to derive the expression of the transformed function Vs(λ, τ), it’s
necessary to solve the partial differential equation (3.1). A first integration over
λ gives:

(3.11)

∂2Vs(λ, τ)

∂τ∂λ
+ λ2

∂Vs(λ, τ)

∂λ

=

√
2

π
(qs(τ) cosλ+ (λ sinλ+ cosλ)θs(τ)) + a1(τ),

with a1(τ) a function to be determined. By tending λ to 0 in equation (3.11),
we find:

(3.12)
∂2Vs(λ, τ)

∂τ∂λ

∣∣∣∣
λ=0

=

√
2

π
(qs(τ) + θs(τ)) + a1(τ),

since λ2
∂Vs(λ, τ)

∂λ

∣∣∣∣
λ=0

= 0, as the quantity
∂Vs(λ, τ)

∂λ

∣∣∣∣
λ=0

=

∫ 1

0

rθldr is finite.

Now, according to equation (1.7), the following equality holds:

(3.13)
∂2Vs(λ, τ)

∂τ∂λ

∣∣∣∣
λ=0

=

√
2

π

∫ 1

0

∂(rθl)

∂τ
dr =

√
2

π

∫ 1

0

∂2(rθl)

∂r2
dr.

Then, from equations (3.12) and (3.13) one has,

a1(τ) =

√
2

π

[
∂(rθl)

∂r

]1
0

−
√

2

π
(qs(τ) + θs(τ)) ,
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and therefore

(3.14) a1(τ) = −
√

2

π
θc(τ),

where θc(τ) is the time-varying temperature at the droplet centre. Equation
(3.11) becomes:

(3.15)

∂2Vs(λ, τ)

∂τ∂λ
+ λ2

∂Vs(λ, τ)

∂λ

=

√
2

π
(qs(τ) cosλ+ (λ sinλ+ cosλ)θs(τ)− θc(τ)).

Setting Ws(λ, τ) =
∂Vs(λ, τ)

∂λ
and multiplying the equation (3.15) by eλ

2τ , we
write:

eλ
2τ ∂Ws(λ, τ)

∂τ
+ λ2eλ

2τWs(λ, τ)

=

√
2

π
[qs(τ) cosλ+ (λ sinλ+ cosλ)θs(τ)− θc(τ)] eλ

2τ ,

which is equivalent to:

(3.16)

∂(eλ
2τWs(λ, τ))

∂τ

=

√
2

π
[qs(τ) cosλ+ (λ sinλ+ cosλ)θs(τ)− θc(τ)] eλ

2τ .

The integration of equation (3.16), from 0 to τ with respect to the time variable,
leads to:

eλ
2τWs(λ, τ)−Ws(λ, τ = 0)

=

√
2

π

∫ τ

0

[qs cosλ+ (λ sinλ+ cosλ)θs − θc]eλ
2ηdη.

Now,

Ws(λ, τ = 0) =
∂Vs(λ, τ = 0)

∂λ
= 0

according to the initial condition (1.8) which reads θl(r, τ = 0) = 0. Equation
(3.16) then becomes:

(3.17)
Ws(λ, τ) =

∂Vs(λ, τ)

∂λ

=

√
2

π
e−λ

2τ

∫ τ

0

[qs cosλ+ (λ sinλ+ cosλ)θs − θc]eλ
2ηdη.
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Since Vs(λ, τ) is a FSIT function and therefore cancels when λ tends to +∞, it
can be written that:

Vs(λ, τ) = −
∫ ∞
λ

∂Vs(x, τ)

∂x
dx,

and equation (3.17) will be integrated over λ, the integration variable x going
from λ to +∞. Then, reversing the order of integration (that is allowed due to
the uniform convergence of Vs(λ, τ) and of its derivative with respect to λ, as
specified by the Remark 2.1), equation (3.17) leads to:

(3.18)

Vs(λ, τ) = −
√

2

π

∫ τ

0

dη

[
θc(η)

(
−
∫ ∞
λ

ex
2(η−τ)dx

)]
+

√
2

π

∫ τ

0

dη

[
θs(η)

(
−
∫ ∞
λ

ex
2(η−τ)x sin(x)dx

)]
+

√
2

π

∫ τ

0

dη

[
(qs(η) + θs(η))

(
−
∫ ∞
λ

ex
2(η−τ) cos(x)dx

)]
.

The FSIT inversion formula to obtain θl(r, τ) from Vs(λ, τ), can now be ap-
plied to each term of equation (3.18). We first calculate the following inverse
integrals:

Ia =

√
2

π

∫ ∞
0

(
−
∫ ∞
λ

ex
2(η−τ) cos(x)dx

)
sin(λr)dλ,

Ib =

√
2

π

∫ ∞
0

(
−
∫ ∞
λ

ex
2(η−τ)x sin(x)dx

)
sin(λr)dλ,

and

Ic =

√
2

π

∫ ∞
0

(
−
∫ ∞
λ

ex
2(η−τ)

)
sin(λr)dλ.

The quantity Ia is calculated by integrating by parts as follows:

u4 = −
∫ ∞
λ

ex
2(η−τ) cos(x)dx⇒ u′4 = eλ

2(η−τ) cos(λ),

v′4 = sin(λr)⇒ v4 = −cos(λr)

r
,

and then

Ia = −
√

2

r
√
π

∫ ∞
0

ex
2(η−τ) cos(x)dx+

√
2

r
√
π

∫ ∞
0

eλ
2(η−τ) cos(λr) cos(λ)dλ

= 1

r
√

2(τ−η)

(
−e−

1
4(τ−η) + 1

2
e−

(1+r)2

4(τ−η) + 1
2
e−

(r−1)2

4(τ−η)

)
.
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Likewise, for Ib an integration by parts:

u5 = −
∫ ∞
λ

ex
2(η−τ)x sin(x)dx⇒ u′5 = eλ

2(η−τ)λ sin(λ),

v′5 = sin(λr)⇒ v5 = −cos(λr)

r
,

leads to:

Ib = −
√

2

r
√
π

∫ ∞
0

ex
2(η−τ)x sin(x)dx+

√
2

r
√
π

∫ ∞
0

λeλ
2(η−τ) cos(λr) sin(λ)dλ

=
√
2

4r(τ−η)
3
2

(
−e−

1
4(τ−η) + (1+r)

2
e−

(1+r)2

4(τ−η) + (1−r)
2

e−
(1−r)2
4(τ−η)

)
And by the alike technique of integration by parts, Ic is obtained as:

Ic =

√
2

π

∫ ∞
0

(
−
∫ ∞
λ

ex
2(η−τ)

)
sin(λr)dλ =

1

r
√

2(τ − η)

(
−1 + e−

r2

4(τ−η)

)
.

The temperature function θl(r, τ) is derived through the above expressions of
Ia, Ib and Ic, by inverting equation (3.18). Finally, by changing the integration
variable from η to η′ = τ − η, the proposition 3.1 holds. �

Remark 3.1. In brief, an integral expression of the solution for the spherically
symmetric droplet heating problem is obtained by using the FSIT method. Unfor-
tunately, the above solution expressed by equation (3.10) doesn’t permit to derive
easily the expressions of the droplet surface temperature θs(τ) or that of its cen-
tre temperature θc(τ). In addition, the temperature gradient qs(τ) and the surface
temperature θs(τ) are related as mentioned in the introduction. We introduce the
Laplace integral transform (LIT) in order to express more simply the dependencies
between the time-varying functions mentioned in equation (3.10).

4. EXPLICIT SOLUTIONS IN THE LAPLACE DOMAIN

The Laplace integral transform (LIT) of the surface temperature gradient qs(τ)

and of the surface temperature θs(τ) are respectively denoted by Lqs(p) and
Lθs(p). The droplet centre temperature θc(τ) (see equation (3.14)) is trans-
formed into Lθc(p), and the temperature distribution θl(r, τ) is transformed into
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Lθl(r, p). Thus, the initial boundary value problem (1.7)-(1.10) can be written
in the Laplace domain, under the following form:

(4.1) p rLθl(r, p)−
d2(rLθl(r, p))

dr2
= 0,

and

(4.2)



pLθl(r, p)|r,p=∞ = 0

dLθl(r, p)
dr

∣∣∣∣
r=0,p

= 0

dLθl(r, p)
dr

∣∣∣∣
r=1,p

= Lqs(p)

.

The initial condition in the Laplace domain, as expressed by the first equation
of the conditions (4.2), results from Theorem 2.1.

Proposition 4.1. The temperature gradient at the droplet surface and the droplet
internal temperature field can be respectively expressed in the Laplace domain as:

(4.3) Lqs(p) =
K (e−2

√
p√p+ e−2

√
p +
√
p− 1)Lθg(p)

e−2
√
p√p−K e−2

√
p + e−2

√
p +
√
p+K − 1

and

(4.4) Lθl(r, p) =
K e−

√
p(er

√
p − e−r

√
p)Lθg(p)

r(e−2
√
p√p−K e−2

√
p + e−2

√
p +
√
p+K − 1)

,

where K = kg/kl is the ratio of conductivities and Lθg(p) is the Laplace transform
of the dimensionless gas temperature θg(τ).

Proof. According to the Convolution Theorem (see Theorem 2.2), equation (3.10)
is transformed by the LIT into:

(4.5)
Lθl(r, p) =

1

r
√
p

(
−e−

√
p +

1

2
e−(1+r)

√
p +

1

2
e−(1−r)

√
p

)
×[Lqs(p) + Lθs(p) +

√
pLθs(p)] +

1

r
√
p

(
1− e−r

√
p
)
Lθc(p).

As already mentioned in the introduction, the condition of the temperature gra-
dient is satisfied together with the condition at the droplet surface (Lθl(r, p)|r=1,p

= Lθs(p)). By using this latter condition and substituting the expression of
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Lθl(r, p) given by equation (4.5) into equation (4.1), the droplet surface and
centre temperatures are respectively derived in the Laplace domain as:

(4.6) Lθs(p) = − (e−2
√
p − 1)Lqs(p)

e−2
√
p√p+ e−2

√
p +
√
p− 1

and

(4.7) Lθc(p) =
2e−

√
p√pLqs(p)

e−2
√
p√p+ e−2

√
p +
√
p− 1

.

Combining equations (4.5)-(4.7), the exact operational or Laplace domain solu-
tion of the initial boundary value problem (1.7)-(1.10) is expressed in function
of Lqs(p) by:

(4.8) Lθl(r, p) =
e−
√
p(er

√
p − e−r

√
p)Lqs(p)

r(e−2
√
p√p+ e−2

√
p +
√
p− 1)

.

The condition at the droplet surface, written in terms of dimensionless vari-
ables in equation (1.10), becomes in the Laplace domain:

(4.9) Lqs(p) = K (Lθg(p)− Lθs(p)) ,

where K = kg/kl and Lθg(p) is the Laplace transform of the dimensionless gas
temperature θg(τ). Substituting r = 1 in equation (4.8) and using the above
expression of Lqs(p), the surface temperature is deduced in the Laplace domain
as:

(4.10) Lθs(p) = − K (e−2
√
p − 1)Lθg(p)

e−2
√
p√p−K e−2

√
p + e−2

√
p +
√
p+K − 1

.

From equations (4.9) and (4.10), an explicit expression of the temperature gra-
dient at the droplet surface is obtained in the Laplace domain by the equation
(4.3) as expressed in the proposition 4.1. Now, by tending r to 0 in equation
(4.8) and using equation (4.3), the temperature at the droplet centre is ex-
pressed in the Laplace domain as follows:

(4.11) Lθc(p) =
2K
√
p e−

√
pLθg(p)

e−2
√
p√p−K e−2

√
p + e−2

√
p +
√
p+K − 1

.

Finally, combining equations (4.8) and (4.3), an explicit solution Lθl(r, p) of
the temperature inside the droplet can be obtained in the Laplace domain by
equation (4.4) as expressed in the proposition 4.1. �
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Remark 4.1. Regardless of the complexity of the functions involved, inverse Laplace
transformations can always be accomplished numerically [12, 13]. Nevertheless,
analytical transformations in form of exact series solutions and asymptotic approx-
imations in short time limits may be sought by means of inversion theorems from
the Laplace domain into the time domain. The original function θl(r, τ) is the in-
verse Laplace transform of the complex valued function Lθl(r, p), which depends on
the parameter r and is given by equation (4.4).

5. ANALYTICAL SOLUTIONS IN THE TIME DOMAIN

An exact series solution to the initial-boundary value problem (1.7)-(1.10)
may be derived by using the inversion technique due to the Heaviside expansion
theorem (see Theorem 2.3).

Proposition 5.1. An exact series solution to the initial-boundary value problem
(1.7)-(1.10) can be written as:

(5.1) θl(r, τ) =
∑
k≥1

Ak
sin(rλk)

r

∫ τ

0

θg(τ − η)e−λ
2
kηdη,

where

(5.2) Ak =
2λk[λk cos(λk)− sin(λk)]

cos(λk) sin(λk)− λk
= (−1)k+12K[λ2k + (K − 1)2]1/2

λ2k +K2 −K
,

and the terms of the sequence (λk) are the roots of the characteristic equation:

(5.3) tanλ = − λ

K − 1
,

numbered in ascending order 0 < λ1 < λ2 < ... < λk < ... and tending to +∞.

Proof. Equation (4.4) implies:

(5.4) rLθl(r, p) =
K sinh(r

√
p)Lθg(p)

(K − 1) sinh(
√
p) +

√
p cosh(

√
p)
.

Using L−1 to denote the inverse operator of the LIT operator L, we have

rθl(r, τ) = L−1{Lθg(p)× F (r, p)},

where F (r, p) can be written in the form of:

(5.5) F (r, p) =
N(r, p)

D(p)
,
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where N(r, p) = K sinh(r
√
p) and D(p) = (K − 1) sinh(

√
p) +

√
p cosh(

√
p), sinh

and cosh being respectively the sine and cosine hyperbolic functions. These
latter functions are not generalized polynomials, but they can be so reduced
by multiplying or dividing both by

√
p if p 6= 0. Since sinh(

√
p) = −i sin(i

√
p)

and cosh(
√
p) = cos(i

√
p), the denominator is equally written D(p) = −i(K −

1) sin(i
√
p) +

√
p cos(i

√
p). We first determine the roots pk of D(p) in order to

calculate the inverse L−1{F (r, p)}. Note that the function F (r, p) is continuous
by extension for the zero root p0 = 0. The remaining roots pk for which D(p) is
equated to zero are then determined by the characteristic equation (5.3):

tanλ = − λ

K − 1
,

where λ = i
√
p. So, pk = −λ2k for k ≥ 1. From equation (5.3), it can be deduced

that the λk are abscissa of the points of intersection of the tangent curve with
the straight line of slope -1/(K-1) with K = kg/kl < 1. The solution to equation
(5.3) is formed by an infinite set of real positive eigenvalues λk numbered in
ascending order 0 < λ1 < λ2 < ... < λk < ... and tending to +∞. Since the
not null roots λk, k ≥ 1 are distinct, the inversion technique from Heaviside’s
expansion theorem can be applied to generalized polynomials (confer Remark
2.2). This will lead to:

(5.6) L−1{F (r, p)} =
∑
k≥1

N(r, pk)

D′(pk)
epkτ ,

where the prime sign stands for the derivative in respect to p. The calculation
for these simple and not null roots leads to:

D′(pk) =
i

2λk sin(λk)
[cos(λk) sin(λk)− λk]

and

N(r, pk) =
i

sin(λk)
[λk cos(λk)− sin(λk)] sin(rλk).

Hence, equation (5.6) is equally written as:

(5.7) L−1{F (r, p)} =
∑
k≥1

Aksin(rλk)e
−λ2kτ ,

where Ak is given by the formula (5.2). Thus, the original of N(r, p)/D(p) is
the uniformly convergent series expressed by equation (5.7) and that of Lθg(p)
is the dimensionless gas phase time-varying temperature θg(τ). According to
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the convolution theorem (Confer Theorem 2.2), an exact series solution of the
initial-boundary value problem (1.7)-(1.10) can be found in the form of equa-
tion (5.1). This completes the proof of the proposition. �

Corollary 5.1. If the temperature of the surrounding gas is constant (θg(τ) = θg),
the solution (5.1) is reduced to:

(5.8) θl(r, τ) = θg

(
1−

∑
k≥1

Bk
sin(rλk)

r
e−λ

2
kτ

)
,

where

(5.9) Bk =
Ak
λ2k

=
2[λk cos(λk)− sin(λk)]

λk(cos(λk) sin(λk)− λk)
.

Proof. In the case of steady gas phase environment, the temperature θg of the
gas does not depend on time τ , so that

θg(τ) = θg = const.

The integral in solution (5.1) can be calculated and will explicitly yield:

(5.10) θl(r, τ) = θg
∑
k≥1

Bk
sin(rλk)

r
− θg

∑
k≥1

Bk
sin(rλk)

r
e−λ

2
kτ ,

since ∫ τ

0

e−λ
2
kηdη =

(1− e−λ
2
kτ )

λ2k
.

In this case, the solution (5.8) may also be obtained directly from equation (5.5)
by replacing the Laplace transform of the constant temperature θg by its value
Lθg(p) = Lθg = θg/p, before the calculation of the residues. Then, by using
the generalized polynomials

√
pN(r, p) and

√
pD(p), it may be verified that the

residue of F (r, p) at p0 = 0 is rθg. This will leads to equation (5.8), which is the
standard series solution of the symmetrical problem of heating or cooling of a
solid spherical body as expressed in [5–8]. Now, equating solutions (5.8) and
(5.10), it may be admitted that:∑

k≥1

Bk
sin(rλk)

r
= 1,

or equivalently:

(5.11)
∑
k≥1

Bk sin(rλk) = r.
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This equality (5.11) is proven as follows. The coefficients of the generalized
Fourier series expansion of the function g(r) = r defined on [0, 1] can be cal-
culated in the complete basis formed by the orthogonal and infinite family of
functions {sin(rλk), k ≥ 1} according to the inner product

< g1, g2 >=

∫ 1

0

g1(x)g2(x)dx.

In fact, the set {λk, k ≥ 1}, where λk is the kth root of the characteristic equa-
tion (5.3), forms the set of eigenvalues for the following homogeneous regular
Sturm-Liouville problem:

(5.12)



d2v

dr2
+ λv = 0

dv

dr

∣∣∣∣
r=0

= 0(
dv

dr
+ (K − 1)v

)∣∣∣∣
r=1

= 0

.

with the related eigenfunctions vk = sin(rλk) forming the full set of non-trivial
solutions of this problem (5.12). It is well-known that the family of solutions of
regular Sturm-Liouville problems such as problem (5.12), that is {sin(rλk), k ≥
1, r ∈ [0, 1]}, forms a complete orthogonal set of linearly independent functions
on [0, 1] (see [14] and [15]). Thus, the function g(r), defined on [0, 1], satisfies
the so-called Dirichlet conditions and can be expressed in a unique way as a
series (called a generalized Fourier series) of the eigenfunctions of the problem
(5.12). According to the calculations, the coefficients of the generalized Fourier
series expansion of the function g(r) = r are identical to Bk. Hence, equation
(5.11) is justified and the proof of the corollary is completed. �

Corollary 5.2. The exact series solutions (5.1) and (5.8) of the original initial-
boundary value problem (1.2)-(1.5) can be respectively written as:

(5.13) Tl(R, t) = T 0 +
∑
k≥1

Ak
αl
RRs

sin

(
R

Rs

λk

)∫ t

0

(Tg(t− η)− T 0)e
−κλ2kηdη

and

(5.14) Tl(R, t) = T 0 + (T g − T 0)

(
1−

∑
k≥1

Bk
Rs

R
sin

(
R

Rs

λk

)
e−κλ

2
kt

)
,

where κ = αl/R
2
s and Ak, Bk are respectively given by formulae (5.2) and (5.9).
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Proof. Formulae (5.13) and (5.14) are obtained by returning to the original
variables (see equations (1.2)-(1.5)) through the nondimensionalized equations
(1.6) stated in the introduction. �

It may be interesting to find an approximate analytical solution in short time
limits for the droplet internal temperature field θl(r, τ) (and particularly for the
dimensional droplet surface temperature). This analytical solution will be valid
only for small values of a time step ∆τ and can be useful in the so-called time
step models of vaporizing droplets, as practised in Computational Fluid Dynam-
ics (CFD) spray modelling.

Proposition 5.2. A truncated expansion of at least first order of rθl(r, τ) during a
short time step ∆τ (τ ∈ [0, ∆τ ]) can be expressed as:

rθl(r, τ) = K

∫ τ

0

θg(τ − η)e
−(1−r)2

4η

(
1
√
πη

+ 2(1−K)2
√
η

π

)
dη

+K(1−K)(r +K −Kr)
∫ τ

0

θg(τ − η)erfc

(
1− r
2
√
η

)
dη + O(τ),

(5.15)

where the big O() is the asymptotic notation, erfc is the complementary error func-
tion defined as erfc(x) = 1− erf(x), and

erf(x) =
2√
π

∫ x

0

ez
2

dz.

Proof. The limiting case of short time duration (τ tending to 0) corresponds to a
very large Laplace domain variable (p tending to +∞). Since the Laplace trans-
form Lθg(p) goes to zero as p tends to +∞, the truncated asymptotic expansion
of second order for the droplet internal temperature θl(r, τ), can be derived from
the Laplace domain solution (4.4) as follows:

rLθl(r, p) = KLθg(p)
(

1
√
p

+
(1−K)

p
+

(1−K)2

p3/2

)
e−(1−r)

√
p

+ O

(
1

p2

)
e−(1−r)

√
p.

(5.16)

The inversion of this result in the time domain is possible by using inverse
Laplace integral transform (LIT) tables as in [16]. Thus, analytical approxi-
mations of the droplet internal temperature at the earliest time of the process or
after any short time step ∆τ (t ∈ [0, ∆τ ]) can be found by using the convolution
theorem of the Laplace integral transform (see Theorem 2.2) and the converse
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to Watson’s Lemma (see Lemma 2.2). This leads to the formula (5.15) of the
time-varying droplet internal temperature for τ ∈ [0,∆τ ] or during any small
time step ∆τ . Note that if r = 0, that is at the droplet centre, the approximation
(5.15) is valid for an arbitrary order n ≥ 1 of the related truncated expansion,
while for r = 1 (droplet surface), the formula (5.15) is valid only for the first
order n = 1. �

Corollary 5.3. Returning to the original variables, the analytical approximation
for the droplet surface temperature Ts(t) during any sufficiently small dimensional
time step ∆t = R2

s∆τ/αl, (t ∈ [0,∆t]), can be written as:

Ts(t) =

K

∫ t

0

(Tg(t− η)− T 0)

[ √
αl

Rs
√
πη

+
αl(1−K)

R2
s

+ 2
αl

3/2(1−K)2

R3
s

√
η

π

]
dη

+ T 0 + O(t).

(5.17)

In the case of constant temperature Tg(t) = T g of the surrounding gas phase during
the time step ∆t, Ts(t) is reduced to:

(5.18) Ts(t) = T 0 + 2K(T g − T 0)

√
αlt

Rs

√
π

+ O(t).

Proof. From the general asymptotic formula (5.16), that of the dimensionless
droplet surface temperature θs(p) is obtained by substituting r = 1, which leads
to:

(5.19) Lθs(p) = KLθg(p)
(

1
√
p

+
(1−K)

p
+

(1−K)2

p3/2

)
+ O

(
1

p2

)
.

Using again the nondimensionalized equations (1.6), one has: ∆τ = αl∆t/R
2
s

and then ∆t = R2
s∆τ/αl. By using the scaling property of the Laplace integral

transform, equation (5.19) will read in its dimensional form:

LTs(q) =

K(LTg(q)− T 0/q)

[
1

Rs

(
αl
q

)1/2

+
(1−K)

R2
s

αl
q

+
(1−K)2

R3
s

(
αl
q

)3/2
]

+
T 0

q
+ O

(
1

q2

)
,

(5.20)

where q instead of p stands for the new Laplace domain variable. The trans-
formation into the time domain of the formula (5.20) gives the time-varying
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droplet surface temperature Ts(t) during any small time step ∆t, t ∈ [0,∆t], as
in formula (5.17). Now, if the surrounding gas phase is at constant tempera-
ture Tg(t) = T g during the time step ∆t, then LTg(q) = T g/q and the formula
(5.17) of the dimensional surface temperature Ts(t) is reduced to the analytical
approximation (5.18). This completes the proof of the corollary. �

Remark 5.1. As already mentioned, the results may be useful in the modelling
of transient heating and evaporation of droplets and sprays, as pertaining to CFD
codes. Indeed, in CFD calculations for sprays, the droplet surface and volume-
average temperature values are sufficient, instead of the complete droplet interior
temperature field, to permit the estimation of the related heat and mass trans-
fer quantities during each time step [17]. As performed above for the dimen-
sional droplet surface temperature Ts(t), the volume-average temperature during
a short time step can also be derived from the analytical approximations (5.15)
and (5.18). Likewise, the droplet surface, centre and volume average temperatures
during each time step are derivable from the exact series solutions as expressed by
equations (5.13) and (5.14).

6. CONCLUSION

By combining two classical non-finite integral transform methods, this study
has derived the explicit solution in the Laplace domain, for the spherically sym-
metric heat diffusion equation inside a non-evaporating droplet suspended in
an unsteady gas environment. It was possible to obtain an exact series solution
in time domain and an analytical approximate expansion in a short time dura-
tion (time step) for the droplet surface and internal temperatures distributions.
These latter can be useful for applications in CFD spray modelling. The early
time behaviour of the heat diffusion process at the droplet surface is of great in-
terest in combustion engineering. The combined integral transform method pre-
sented in the above study can also be regarded as an alternative to the classical
method of separation of variables for solving parabolic linear differential equa-
tions. It is promising for many engineering problems involving one-dimensional
transient heat or mass diffusion with various thermal boundary conditions.
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