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A SOLUTION TO INVERSE STURM-LIOUVILLE PROBLEMS

Mehmet Açil1 and Necdet Bildik

ABSTRACT. In this study, we recover potential function and separable boundary
conditions for the inverse Sturm-Liouville problem in normal form by using two
partial subsets of the data which consist of its one spectrum and sequence of
endpoints of eigenfunctions.

1. INTRODUCTION

It is possible to split the inverse Sturm-Liouville (S-L) problem in two parts:

(i) The uniqueness theorems,
(ii) The recovering coefficients from uniqueness data.

Although there are many studies on the uniqueness, it is observed in the litera-
ture that the studies on the recovering of the potential function and boundary
coefficients do not occur too much. Some of them can be found in the refer-
ences [1–8].

Consider the boundary value problems

(1.1) − y′′(x) + (λ+ q(x))y(x) = 0,
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on [0, 1] with the separable boundary conditions

(1.2) y′(0) + h0y(0) = 0, y′(1) + h1y(1) = 0,

where q(x) ∈ L2
R[0, 1] and h0, h1 ∈ R. Röhrl used two spectra to obtain first the

potential function q(x) in [9] and then boundary coefficients h0, h1 along with
the potential in [10]. We studied the problem for both the set of the jth elements
of the infinite numbers of spectra obtained by changing boundary conditions
in related problem and one spectrum with the set of the terminal velocities
κn = log

∣∣∣g′n(1)g′n(0)

∣∣∣ for the Dirichlet boundary condition in order to reconstruct the
potential [11]. In this paper, we recover not only potential but also boundary
conditions for (1.1)-(1.2) by using another uniqueness data (see Theorem 1.1)
as one spectrum and the endpoint datum

(1.3) ln = log

[
(−1)n−1gn(1)

gn(0)

]
, n ≥ 1,

with the normalized eigenfunction gn corresponding to λn.
Let q = (h0, h1, q) ∈ R2×L2

R[0, 1] and (λn(q), ln(q);n ≥ 1) be given uniqueness
data described as above.

Theorem 1.1. The map

q ∈ R2 × L2
R[0, 1]→ (λn(q), ln(q);n ≥ 1)

is one to one [12].

Consider (1.1) with the initial conditions

(1.4) y1i(i) = y′2i(i) = 1, y2i(i) = y′1i(i) = 0, y3i(i) = −1, y′3i(i) = hi,

where i = 0, 1. The functions (y1i(x), y2i(x)) are fundamental solutions at the
initial points x = 0 and x = 1. Thus

y3i(x) = y3i(i)y1i(x) + y′3i(i)y2i(x) = hiy2i(x)− y1i(x).

It is obvious that the solutions y3i(x) for i = 0, 1 satisfy the boundary conditions
(1.2) respectively.

Lemma 1.1. Let χ[i,x] = −χ[x,i] for i = 1. Then, the following equations hold for
i = 0, 1,

(i) ∂y3i
∂q(t)

(x) = y3i(t)[y2i(t)y3i(x)− y2i(x)y3i(t)]χ[i,x],
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ii) ∂y3i
∂λ

(x) = (−1)i+1
1∫
0

y3i(t)[y2i(t)y3i(x)− y2i(x)y3i(t)]dt.

Proof. It is a corollary of the Theorem 6 in ( [13], pp.21). �

Lemma 1.2. Let {λn}n≥1 be eigenvalues of boundary value problem (1.1)-(1.2).
Then the functions y30(x, λn) and y31(x, λn) are eigenfunctions, and there exists a
sequence {βn}n≥1 such that y30(x, λn) = βny31(x, λn), βn 6= 0 [14].

Lemma 1.3. For all n ∈ N,

(i) ∂ln
∂q

(t) = Ain(t)− [Ain(t)]g2n(t),

(ii) ∂ln
∂hi

(t) = (−1)i+1 ∂ln
∂q

(i),

where yjin(t) = yji(t, λn), Ain(t) = y3in(t)y2in(t), and [Ain(t)] =
1∫
0

Ain(t)dt.

Proof. Since the functions y3in(x) are eigenfunctions, we get gn(x) = g(x, λn) =
y3in(x)

||y3in(x)||L2
. So by virtue of (1.3)-(1.4),

ln = log

(
(−1)n−1y3in(1)

y3in(0)

)
= (−1)i log((−1)(−1)

iny3in(1− i)).

(i) Considering ∂λn
∂q(t)

= g2n(t) [13] and using Lemma 1.1, we calculate

∂ln
∂q(t)

= (−1)i
y3in(1−i)

{
∂y3in(1−i)

∂λn
∂λn
∂q(t)

+ ∂
∂q(t)

y3i(1− i, q, λ)

∣∣∣∣
λ=λn

}
=

{(
1−i∫
i

y3in(t)[y3in(t)y2in(1− i)− y3in(1− i)y2in(t)]dt

)
g2n(t)

+ (−1)i(y3in(t)y2in(t)y3in(1− i)− y23in(t)y2in(1− i))
}

(−1)i
y3in(1−i)

=

{
y2in(1− i)g2n(t)

1−i∫
i

y23in(t)dt− y3in(1− i)g2n(t)
1−i∫
i

y3in(t)y2in(t)dt

+ (−1)iy3in(t)y2in(t)y3in(1− i)− (−1)iy23in(t)y2in(1− i)
}

(−1)i
y3in(1−i)

=

{
y2in(1− i)(−1)iy23in(t)− y3in(1− i)(−1)ig2n(t)

1∫
0

y3in(t)y2in(t)dt

+ (−1)iy3in(t)y2in(t)y3in(1− i)− (−1)iy23in(t)y2in(1− i)
}

(−1)i
y3in(1−i)

= y3in(t)y2in(t)− g2n(t)
1∫
0

y3in(t)y2in(t)dt = Ain(t)− [Ain]g2n(t).
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(ii) Analogously

∂ln
∂hi

=

{[
y2in(1− i)

1−i∫
i

y23in(t)dt− y3in(1− i)
1−i∫
i

y3in(t)y2in(t)dt
]
(−1)i+1g2n(i)

+ ∂
∂hi

[hiy2i(1− i, λ)− y1i(1− i, λ)
∣∣
λ=λn

]

}
(−1)i

y3in(1−i)

= (−1)i
y3in(1−i)

{(
y2in(1− i)(−1)i||y3in(t)||2L2

− y3in(1− i)
1−i∫
i

y3in(t)y2in(t)dt
)
(−1)i+1g2n(i) + y2in(1− i)

}
= (−1)i

y3in(1−i)

{
(−1)2i+1y2in(1− i)y23in(i)− y3in(1− i)(−1)2i+1g2n(i)[Ain]

+ y2in(1− i)
}

= (−1)i[Ain]g2n(i)

is obtained. On the other hand, Ain(i) = 0 since y2in(i) = 0. Therefore

∂ln
∂hi

(t) = (−1)i+1(−[Ain]g2n(i))

= (−1)i+1(Ain(i)− [Ain]g2n(i)) = (−1)i+1∂ln
∂q

(i).

�

Let us consider the bilinear form Γ : H1 × H1 → R with Γ(f, g) =
1∫
0

[f, g]dx

where [·, ·] is the Wronskian operator such that [f, g] = f(x)g′(x) − f ′(x)g(x)

for differentiable functions f, g : [0, 1] → R. This transformation is bounded by
|Γ(f, g)| ≤ ‖f‖H1‖g‖H1. In particular Γ is continuous on H1 [10]. Also, it is easy
to see that Γ is antisymmetric because of Wronskian. Besides that we also have
some properties for Wronskian [10,13] as below:

(i) [fg, FG] = fF [g,G] + gG[f, F ] for differentiable functions f, g, F,G.
(ii) For two arbitrary solutions fn and fm of the equation (1.1) with different

eigenvalues λn and λm, then we have fnfm = 1
λn−λm [fn, fm]′.

Since y20(x, λ) and y30(x, λ) satisfy the equation (1.1), so we obtain

d

dx
[y20, y30] =

d

dx
(y20y

′
30 − y′20y30) = y20y30(q − λ)− y20y30(q − λ) = 0.
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This implies that the Wronskian is independent with respect to the variable x,
thus we have

[y20, y30] = y20(0)y′30(0)− y′20(0)y30(0) = 1.

Lemma 1.4. Let {λn}n≥1 be spectrum of (1.1)-(1.2). Then the following equalities
are satisfied:

(i) Γ(g2n, g
2
m) = 0,

(ii) Γ(y30ny20n, y30my20m) = 0,
(iii) Γ(y30ny20n, g

2
m) = δnm.

Proof. For (i), see [10]. To prove (ii) and (iii), by taking the initial condition
(1.3), Lemma 1.2, and Wronskian’s properties into account one can follow sim-
ilar steps in ( [11], Lemma 1). �

2. MAIN RESULT

For our computation, we consider Röhrl’s type objective functional and use
another conjugate gradient algorithm which is called Fletcher-Reeves algorithm.
Let N0 = {1, 2, · · · , k} ⊂ N. For the test potential Q := (H0, H1, Q(x)), objective
functional and its gradient turn out to be the form as:

G[q] =
∑
n∈N0

(
(λq

n − λQ
n)2 + (lqn − lQn )2

)
and

∇G[q] = 2
∑
n∈N0

(
(λq

n − λQ
n)
∂λn
∂q

+ (lqn − lQn )
∂ln
∂q

)
,

respectively where from [10] and Lemma 1.3

∂λn
∂q

=

−g2n(0)

g2n(1)

g2n(x)

 and
∂ln
∂q

=

−
∂ln
∂q

(0)
∂ln
∂q

(1)
∂ln
∂q

(x)

 .

It is obvious that 0 = G[Q] < G[q] for q 6= Q ∈∈ R2 × L2
R[0, 1]. In other words,

Q ∈ R2 × L2
R[0, 1] is the global minimum for G[R2×].

Now let consider the vectors

Vλm =

 −g2m(0)

−g2m(1)

2 d
dx

(g2n(x))

 and Vlm =


−∂ln

∂q
(0)

−∂ln
∂q

(1)

2 d
dx

(
∂ln
∂q

(x)
)
 .
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By using integration by part, we have

(2.1) < f, 2h′ >L2= fh|10 + Γ(f, h),

where f, h ∈ H1 − Sobolev space.

Lemma 2.1. The following equalities are hold:

(i) < y30ny20n, 2(y30my20m)′ >= y30ny20ny30my20m|10,
(ii) < y30ny20n, 2(g2m)′ >= y30ny20ng

2
m|10 + δnm,

(iii) < g2n, 2(y30my20m)′ >= g2ny30my20m|10 − δnm,
(iv) < g2n, 2(g2m)′ >= g2ng

2
m|10.

Proof. The proof of (i), (ii) and (iii) can be obtained easily from the equation
(2.1), Lemma 1.4, and anti-symmetry property of the operator Γ consecutively.
For the proof of (iv), see [12]. �

Corollary 2.1. For all m,n ∈ N,

(i) < ∂ln
∂q , Vlm >= 0,

(ii) < ∂ln
∂q , Vλm >= δnm,

(iii) < ∂λn
∂q , Vlm >= −δnm,

(iv) < ∂λn
∂q , Vλm >= 0.

Proof. By using Lemma 2.1, then

(i)

<
∂ln
∂q

, Vlm >

=
∂ln
∂q

(0)
∂lm
∂q

(0)− ∂ln
∂q

(1)
∂lm
∂q

(1)+ <
∂ln
∂q

(x), 2
d

dx

(
∂lm
∂q

(x)

)
>

= −∂ln
∂q

∂lm
∂q

∣∣∣∣1
0

+ < y30ny20n, 2(y30my20m)′ > −[A0m] < y30ny20n, 2(g2m)′ >

−[A0n] < g2n, 2(y30my20m)′ > +[A0n][A0m] < g2n, 2(g2m)′ >

= −∂ln
∂q

∂lm
∂q

∣∣∣∣1
0

+ y30ny20ny30my20m|10 − [A0m]
(
y30ny20ng

2
m|10 + δnm

)
−[A0n]

(
g2ny30my20m|10 − δnm

)
+ [A0n][A0m]g2ng

2
m|10

= −∂ln
∂q

∂lm
∂q

∣∣∣∣1
0

+
∂ln
∂q

∂lm
∂q

∣∣∣∣1
0

+ δnm
(
[A0n]− [A0m]

)
= 0.
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(ii)

<
∂ln
∂q

, Vλm >

= −∂ln
∂q

g2m

∣∣∣∣1
0

+ < y30ny20n, 2(g2m)′ > −[A0n] < g2n, 2(g2m)′ >

= −∂ln
∂q

g2m

∣∣∣∣1
0

+
∂ln
∂q

g2m

∣∣∣∣1
0

+ δnm = δnm.

(iii)

<
∂λn
∂q

, Vlm >

= −g2n
∂lm
∂q

∣∣∣∣1
0

+ < g2n, 2(y30my20m)′ > −[A0m] < g2n, 2(g2m)′ >

= −g2n
∂lm
∂q

∣∣∣∣1
0

+ g2n
∂lm
∂q

∣∣∣∣1
0

− δnm = −δnm.

(iv) See [12].

�

Theorem 2.1. The set {∂λn
∂q : n ∈ N0} ∪ {∂ln∂q : n ∈ N0} is linearly independent.

Proof. Let us suppose ∑
n∈N0

(an
∂λn
∂q

+ bn
∂ln
∂q

) = 0,

where an, bn are some real numbers. Since scalar product is continuous, then
we find from Corollary 2.1 that

0 = <
∑
n∈N0

(an
∂λn
∂q

+ bn
∂ln
∂q

), Vλm >

=
∑
n∈N0

(
an <

∂λn
∂q

, Vλm > +bn <
∂ln
∂q

, Vλm >
)

= bm,

and

0 = <
∑
n∈N0

(an
∂λn
∂q

+ bn
∂ln
∂q

), Vlm >

=
∑
n∈N0

(
an <

∂λn
∂q

, Vlm > +bn <
∂ln
∂q

, Vlm >
)

= −am.

These complete the proof. �
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Theorem 2.2. The functional G(q) has no local minima at q with G(q) > 0. In
other words, ∇G(q) = 0⇔ G(q) = 0.

Proof. It is obvious that If G(q) = 0, then ∇G(q) = 0. If ∇G(q) = 0, then by
taking an = λq

n−λQ
n and bn = lqn− lQn it can be seen easily from Theorem 2.1 that

G(q) = 0. �

3. NUMERICAL EXPERIMENTS

In order to present the numerical examples related with the problem, we use
the test potentials Q1(x) and Q2(x) which was considered in [10,11,15] and the
test boundary coefficient H0 = 1 and H1 = 2. The Fletcher-Reeves algorithm is
applied as follows [16]:

Step 0. Select an initial potential as q0. Set n = 0 and g0 = h0 = −∇G[q0].
Step 1. Compute αn > 0 such that

G[qn + αnhn] = min{G[qn + αhn] : α ≥ 0}.

Step 2. Set qn+1 = qn + αnhn.

Step 3. If G[qn+1] is small enough, stop; else, set

gn+1 = −∇G[qn+1],

hn+1 = gn+1 + γnhn, with γn =
< gn+1, gn+1 >

< gn, gn >
,

set n = n+ 1, and go to step 1.

In the numerical calculations of potentials and boundary conditions, they
are taken into account the sensitivities as G(qn) ≈ 10−6 and G(qn) ≈ 10−5 for
Q1(x) and Q2(x) respectively and graphs of Fig. 3.1 and Fig. 3.2 are sketched
according to these sensitivities. In these graphs, the q̂(x) represents the po-
tential which is calculated along with unknown boundary coefficients and q(x)

shows the potential which is obtained for known boundary coefficients h0 = 1

and h1 = 2 in (1.2). In order to get iterations, we start with q0 = 0 and
q0 = (q̂0, h0, h1) = (0, 0, 0). While we use 10 pairs of data for Q2(x) in Fig. 3.2,
besides this it is taken 5 pairs of data for Q1(x) in Fig. 3.1.

On the other hand in the calculation of potential and boundary conditions
together, we reset the iterative potential qj to zero at some iteration number j
while keeping the boundary coefficients. For example, q̂0 = q̂60 = q̂120 = q̂180 = 0
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and q̂0 = q̂60 = 0 are picked for Q1(x) and Q2(x) respectively. These can be
seen in Fig. 3.1b for Q1(x) and Fig. 3.2b for Q2(x). The results for q and q̂(x)

are calculated at 63 and 233 iterations for Q1(x) in Fig. 3.1a and at 53 and
148 iterations for Q2(x) in Fig. 3.2a. As a result of calculations, we find h0 =

0.995729, h1 = 1.99695 and h0 = 1.008437, h1 = 2.015540 for Q1(x) and Q2(x)

respectively.
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FIGURE 3.1. The graphics (a) and (b) represent the numerical results with five pairs
of data for smooth Q1(x).
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FIGURE 3.2. The graphics (a) and (b) represent the show results with ten pairs of
data for non-smooth Q2(x).
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