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SOME PROPERTIES OF EQUIDISTRIBUTED AND WELL DISTRIBUTED
SEQUENCES

Leila Miller-Van Wieren

ABSTRACT. Many authors studied properties related to distribution and summa-
bility of sequences of real numbers. In these studies, different types of limit
points of a sequence were introduced and studied including statistical and uni-
form statistical cluster points of a sequence. In this paper, we aim to prove
some new results about the nature of different types of limit points, this time
connected to equidistributed and well distributed sequences.

1. INTRODUCTION

In recent years, many mathematicians studied properties of real valued se-
quences and different types of summability of a sequence such as statistical
convergence, uniform statistical convergence and ideal convergence. Related
to these types of convergence various types of limit points of a sequence were
introduced, connected to the density of the subsequence with the given limit.
Buck [4] , Agnew [1], Buck [5], Buck and Pollard [6], Dawson [7], Miller [12],
Miller and Orhan [14], Zeager [22] have studied different types of summability
and the relation between the summability of a sequence and its subsequences.
Later on, in [2], [9], [10], [15], [16], [20], [21] , [3], [11], [18] different types
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of convergence of a sequence and the related summability of its subsequences
were further studied. More recently, in one of his last papers [13], Miller specifi-
cally studied equidistributed sequences and their subsequences, coming up with
some new and interesting results. In our recent paper [17], we tried to fur-
ther extend Millers results by focusing on well distributed sequences, a more
strict class of sequences. In this paper, we wish to further elaborate on some
properties of equidistributed sequences and well distributed sequences related
to different types of limit points.

2. PRELIMINARIES

Now let us recall some known notions. Let K ⊆ N where N is the set of
natural numbers. If m,n ∈ N, by K(m,n) we denote the cardinality of the set of
numbers i in K such that m ≤ i ≤ n. The numbers

d
¯
(K) = lim inf

n→∞

K(1, n)

n
, d̄(K) = lim sup

n→∞

K(1, n)

n

are called the lower and the upper asymptotic density of the set K, respectively.
If d

¯
(K) = d̄(K) then it is said that d(K) =d

¯
(K) = d̄(K) is the asymptotic density

of K. The uniform density of K ⊆ N has been defined as follows (see [2], [20]):

u
¯
(K) = lim

n→∞

min
i≥0

K (i+ 1, i+ n)

n
, ū(K) = lim

n→∞

max
i≥0

K (i+ 1, i+ n)

n

are respectively called the lower and the upper uniform density of the set K
(the existence of these bounds is also mentioned in [2]). If u

¯
(K) = ū(K), then

u(K) =u
¯
(K) is called the uniform density of K. It is clear that for each K ⊆ N

we have

u
¯
(K) ≤ d

¯
(K) ≤ d̄(K) ≤ ū(K).

The concept of statistical convergence has been introduced by Fast [8] as
follows: Let x = {xn} be a sequence of real numbers. The sequence x is said to
be statistically convergent to a real number l provided that for every ε > 0 we
have d(Kε) = 0, where Kε = {n ∈ N : |xn− l| ≥ ε}. Now let us recall the concept
of uniform statistical convergence related to uniform density. A sequence of
real numbers x = {xn} is said to be uniformly statistically convergent to a real
number l provided that for every ε > 0 we have u(Kε) = 0, where Kε is as just
mentioned.



SOME PROPERTIES OF EQUIDISTRIBUTED AND WELL DISTRIBUTED SEQUENCES 3177

Related to these types of convergence, we can introduce different kinds of
limit points of a sequence x = {xn} that will the topic of discussion of this paper
(see [15], [16], [20], [21]).

Definition 2.1. Given x = {xn}, l is called a statistical cluster point of x if for
every ε > 0, the set {n : |xn − l| < ε} does not have asymptotic density 0. l is
called a uniform statistical cluster point of x = {xn} if for every ε > 0, the set
{n : |xn − l| < ε} does not have uniform density 0.

From the inequalities connecting asymptotic and uniform upper and lower
density it is clear that any statistical cluster point of a sequence is also a uniform
statistical cluster point of the sequence. Next we have some more strictly defined
classes of limit points, namely statistical limit points and uniform statistical limit
points.

Definition 2.2. Given x = {xn}, l is called a statistical limit point of x if there
exists a sequence {nk}, with d̄({nk : k ∈ N}) > 0 and limk→∞ xnk

= l. l is
called a uniform statistical limit point of x if there exists a sequence {nk}, with
ū({nk : k ∈ N}) > 0 and limk→∞ xnk

= l.

From the inequalities connecting asymptotic and uniform upper and lower
density it is clear that any statistical limit point of a sequence is also a uniform
statistical limit point of the sequence.

It is also useful to mention that subsequences of a sequence x can be naturally
identified with numbers t ∈ (0, 1] written by a binary expansion with infinitely
many 1’s. Thus we can denote by {x(t)} the subsequence of x corresponding to
t.

3. EQUIDISTRIBUTED SEQUENCES

Equidistributed sequences, were first introduced by Herman Weyl, 100 years
ago (see [19]). Recall the following definition.

Definition 3.1. A sequence x = {xn} contained in (0, 1] is said to be equally
distributed if for every [a, b], subinterval of (0, 1],

limn→∞
|{1 ≤ i ≤ n, xi ∈ [a, b]}|

n
= m([a, b]).

(Trivially closed intervals in (0, 1] can be replaced with all intervals in (0, 1].)
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Example 1. Let x = {xn} where xn = [cn], where c is irrational and [r] is the
fractional part of r. It is well known that this sequence is equidistributed.

We next state a simple lemma that gives another way of stating the definition
of equidistributed sequences. It follows clearly from the definition of asymptotic
density so the proof is omitted.

Lemma 3.1. A sequence x = {xn} contained in (0, 1] is equally distributed if for
every [a, b], subinterval of (0, 1], d({n : xn ∈ [a, b]}) = m([a, b])}. Closed intervals
in (0, 1] can be replaced with all intervals in (0, 1].

We prove the following result regarding statistical and uniform statistical clus-
ter points of an equidistributed sequence.

Theorem 3.1. Suppose x = {xn} is a equidistributed sequence of reals in (0, 1].
Then [0, 1] is the set of statistical cluster points of x as well as the set of uniform
statistical cluster points of x.

Proof. Let l ∈ [0, 1] be arbitrary, ε > 0 arbitrary. Since {xn} is equidistributed,
by Lemma 3.1, d({n : |xn − l| < ε}) = m([0, 1]

⋂
(l − ε, l + ε)) > 0. Hence l

is a statistical cluster point of {xn}. Since [0, 1] is the set of all limit points of
{xn} it follows that [0, 1] is the set of statistical cluster points of {xn}. As earlier
mentioned, the set of uniform statistical cluster points of {xn} contains the set
of statistical cluster points of {xn}, so the theorem is proved. �

However, next we show that the situation regarding statistical limit points of
an equidistributed sequence is the opposite.

Theorem 3.2. Suppose x = {xn} is a equidistributed sequence of reals in (0, 1].
Then x has no statistical limit points.

Proof. Since [0, 1] is the set of (all) limit points of x, let l ∈ [0, 1] be arbitrary
fixed. Suppose, contrary to what we want to show, that l is a statistical limit
point of x. Then there exists a subsequence of {xn}, {xnk

}, such that xnk
→ l

and d̄({nk : k ∈ N}) = ε, for some ε > 0. Let I = [0, 1]
⋂

(l − ε
4
, l + ε

4
). Then

m(I) ≤ ε
2
. Since xnk

→ l, all but finitely many xnk
∈ I. From d̄({nk : k ∈ N}) = ε

we conclude that d̄({nk : xnk
∈ I}) = ε > m(I), and consequently that d̄({n :

xn ∈ I}) ≥ d̄({nk : xnk
∈ I}) > m(I), a contradiction since x is equidistributed

and therefore by Lemma 3.1, d({n : xn ∈ I}) = m(I). This completes the
proof. �
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4. RESULTS ON WELL DISTRIBUTED SEQUENCES

In summability the concept of uniform statistical density and convergence are
introduced as more strict than asymptotic density and statistical convergence.
Parallel with these notions, from the concept of equidistributed sequences, we
move to the more strict notion of well distributed sequences.

Definition 4.1. A sequence x = {xn} contained in (0, 1] is said to be well dis-
tributed if for every [a, b], subinterval of (0, 1],

limn→∞
|{m+ 1 ≤ i ≤ m+ n, xi ∈ [a, b]}|

n
= m([a, b]).

uniformly in m. (Trivially closed intervals in (0, 1] can be replaced with all intervals
in (0, 1].)

Clearly, well distributed sequences are equidistributed as well.

Remark 4.1. The sequence described in Example 1 is well distributed (not just
equidistributed). Of course there are examples of sequences that are equidistributed
but not well distributed. We will give such an example at the end of this section.

Once again the definition of well distributed sequences can be restated in the
following lemma. It follows from the definition of uniform density so the proof
is omitted.

Lemma 4.1. A sequence x = {xn} contained in (0, 1] is well distributed if for every
[a, b], subinterval of (0, 1], u({n : xn ∈ [a, b]}) = m([a, b]). Closed intervals in (0, 1]

can be replaced with all intervals in (0, 1].

Now we can formulate some results concerning well distributed sequences,
analogous to the results in the previous section.

Theorem 4.1. Suppose x = {xn} is a well distributed sequence of reals in (0, 1].
Then [0, 1] is the set of statistical cluster points of x as well as the set of uniform
statistical cluster points of x.

Proof. This theorem is a direct corollary of Theorem 3.1. Namely since x is well
distributed in (0, 1], it is consequently equidistributed in (0, 1], so the conclusion
follows. �

Next we have the following analogue of Theorem 3.2, and this time the con-
clusion is analogous but different.
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Theorem 4.2. Suppose x = {xn} is a well distributed sequence of reals in (0, 1].
Then x has no uniform statistical limit points, and consequently no statistical limit
points.

Proof. Since [0, 1] is the set of (all) limit points of x, let l ∈ [0, 1] be arbitrary
fixed. Suppose, contrary to what we want to show, that l is a uniform statistical
limit point of x. Then there exists a subsequence of {xn}, {xnk

}, such that
xnk
→ l and ū({nk : k ∈ N}) = ε, for some ε > 0. Let I = [0, 1]

⋂
(l − ε

4
, l + ε

4
).

Then m(I) ≤ ε
2
. Since xnk

→ l, all but finitely many xnk
∈ I. From ū({nk :

k ∈ N}) = ε we conclude that ū({nk : xnk
∈ I}) = ε > m(I), and consequently

that ū({n : xn ∈ I}) ≥ ū({nk : xnk
∈ I}) > m(I), a contradiction since x is

well distributed and therefore by Lemma 4.1, u({n : xn ∈ I}) = m(I). This
completes the proof that x has no uniform statistical limit points. Since the set
of statistical limit points is contained in the set of uniform statistical limit points,
the proof is complete. �

We see that the conclusion in Theorem 4.2 is stronger than in Theorem 3.2.
In fact, we give an example to show that a sequence that is equidistributed, but
not well distributed in (0, 1] may have a uniform statistical point.

Example 2. Suppose that x = {xn} is any fixed equidistributed sequence (for
instance the one in Example 1 ). We construct a new sequence y = {yn} by inserting
some 1s into the sequence x the following way:

x1, x2, 1, x3, x4, x5, x6, 1, 1, x7, x8, x9, x10, x11, x12, x13, x14, 1, 1, 1, . . . ,

i.e., we follow 2n consecutive members of x by n consecutive 1′s and continue this
way for n = 1, 2, 3 . . .. It is easy to see that the new sequence y is still equidis-
tributed since the asymptotic density of the inserted 1′s is 0. However 1 is a uni-
form statistical limit point of y since ū({n : yn = 1}) = 1 as y contains arbitrarily
long strings of consecutive 1′s. Hence y is an equidistributed sequence that has a
uniform statistical limit point.

5. SOME ADDITIONAL CONNECTIONS

In his paper [13], Miller proved the following theorem regarding the size of
the set of equidistributed subsequences of a sequence. Additionally in [17] we
obtained a corollary of it.
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Theorem 5.1. Suppose x = {xn} is a sequence of reals in (0, 1]. The set of t ∈ (0, 1]

for which x(t) is equidistributed is meager (first Baire category).

Corollary 5.1. Suppose x = {xn} is a sequence of reals in (0, 1]. The set of t ∈ (0, 1]

for which x(t) is well distributed is meager.

In light of the results about statistical and uniform statistical limit points, we
can offer a new proof for Millers result. For this purpose we also recall an earlier
result of the author and co-authors, see [11].

Theorem 5.2. Suppose x = {xn} is a bounded sequence of reals and L is the set of
its limit points. Then the set of t ∈ (0, 1] for which x(t) has all l ∈ L as statistical
(and consequently uniform statistical) limit points is comeager.

Now we can give a new and short proof of Theorem 5.1 and Corollary 5.1.

Proof. Suppose x = {xn} is a sequence of reals in (0, 1]. If L denotes the set
of limit poits of x, L is a non-empty closed subset of [0, 1]. By Theorem 5.2,
the set of t ∈ (0, 1] for which x(t) has all l ∈ L as statistical limit points is
comeager. Therefore the set of t ∈ (0, 1] for which x(t) has no statistical limit
points is meager. From Theorem 3.2 we conclude that the set of t ∈ (0, 1] for
which x(t) is equidistributed is contained in the set of t ∈ (0, 1] for which x(t)

has no statistical limit points, and therefore is meager. This completes the proof
of Theorem 5.1 and consequently Corollary 5.1. �

Finally we can bring up one more new insight related to the connection of
well distributed sequences and uniform statistical limit points, this time using
Lebesgue measure. In [17] we proved the following:

Theorem 5.3. Suppose x = {xn} is a sequence of reals in (0, 1]. The set of t ∈ (0, 1]

for which x(t) is well distributed has Lebesgue measure 0.

The same of course is not true if we replace well distributed with equidis-
tributed, see [13], [17]. However looking closely at the argument in the proof
of Theorem 5.3 we can obtain the following new result.

Theorem 5.4. Suppose x = {xn} is a sequence of reals in (0, 1]. Then there exists
l ∈ [0, 1] such that the set of t ∈ (0, 1] for which l is a uniform statistical limit point
of x(t) has Lebesgue measure 1.
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Proof. Clearly ū({i, xi ∈ [0, 1
2
]} ≥ 1

2
or ū({i, xi ∈ [1

2
, 1]} ≥ 1

2
. Without loss of

generality we can assume that ū({i, xi ∈ [0, 1
2
]} ≥ 1

2
.

In the proof of Theorem 5.3, we showed that in this case, for n ∈ N,

Xn = {t ∈ (0, 1], x(t)contains n consecutive terms in [0,
1

2
]}

has measure 1 (in that proof a half-open interval was used, but using a closed
interval does not change the argument).

We can continue the argument by dividing the interval [0, 1
2
] into two halves

[0, 1
4
], [1

4
, 1
2
] and in a complete analogous way as in the proof of Theorem 5.3

show that for one of these two intervals:
For any m ∈ N, the set of t ∈ (0, 1] for which x(t) contains m consecutive

terms inside the interval has measure 1.
If we continue dividing the interval into two halves inductively, we obtain a

nested sequence of intervals In of length 1
2n

, In+1 ⊆ In such that: For any m, n
the set of t ∈ (0, 1] for which x(t) contains m consecutive terms inside In has
measure 1. Now introduce the following notation. Let

Yn = {t ∈ (0, 1], x(t)contains n consecutive terms in In}.

From the above discussion for any n, Yn has Lebesgue measure 1, and conse-
quently Y =

⋂
n Yn has measure 1. Now let l =

⋂
n In ( In are nested closed

intervals with lengths going to 0). Suppose t ∈ Y . It is easy to construct a
subsequence of x(t) that converges to l with upper statistical uniform density 1

(simply take the union of segments of n consecutive terms of x(t) contained in
In, over n ). Hence for any t ∈ Y , l is a uniform statistical limit point of x(t).
Since Y has measure 1, the theorem is proved. �

Theorem 5.3 and Theorem 5.4 share a similar proof and Theorem 5.3 could
now be seen as a corollary of Theorem 5.4. However it is also important to
mention that the analogue of Theorem 5.4 for statistical limit points does not
hold. Namely as Miller proved in [13], if x = {xn} is a equidistributed sequence
of reals in (0, 1], then the set of t ∈ (0, 1] for which x(t) is equidistributed has
Lebesgue measure 1. As already discussed in Theorem 3.2, equidistributed se-
quences have no statistical limit points. Hence, if x = {xn} is a equidistributed
sequence of reals in (0, 1], then the set of t ∈ (0, 1] for which x(t) has no statis-
tical limit points has Lebesgue measure 1. The discussion here is also related to
results in [15] and [16].
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