ADV MATH SCI JOURNAL Advances in Mathematics: Scientific Journal **10** (2021), no.9, 3185–3194 ISSN: 1857-8365 (printed); 1857-8438 (electronic) https://doi.org/10.37418/amsj.10.9.8

Γ -LANGUAGES AND Γ -AUTOMATA

Anjeza Krakulli

ABSTRACT. The aim of this paper is to extend the notion of an automaton as a triple made of a set of states, a free monoid on some set, and an action of this monoid on the set of states, to the case where the free monoid is replaced by a free Γ -monoid, and the action is replaced by the action of this Γ -monoid on the set of states. We call the respective triple a Γ -automaton. This concept leads to another new concept, that of a Γ -language, which is a subset of a free Γ -monoid. Also we define recognizable Γ -languages and prove that they are exactly those Γ -languages that are recognized by a finite Γ -automaton. In the end, in analogy with the standard theory, we relate the recognizability of a Γ -language with the concept of division of semigroups.

1. INTRODUCTION AND PRELIMINARIES

Let S and Γ be two non empty sets. Every map from $S \times \Gamma \times S$ to S will be called a Γ -multiplication in S and is denoted by $(\cdot)_{\Gamma}$. The result of this multiplication for $a, b \in S$ and $\gamma \in \Gamma$ is denoted by $a\gamma b$. According to Sen and Saha [4], a Γ -semigroup S is an ordered pair $(S, (\cdot)_{\Gamma})$ where S and Γ are non empty sets and $(\cdot)_{\Gamma}$ is a Γ -multiplication on S which satisfies the following property

$$\forall (a, b, c, \alpha, \beta) \in S^3 \times \Gamma^2, (a\alpha b)\beta c = a\alpha (b\beta c).$$

²⁰²⁰ Mathematics Subject Classification. 20M05, 20M20, 20M35, 68Q45.

Key words and phrases. Free Γ-monoid, Γ-language, Γ-automaton, recognizable Γ-language. *Submitted:* 22.08.2021; *Accepted:* 08.09.2021; *Published:* 09.09.2021.

One can thus regard Γ -semigroups, as semigroups with several multiplications, one for each "operator" $\gamma \in \Gamma$. It is also clear that for each such $\gamma \in \Gamma$ we have already a plain semigroup $S_{\gamma} = (S, \circ_{\gamma})$ defined where \circ_{γ} is given by $x \circ_{\gamma} y = x \gamma y$. If $(S, (\cdot)_{\Gamma})$ and $(T, (\cdot)_{\Gamma})$ are two Γ -semigroups, then a map $\varphi : S \to T$ is called a Γ -homomorphism if for every $x, y \in S$ and $\gamma \in \Gamma$ we have $\varphi(x\gamma y) = \varphi(x)\gamma\varphi(y)$. It is folklore the definition of the free Γ -semigroup relative to Γ and a nonempty set A. For sake of completeness we will describe it below. We denote by A_{Γ}^+ the set A together with the set of all strings

$$a_1\gamma_1a_2\ldots a_{n-1}\gamma_{n-1}a_n,$$

where $n \geq 2$, $a_i \in A$ for $1 \leq i \leq n$, and $\gamma_i \in \Gamma$ for all $1 \leq i \leq n-1$. A_{Γ}^+ becomes a Γ -semigroup if we define for all $a_1\gamma_1a_2\ldots a_{n-1}\gamma_{n-1}a_n \in A_{\Gamma}^+$, $a'_1\gamma'_1a'_2\ldots a'_{m-1}\gamma'_{m-1}a'_m \in A_{\Gamma}^+$ and $\gamma \in \Gamma$, a Γ -multiplication by

$$(a_{1}\gamma_{1}\dots a_{n-1}\gamma_{n-1}a_{n})\gamma(a'_{1}\gamma'_{1}\dots a'_{m-1}\gamma'_{m-1}a'_{m})$$

= $a_{1}\gamma_{1}\dots a_{n-1}\gamma_{n-1}a_{n}\gamma a'_{1}\gamma'_{1}\dots a'_{m-1}\gamma'_{m-1}a'_{m}.$

It can be proved very easily that A_{Γ}^+ satisfies the following universal property. For every Γ -semigroup $(S, (\cdot)_{\Gamma})$ and every map $f : A \to A$, there is a unique Γ -homomorphism $\varphi : A_{\Gamma}^+ \to S$ such that $\varphi|_A = f$. We remark here that there is no known notion of free Γ -monoids as there are no Γ -monoids at all as we will explain shortly below. Indeed, if there is a Γ -semigroup $(S, (\cdot)_{\Gamma})$ with a unit e, then for every $\alpha, \beta \in \Gamma$ and $x, y \in S$ we would have

$$x\alpha y = x\alpha(e\beta y) = (x\alpha e)\beta y = x\beta y.$$

But this would imply that the multiplications α and β coincide, and so we would end up with a semigroup with a unit element.

The reason we are interested in free Γ -monoids is our intention to see how notions such as languages and finite state machines, which are closely related to free monoids, generalize to the case of Γ -semigroups.

Below we give a few basic definitions from the theory of languages and machines. Let A be a nonempty finite alphabet. We say that L is a language with letters from A if $L \subseteq A^*$ where A^* is the free monoid on A. We say that a monoid M recognizes L if there is a monoid morphism $\eta : A^* \to M$ and a subset $P \subseteq M$ such that $\eta^{-1}(P) = L$. A language is called recognizable if there is a monoid M which recognizes L. Let A and Q be finite nonempty sets and let $\cdot : Q \times A^* \to Q$

be a monoid action. In such a case we call the triple $\mathcal{A} = (Q, A, \cdot)$ a finite state automaton. The set Q is called the set of states and A is called the alphabet. It is clear that for every $w \in A^*$ we have a map $[w] : Q \to Q$ defined by $q \mapsto q \cdot w$. The composition $[v] \circ [u]$ of any two such maps gives in fact [vu], a map of the same sort, therefore we have a submonoid $M(\mathcal{A})$ of the full transformation monoid $\mathcal{T}(Q)$ whose unit is [1]. This monoid $M(\mathcal{A})$ is called the transition monoid of \mathcal{A} . Also there is an obvious morphism $A^* \to M(\mathcal{A})$. It is interesting to mention that the languages that are recognized from the transition monoid $M(\mathcal{A})$ and those that are recognized from the automaton $\mathcal{A} = (Q, A, \cdot)$ match to each other. We recall here that $L \subseteq A^*$ is recognized by $\mathcal{A} = (Q, A, \cdot)$ if there is a $q_0 \in Q$ (called the initial state), and $F \subseteq Q$ (called the set of final states) such that $u \in L$ if and only if $q_0 \cdot u \in F$.

Of a very importance notion in the theory is the syntactic congruence \sim_L of a language $L \subseteq A^*$. It is defined by setting $u \sim_L v$ if and only if C(u) = C(v)where

$$C(u) = \{(x, y) \in A^* \times A^* : xuy \in L\}.$$

The quotient monoid A^*/\sim_L is called the syntactic monoid of L and it is denoted by M(L). It is proved in [3] that a monoid M recognizes L if and only if M(L)divides M.

For everything related with semigroups, languages and machines which is not explained here we refer the reader to [1] and [3].

2. Free Γ -monoids and Γ -languages

Throughout this paper we assume that Γ and A are two nonempty sets and $\lambda : \Gamma \to A$ is an injection. For every $\gamma \in \Gamma$ we write a_{γ} instead of $\lambda(\gamma)$. We have already defined the free Γ -semigroup A_{Γ}^+ on A. Now, we let A_{Γ}^* , or simply A^* if no confusion arises, the quotient of A_{Γ}^+ by the equivalence generated by pairs

$$(a_{\gamma}\gamma(a_{1}\gamma_{1}\ldots\gamma_{n-1}a_{n}),a_{1}\gamma_{1}\ldots\gamma_{n-1}a_{n}),((a_{1}\gamma_{1}\ldots\gamma_{n-1}a_{n})\gamma a_{\gamma},a_{1}\gamma_{1}\ldots\gamma_{n-1}a_{n})$$

for all strings $a_1\gamma_1 \ldots a_{n-1}\gamma_{n-1}a_n$ and $\gamma \in \Gamma$. Note that A^* is still a Γ -semigroup where the Γ -multiplication is defined by

$$cls(a_1\gamma_1\dots a_{n-1}\gamma_{n-1}a_n)\gamma cls(a'_1\gamma'_1\dots a'_{m-1}\gamma'_{m-1}a'_m)$$

= $cls(a_1\gamma_1\dots a_{n-1}\gamma_{n-1}a_n\gamma a'_1\gamma'_1\dots a'_{m-1}\gamma'_{m-1}a'_m).$

Also we note that for each $\gamma \in \Gamma$, $A_{\gamma}^* = (A^*, \circ_{\gamma})$ is a monoid with unit a_{γ} . We call A^* the free Γ -monoid on the set A.

The Γ -semigroup A^* has the following universal property in the category of Γ -semigroups (S, Γ) where each S_{γ} is a monoid with unit e_{γ} and for every pair $(\gamma, \gamma') \in \Gamma \times \Gamma$ we have $e_{\gamma}\gamma'e_{\gamma} = e_{\gamma}$. For every such Γ -semigroup (S, Γ) and every map $f : A \to S$ such that $f(a_{\gamma}) = e_{\gamma}$, there is a unique Γ -homomorphism $\varphi : (A^*, \Gamma) \to (S, \Gamma)$ such that $\varphi|_A = f$. Indeed, f extends to $\phi : A_{\Gamma}^+ \to S$ where for every $a \in A$,

$$\phi(a) = f(a),$$

and for every string $a_1\gamma_1 \dots a_{n-1}\gamma_{n-1}a_n$ we have

$$\phi(a_1\gamma_1\dots a_{n-1}\gamma_{n-1}a_n) = f(a_1)\gamma_1\dots f(a_{n-1})\gamma_{n-1}f(a_n).$$

It is easy to see that ϕ is the only Γ -homomorphism which matches with f in A. Further we see that ϕ agrees with the defining relations of A^* , for if

$$(a_{\gamma}\gamma(a_1\gamma_1\ldots a_{n-1}\gamma_{n-1}a_n), a_1\gamma_1\ldots a_{n-1}\gamma_{n-1}a_n)$$

is such a relation, then

$$\phi(a_{\gamma}\gamma(a_{1}\gamma_{1}\dots a_{n-1}\gamma_{n-1}a_{n})) = f(a_{\gamma})\gamma(f(a_{1})\gamma_{1}\dots f(a_{n-1})\gamma_{n-1}f(a_{n}))$$
$$= e_{\gamma}\gamma(f(a_{1})\gamma_{1}\dots f(a_{n-1})\gamma_{n-1}f(a_{n}))$$
$$= f(a_{1})\gamma_{1}\dots f(a_{n-1})\gamma_{n-1}f(a_{n})$$
$$= \phi(a_{1}\gamma_{1}\dots a_{n-1}\gamma_{n-1}a_{n}).$$

The proof for the other relation $((a_1\gamma_1 \dots \gamma_{n-1}a_n)\gamma a_{\gamma}, a_1\gamma_1 \dots \gamma_{n-1}a_n)$ is similar and is omitted. It follows that ϕ induces a Γ -homomorphism $\varphi : (A^*, \Gamma) \to (S, \Gamma)$ such that $\varphi|_A = f$, which likewise ϕ , is the unique Γ -homomorphism with the above property.

Definition 2.1. Let A^* be the free Γ -monoid on A. Any nonempty subset $L \subseteq A^*$ is called a Γ -language.

Definition 2.2. We say that a Γ -language $L \subseteq A^*$ is recognized by a monoid M if there is a subset $\hat{L} \subseteq \Gamma \times A^*$ such that $\pi_2(\hat{L}) = L$ where π_2 is the projection in the second coordinate, a semigroup morphism $\eta : \Gamma \times A^* \to M$ such that for every $\gamma \in \Gamma$, $\eta(\gamma, a_\gamma) = 1_M$, and a subset $P \subseteq M$, such that $\hat{L} = \eta^{-1}(P)$.

Definition 2.3. We say that a Γ -language $L \subseteq A^*$ is recognizable if it is recognized by a finite monoid.

3. The definition of a Γ -automaton and a basic property

Definition 3.1. Let A be a finite alphabet and Γ be a nonempty set such that there is an injection $\lambda : \Gamma \to A$, and let A^* be the free Γ monoid on A defined with these data. We call a triple $\mathcal{A} = (Q, A, \Gamma)$ a Γ -automaton if there is a map

$$: Q \times \Gamma \times A^* \to Q$$
$$(q, \gamma, w) \mapsto q\gamma w,$$

which satisfies the following properties:

- (i) For every $q \in Q$ and $\gamma \in \Gamma$, $q\gamma a_{\gamma} = q$;
- (ii) For every $q \in Q$, $\alpha, \beta \in \Gamma$ and $u, v \in A^*$, $(q\alpha u)\beta v = q\alpha(u\beta v)$.

The set Q is called the set of states of A. When Q is finite, we say that A is a finite state Γ -automaton. We remark here that the action of A^* on the set of states Q is nothing but the one defined in [5] apart from the fact that we do not assume the existence of a unit element for A^* .

Definition 3.2. Let $\mathcal{A} = (Q, A, \Gamma)$ be a Γ -automaton. We say that a Γ -language $L \subseteq A^*$ is recognized by \mathcal{A} if there is a state $q_0 \in Q$ (called the initial state) and a set of states F (called the set of final states) such that $u \in L$ if and only if there is $\gamma \in \Gamma$ such that $q_0 \gamma u \in F$.

Every Γ -automaton $\mathcal{A} = (Q, A, \Gamma)$ gives rise to a submonoid $\mathcal{M}_{\Gamma}(\mathcal{A})$ of the full transformation monoid $\mathcal{T}(Q)$ of the set Q. The elements of $\mathcal{M}_{\Gamma}(\mathcal{A})$ are maps

 $[\gamma, w]: Q \to Q$ such that $q \mapsto q\gamma w$,

for every $\gamma \in \Gamma$ and $w \in A^*$. The composition $[\gamma', w'] \circ [\gamma, w]$ of two such maps is the map $[\gamma, w\gamma'w']$ since for every $q \in Q$,

$$([\gamma', w'] \circ [\gamma, w])(q) = [\gamma', w'](q\gamma w)$$
$$= (q\gamma w)\gamma'w'$$
$$= q\gamma(w\gamma'w')$$
$$= [\gamma, w\gamma'w'](q).$$

This shows that $\mathcal{M}_{\Gamma}(\mathcal{A})$ is closed under \circ , and therefore a subsemigroup of $\mathcal{T}(Q)$. Note that for every $\gamma \in \Gamma$, the maps $[\gamma, a_{\gamma}]$ coincide and equal to id_Q , so $\mathcal{M}_{\Gamma}(\mathcal{A})$ is a submonoid of $\mathcal{T}(Q)$ which will be called the transition monoid of the Γ -automaton \mathcal{A} .

On the other hand we can consider the set $\Gamma \times A^*$ equipped with the multiplication

$$(\gamma', w') \cdot (\gamma, w) = (\gamma, w\gamma' w').$$

It forms a semigroups since

$$\begin{aligned} ((\gamma'', w'') \cdot (\gamma', w')) \cdot (\gamma, w) &= (\gamma', w'\gamma''w'') \cdot (\gamma, w) \\ &= (\gamma, w\gamma'w'\gamma''w'') \\ &= (\gamma'', w'') \cdot (\gamma, w\gamma'w') \\ &= (\gamma'', w'') \cdot ((\gamma', w') \cdot (\gamma, w)). \end{aligned}$$

Finally, the map

$$\eta: \Gamma \times A^* \to \mathcal{M}_{\Gamma}(\mathcal{A})$$
 such that $(\gamma, w) \mapsto [\gamma, w]$

is a homomorphism of semigroups since

$$\eta((\gamma', w') \cdot (\gamma, w)) = \eta((\gamma, w\gamma'w'))$$
$$= [\gamma, w\gamma'w']$$
$$= [\gamma', w'] \circ [\gamma, w]$$
$$= \eta((\gamma', w')) \circ \eta((\gamma, w)).$$

Remark here that η has an important property, it sends every (γ, a_{γ}) to the unit of $\mathcal{M}_{\Gamma}(\mathcal{A})$. This follows from our previous remark that $[\gamma, a_{\gamma}] = id_Q$. We call η the canonical morphism of \mathcal{A} .

Theorem 3.1. A Γ -language $L \subseteq A^*$ is recognized by a Γ -automaton $\mathcal{A} = (Q, A, \Gamma)$ if it is recognized by the transition monoid $\mathcal{M}_{\Gamma}(\mathcal{A})$ of this Γ -automaton. Moreover, L is recognized by a finite Γ -automaton if and only if it is recognizable.

Proof. Suppose that *L* is recognized by A and let q_0 be the initial state and *F* the set of final states. Consider now the set

$$\hat{L} = \{ (\gamma, u) \in \Gamma \times A^* : q_0 \gamma u \in F \}.$$

From Definition 3.2 we see that $\pi_2(\hat{L}) = L$. Let now $P = \eta(\hat{L})$ where η : $\Gamma \times A^* \to \mathcal{M}_{\Gamma}(\mathcal{A})$ is the canonical morphism of the automaton. If we show that $\eta^{-1}(P) = \hat{L}$, then from Definition 2.2 it follows that L is recognized by the monoid $\mathcal{M}_{\Gamma}(\mathcal{A})$. Let $(\gamma, u) \in \eta^{-1}(P)$, hence $[\gamma, u] \in P = \eta(\hat{L})$ and then there is $(\gamma', u') \in \hat{L}$ such that $[\gamma, u] = [\gamma', u']$. It follows that

$$q_0\gamma u = [\gamma, u](q_0) = [\gamma', u'](q_0) = q_0\gamma' u'.$$

But $u' \in L$, hence $q_0 \gamma' u' \in F$ and consequently $q_0 \gamma u \in F$. This proves that $(\gamma, u) \in \hat{L}$. We have thus proved that $\eta^{-1}(P) \subseteq \hat{L}$, and since the reverse inclusion is obvious, we have the equality. If it happens that \mathcal{A} is finite, then $\mathcal{M}_{\Gamma}(\mathcal{A})$ is finite and L is thus recognizable.

Conversely, if L is recognizable, then (i) there exists a finite monoid (M, \cdot) , (ii) there is some $\hat{L} \subseteq \Gamma \times A^*$ with $\pi_2(\hat{L}) = L$, (iii) there is $P \subseteq M$, and (iv) a morphism $\eta : \Gamma \times A^* \to M$, such that $\eta(\gamma, a_{\gamma}) = 1_M$ and $\eta^{-1}(P) = \hat{L}$. With these data we define a finite state Γ -automaton $\mathcal{A} = (M, A, \Gamma)$ where for each $m \in M, \gamma \in \Gamma$ and $u \in A^*$, we have $m\gamma u = \eta(\gamma, u) \cdot m$. It is easy to check that $\mathcal{A} = (M, A, \Gamma)$ is indeed a Γ -automaton. Take now 1_M as the initial state and Pas the set of final states of \mathcal{A} . For this choice we see that \mathcal{A} recognizes L since

$$u \in L \Leftrightarrow \exists \gamma \in \Gamma, (\gamma, u) \in \hat{L} = \eta^{-1}(P)$$
$$\Leftrightarrow \exists \gamma \in \Gamma, \eta(\gamma, u) \in P$$
$$\Leftrightarrow \exists \gamma \in \Gamma, 1_M \gamma u \in P,$$

and then Definition 3.2 applies.

4. Recognizable Γ -languages

We recall from [2] that for some fixed $\gamma_0 \in \Gamma$ it is defined a semigroup Σ_{γ_0} which is a factor of the free semigroup $F(\Gamma \cup A^*)$ on $\Gamma \cup A^*$ by the congruence generated from relations of the form

$$((\alpha,\beta),\alpha),((u,\alpha,v),u\alpha v),((u,v),u\gamma_0 v),$$

for every $\alpha, \beta \in \Gamma$ and $u, v \in A^*$. Letting $\nu : F(\Gamma \cup A^*) \to \Sigma_{\gamma_0}$ be the quotient morphism, we can regard $\nu(A^*)$ as a subsemigroup of Σ_{γ_0} where the multiplication of two classes $\nu(a_1\alpha_1 \dots \alpha_i a_i), \nu(b_1\beta_1 \dots \beta_j b_j)$ of $\nu(A^*)$ is given by

$$\nu(a_1\alpha_1\ldots\alpha_i a_i)\cdot\nu(b_1\beta_1\ldots\beta_j b_j)=\nu(a_1\alpha_1\ldots\alpha_i a_i\gamma_0 b_1\beta_1\ldots\beta_j b_j).$$

Let $L \subseteq A^*$ be a Γ -language. For every $s \in \nu(A^*)$ we let

$$C(s) = \{ (x, y) \in \nu(A^*) \times \nu(A^*) : xsy \in \nu(L) \},\$$

and in similarity with [3] we define a relation \sim_L in $\nu(A^*)$ by setting

 $(s,t) \in \sim_L$ if and only if C(s) = C(t).

It is straightforward that \sim_L is an equivalence relation and that it is compatible with the multiplication in $\nu(A^*)$. We call \sim_L the syntactic congruence in $\nu(A^*)$ defined by *L*. Consider now that quotient semigroup $A^*(L) = \nu(A^*) / \sim_L$ and let $\eta : \nu(A^*) \to A^*(L)$ be the canonical epimorphism.

Definition 4.1. We say that a Γ -language $L \subseteq A^*$ is recognized by a semigroup M if there is a semigroup morphism $\eta : \nu(A^*) \to M$, and a subset $P \subseteq M$, such that $\eta^{-1}(P) = \nu(L)$.

Theorem 4.1. Let $L \subseteq A^*$ be a Γ -language. Then the following hold true.

- (1) A semigroup M recognizes L if and only if $A^*(L)$ divides M.
- (2) If M recognizes L and if M divides N, then N recognizes L.

Proof. (a) We prove first that $A^*(L)$ recognizes L. For this we consider the canonical morphism $\eta : \nu(A^*) \to A^*(L)$: $u \mapsto \eta(u)$ and put $P = \eta(\nu(L))$. If we show that $\eta^{-1}(P) = \nu(L)$ then it follows from Definition 4.1 that $A^*(L)$ recognizes L. The inclusion $\nu(L) \subseteq \eta^{-1}(P)$ is obvious. To prove the reverse inclusion we let $\nu(u) \in \eta^{-1}(P)$, then there is $\nu(v) \in \nu(L)$ such that $\eta(\nu(u)) = \eta(\nu(v))$. From the definition of \sim_L we see that $C(\nu(u)) = C(\nu(v))$. But $(\nu(a_{\gamma_0}), \nu(a_{\gamma_0})) \in C(\nu(v))$ since

$$\nu(a_{\gamma_0})\nu(v)\nu(a_{\gamma_0}) = \nu(a_{\gamma_0})\gamma_0\nu(v)\gamma_0\nu(a_{\gamma_0})$$
$$= \nu(a_{\gamma_0}\gamma_0v\gamma_0a_{\gamma_0})$$
$$= \nu(v) \in \nu(L),$$

consequently we have that $(\nu(a_{\gamma_0}), \nu(a_{\gamma_0})) \in C(\nu(u))$ and then

$$L \ni \nu(a_{\gamma_0})\nu(u)\nu(a_{\gamma_0}) = \nu(a_{\gamma_0})\gamma_0\nu(u)\gamma_0\nu(a_{\gamma_0})$$
$$= \nu(a_{\gamma_0}\gamma_0u\gamma_0a_{\gamma_0})$$
$$= \nu(u).$$

This shows that $\eta^{-1}(P) \subseteq \nu(L)$ and we are done.

(b) Assume now that $A^*(L)$ divides M, then there is a semigroup N, an injective morphism $\alpha : N \to M$ and a surjective morphism $\beta : N \to A^*(L)$. It follows that there is a morphism $\varphi : F(A^*) \to N$ such that $\beta \varphi = \eta \nu$ where $\nu : F(A^*) \to \nu(A^*)$ is the canonical morphism. Consider the following commutative diagram

where ξ is defined on generators by $\xi(\nu(u)) = \varphi(u)$ with $u \in A^*$ and $\xi(\nu(\gamma)) = \varphi(\gamma)$ with $\gamma \in \Gamma$, and $\theta = 1_{\nu(A^*)}$. It is easy to check that ξ is a well defined morphism of semigroups. Since $L \subseteq A^* \subseteq F(A^*)$, we can define $P := \alpha \beta^{-1} \eta \nu(L)$, and then chasing the diagram we see that

$$\begin{aligned} \theta^{-1}\xi^{-1}\alpha^{-1}(P) &= \theta^{-1}\xi^{-1}\alpha^{-1}(\alpha\beta^{-1}\eta\nu(L)) \\ &= \theta^{-1}\xi^{-1}\beta^{-1}\eta\nu(L) & (\alpha \text{ is mono}) \\ &= \theta^{-1}\eta^{-1}\eta\nu(L) & (\text{since } \eta = \beta\xi) \\ &= \theta^{-1}(\nu(A^*) \cap \nu(L)) & (\theta \text{ is mono and } \text{Im}(\theta) = \nu(A^*)) \\ &= \theta^{-1}(\nu(L)) \\ &= \nu(L). \end{aligned}$$

This shows that $\nu(L)$ satisfies the conditions of Definition 4.1 relative to the morphism $\alpha\xi\theta$, thus *M* recognizes *L*.

(c) Suppose that M recognizes L, hence there is a morphism $\psi : \nu(A^*) \to M$ and a subset $P \subseteq M$ such that $\psi^{-1}(P) = \nu(L)$. If we let $N = \text{Im}(\Psi)$, N is a subsemigroup of M and to prove our claim it remains to find a surjective morphism $\pi : N \to A^*(L)$. To achieve this we prove first the implication

$$((\forall u, v \in \nu(A^*)), (\psi(u) = \psi(v))) \Rightarrow (u \sim_L v).$$

Let $(x, y) \in C(u)$, then $xuy \in \nu(L)$. Since both $x, y \in \nu(A^*)$, then

$$xuy = x\gamma_0 u\gamma_0 y.$$

From the assumption that $\psi(u) = \psi(v)$ it follows that

 $\psi(x\gamma_0 v\gamma_0 y) = \psi(x\gamma_0 u\gamma_0 y) \in \psi(\nu(L)) = P,$

which implies that $xvy = x\gamma_0 v\gamma_0 y \in \psi^{-1}(P) = \nu(L)$, and as a result $xvy \in C(v)$. Thus we have the inclusion $C(u) \subseteq C(v)$. The reverse inclusion is proved similarly and we have $u \sim_L v$. Now proposition 1.4 of [3] implies the existence of a surjective morphism $\pi : N \to A^*(L)$. So in conclusion we have that $A^*(L)$ divides M.

Combining (b) and (c) one gets (1), while (2) is a direct consequence of (1). $\hfill \Box$

REFERENCES

- M. LOTHAIRE: Combinatorics on Words, Encyclopedia of Mathematics 17, Addison-Wesley, Reading, MA, 1983.
- [2] E. PASKU: The adjoint semigroup of a Γ semigroup, Novi Sad J. Math. 47(2) (2017), 31-39.
- [3] J-E. PIN: Varieties of formal languages, North Oxford Academic, 1986.
- [4] M.K. SEN, N.K. SAHA: On Γ-semigroups I. Bull. Cal. Math. Soc. 78 (1986), 180-186.
- [5] M.K. SEN, A. SETH: Radical of Γ-semigroup Bull. Calcutta Math. Soc., 80(3) (1988), 189-196.

DEPARTMENT OF MATHEMATICS ALEKSANDËR MOISIU UNIVERSITY OF DURRËS ALBANIA. *Email address*: anjeza.krakulli@gmail.com