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MATRIX STUDY OF THE EQUATION OF SOLID RIGID MOTIONS

Kossi Atchonouglo1 and Kokou N’wuitcha

ABSTRACT. In this article, we described the equations of motion of a rigid solid
by a matrix formulation. The matrices contained in our movement descrip-
tion are homogeneous to the same unit. Inertial characteristics are met in a
4x4 positive definite symmetric matrix called "tensor generalized Poinsot." This
matrix consists of 3x3 positive definite symmetric matrix called "inertia tensor
Poinsot", the coordinates of the center of mass multiplied by the total body mass
and the total mass of the rigid body. The equations of motion are formulated
as a gender skew 4x4 matrices. They summarize the "principle of fundamen-
tal dynamics". The Poinsot generalized tensor appears linearly in this equality
as required by the linear dependence of the equations of motion with the ten
characteristics inertia of the rigid solid.

1. INTRODUCTION

Several formulations of a rigid body motion equation have been developed.
The well known of them is Newton-Euler formulation; it is usually called “classic
Euler equations”(Hubert Hahn [1], Ahmed A. Shabana [2], Haruhiko Asada et
al. [3]). This formulation yields six scalar equations for a rigid body (Dasgupta
et al. [4]). Different approaches have been developed to describe the rigid body
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motion. As an example, many authors for defining velocity, acceleration and
dynamics analysis use vectors (Kozlowski [5], tensors (Fayer et al. [6]), screw-
theory or 6× 6 matrices (Hubert Hahn [1], Hunt [7]). In « Théorie Nouvelle de
la rotation des corps » in 1834, Poinsot has shown that the movement of a body
is composed of a rotation and a translation. The rigid body motion is described
in this chapter taking into account Poinsot approach.

For the motion equations using matrices, particular attention must be paid to
the works of Sheth et al. [8] and Legnani et al. [9] present a matrix approach
witch can be used to write the kinematics and dynamics equations of a rigid
body motion. In their approach, the 3x3 rotation matrix and the 3x1 column
translation vector are gathered in a 4x4 matrix called “ rotatranslation matrix”,
forces and torques are gathered in a 4x4 skew symmetric matrix called “action
matrix” and the ten inertia characteristics of the body in 4x4 symmetric matrix
called “ inertia matrix”. The matrices appearing in our formulation have the
same properties as those described by Legnani et al. [9]

The matrices appearing in our motion description are homogeneous to an
identical unity. Our matrix formulation of the rigid body motion equations is
based on “virtual work principle”. This formulation synthesizes many objects:

- External forces and torques are gathered in a 4x4 skew symmetric matrix
- Dynamics momentum and resulting momentum are also gathered in 4x4

skew symmetric matrix
- Inertial characteristics are gathered in a 4x4 positive definite symmetric

matrix called “generalized Poinsot tensor”. This matrix is compound of
the 3x3 symmetric positive definite matrix called “Poinsot Inertia ten-
sor”, the coordinates of the mass center multiplied by the total mass of
the body and the total mass of the rigid body

- The motion equations are formulated as equality between 4x4 skew sym-
metric matrices. They summarize the “Fundamental dynamics principle”
(equality between dynamics tensor and external forces tensor). The gen-
eralized Poinsot tensor appears linearly in this equality as required by
the linear dependence of motion equations with respect to the ten iner-
tia characteristics of the rigid body.

We show at the end of this chapter the equivalence between our matrix for-
mulation and the classic formulation of rigid body motion equations.
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2. POSITION MATRICES

We suppose that the rigid body occupied a regular region in the 3-dimensional
Euclidean space E3. An orthonormal basis {e1, e2, e3} is viewed as basis fixed
to the body and an orthonormal basis {x1, x2, x3} is fixed in the space. For
simplicity of the exposition, we assume that the origin of the fixed basis is the
point O. The coordinates X i of any point M of S and the coordinates X i

0 of its
initial point are such that

OM = X ixi = X1x1 +X2x2 +X3x3 OM0 = X i
0xi = X1

0x1 +X2
0x2 +X3

0x3.

The translation movement of the rigid body is identified by expressing the
position of the point A as a time function T (t) = OA.

Denoting by Y i the components of the vector AM and by Y i
0 the components

of the vector A0M0 , the rotation movement of S is identified by the rotation
matrix R(t) transforming the vector A0M0 to the vector AM

Y i = R(t)Y i
0 .

Thereafter, we will write R for the rotation matrix and T for the translation
vector instead of the matrix R(t) and the vector T(t).

For more information on the determining of the rotation matrix R, the reader
is invited to read the articles of Vallée et al. [10] and Betsch et al. [11].

The coordinates X i of the point M are related to the components Y i
0 of the

vector A0M0 and the components T i of the vector OA by the affine formula

(2.1) X i = T i +Ri
jY

j
0 .

3. RIGID BODY S KINEMATICS

3.1. Generalized position vector. Choosing l as a characteristic length of the
rigid body S, we located S by introducing a 4 × 1 column vector [X i l]

t which
we’ll call “generalized position vector”. This 4× 1 column vector is related to the
vector [Y i

0 l]
t by the linear formula

(3.1)

(
X

l

)
=

(
R 1

l
T

0t 1

)(
Y0

l

)
.
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The 4 × 4 matrix gathering the 3 × 3 rotation matrix and the 3 × 1 column
translation vector is called “rototranslation matrix” by Legnani et al. [9].

3.2. Generalized velocity and Acceleration Vectors. Since the vector [Y i
0 l]

t

is independent to the time t, the derivative of respect to the time t is calculated
on the rototranslation matrix. Thereby, the generalized vector and the general-
ized acceleration vector of the point M are defined :

d

dt

(
X

l

)
=

(
V(M)

0

)
;

d2

dt2

(
X

l

)
=

(
a(M)

0

)
.

V(M) (resp. a(M) ) is the velocity vector (resp. acceleration vector) of M .
The generalized velocity and acceleration vectors are defined as the first and

the second derivatives of the generalized position vector:(
V(M)

0

)
=

(
Ṙ 1

l
Ṫ

0t 0

)(
Y0

l

)
;

(
a(M)

0

)
=

(
R̈ T̈/l

0t 0

)(
Y0

l

)

3.3. Mass distribution. The mass distribution will be denoted dm0 in the body
S0. Because of the mass conservation, the mass of any part ω0 in S0 is conserved
for the same part ωt in S after translation and rotation transformations. Denot-
ing dm the mass distribution in S, the total mass m of the rigid body satisfies
the conservation low

m =

∫∫∫
S0

dm0 −
∫∫∫

S

dm.

The mass conservation is related to the derivative Ṙ of the transformation of the
point M0 of ω0 to the point M of ω0 . The Jacobean of this transformation is
equal to 1, and dm0(M0) = dm(M).

4. VIRTUAL WORKS PRINCIPLE

Statement : The virtual works of external forces field is equal to the inertia
forces virtual works of any virtual displacement at each time t.

Rigidifying virtual displacement : For an infinitesimal variation δR of the rota-
tion matrix R and an infinitesimal variation δT of the translation vector T, the
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components of the virtual displacement δM are such that(
X

l

)
=

(
δR δT/l

0t 0

)(
Y0

l

)
.

We must ensure that these virtual displacements are rigidifying, i.e. the virtual
variation of matrix rotation δR must verify the linear equation (δR)tR+RtδR =

0 or an equivalent formula for the 4× 4 rotation matrix(
δRt 0

0t 0

)(
R 0

0t 1

)
+

(
Rt 0

0t 1

)(
δR 0

0t 0

)
=

(
03×3 0

0t 0

)
.

External forces In addition to gravity, external forces act on the rigid body. We
will denote f their mass density in M and set f = [f1 f2 f3]

t. The generalized
density vector will be denoted [f 0]t

Virtual works principle is used to formulate the motion equations of the rigid
body S. The application of this principle needs the calculation of external forces
virtual works and inertia forces virtual works. The application of the principle
must take into account the rigidity of the body.

4.1. External Forces Virtual Works. The virtual works of external forces of the
rigid body is given by

τf =

∫∫∫
S

f tδXdm.

In the new formulation presented here, the virtual works of external forces is
expressed in a 4-dimensional form

τf =

∫∫∫
S

[
f t 0
]
δ

(
X

l

)
dm.

As X = T + RY0,

(4.1) τf = tr

((
δR δT/l

0t 0

)(
R 0

0t 1

)∫∫∫
S0

(
Y

l

)[
f t 0
]
dm0

)
.

In this 4-dimensional formulation of virtual external forces works, appears the
4× 4 matrix

F(M) =

(∫∫∫
S0

Yf tdm0 0

l
∫∫∫

S0
f tdm0 0

)
.
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4.2. Inertia Forces Virtual Works. Inertia forces virtual works τa =
∫∫∫

S
ẌtδXdm

can be expressed in a 4-dimensional case:

τa =

∫∫∫
S

(
at 0

)
δ

(
X

l

)
=

∫∫∫
S0

(
R̈ 0

T̈t/l 0

)(
Yt

0 l
)(δR δT/l

0t 0

)(
Y0

l

)
dm0

= tr

{(
δR δT/l

0t 0

)(
R̈ T̈/l

0t 0

)∫∫∫
S0

(
Y0

l

)(
Yt

0 l
)
dm0

}
.

In this 4-dimensional formulation of inertia forces virtual works appears a 4× 4

symmetric matrix

(4.2) J0 =

∫∫∫
S0

(
Y0

l

)(
Yt

0 l
)
dm0 =

(∫∫∫
S0

YYt
0dm0 l

∫∫∫
S0

Y0dm0

l
∫∫∫

S0
Yt

0dm0 l2
∫∫∫

S0
dm0

)
.

This matrix J0 is positive definite.
Note that this matrix is called “inertia matrix” by Legnani et al. [9] or “pseudo

inertial matrix” by Li and Sankar [12].

4.3. matrix formulation of rigid body motion equations. The principle of
virtual works requires equality between external forces virtual works τf and and
inertia forces virtual works τa

τf = tr

{(
δR δT/l

0t 0

)(
Rt 0

0t 1

)}
,

τa = tr

{(
δR δT/l

0t 0

)(
Rt 0

0t 1

)(
R 0

0t 1

)
J0

(
R̈ T̈/l

0t 0

)t}
.

Then, it results from this equality that

(4.3) tr

{(
δR δT/l

0t 0

)(
Rt 0

0t 1

)[
F−

(
R 0

0t 1

)
J0

(
R̈ T̈/l

0t 0

)t]}
= 0

We can remark that

(4.4)

[
F−

(
R 0

0t 1

)
J0

(
R̈ T̈/l

0t 0

)t]
=

(
C 0

Zt 0

)
.

The equation (4.3 ) equivalent to the nullity of the quantity

tr

{(
δR δT/l

0t 0

)(
Rt 0

0t 1

)(
C 0

Zt 0

)}
= tr

((
δRRt

)
C
)

+
1

l
ZtδT
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for all virtual translation δT and virtual skew symmetric matrix δRRt implies
that

• the 3x3 matrix C is symmetric;
• the vector Z is equal to the vector zero.

It results that the 4× 4 matrix

(
C 0

Zt 0

)
is a symmetric matrix:

(4.5)

(
C 0

Zt 0

)t

−

(
C 0

Zt 0

)
= 0.

Applying the constraint (4.5 ) to equation (4.4 ), we obtain the motion differ-
ential equations of the rigid body

(4.6)

(
R 0

0t 1

)
J0

(
R̈ T̈/l

0t 0

)t

−

(
R̈ T̈/l

0t 0

)
J0

(
R 0

0t 1

)t

=

(∫∫∫
S

(
Yf t − fYt

)
dm lR

−lRt 0

)
In equation (4.6), the “Poinsot generalized tensor” J0 appears linearly us the

linear dependence of classic motion equations respect to the ten inertia charac-
teristics.

We can reduce the second member of equation (4.6). The double vector prod-
uct formula

(Y × f)× u = u× (f ×Y) = (Ytu)f − (f tu)Y

available for all vector u, implies:

Yf(M)t − f(M)Yt = −j(Y × f(M)).

It results that ∫∫∫
S

(Yf(M)t − f(M)Yt)dm = −j(ℵA),

where the linear skew application j is associated to the product vector: given
two vectors u and v : u× v = uvt = [j(u)]v.

The external forces momentum at the privilege point A is

ℵA =

∫∫∫
S

Y × f(M)dm.

The motion equations of the rigid body S can be written in a 4-dimensional
form
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(4.7)

(
R 0

0t 1

)
J0

(
R̈ T̈/l

0t 0

)t

−

(
R̈ T̈/l

0t 0

)
J0

(
R 0

0t 1

)t

=

(
j(ℵA) lR
−lRt 0

)
.

One can formulate these matrix equations by Lagrange multipliers techniques.
The rigidity of the body is taken into account by introducing 3 × 3 symmetic
matrix containing Lagrange multipliers ( [10, 13]). In this case, in addition to
external and inertia forces works, one calculates the virtual works taking into
account the rigidity constraint. Once Lagrange multipliers matrix eliminated,
rigid body motion equations (4.7) are obtained (Atchonouglo [15], Atchonouglo
et al. [14]). We note that the reduction element of R and ℵA of external forces
tensors are gathered in the 4× 4 skew symmetric matrix(

j(ℵA) lR
−lRt 0

)
and the motion equations are formulated as equality between 4 × 4 skew sym-
metric matrices.

Rather than gathering reduction elements of R and ℵA in vector with 6 com-
ponents denoted tensor, the external forces tensor will be the 4 × 4 skew sym-
metric matrix (

j(ℵA) lR
−lRt 0

)
.

This is the “action matrix” defined by Legnani et al. Similarly, the 4× 4 skew
symmetric matrix(

R 0

0t 1

)
J0

(
R̈ T̈/l

0t 0

)t

−

(
R̈ T̈/l

0t 0

)
J0

(
R 0

0t 1

)t

will be called dynamics tensor.
Form the virtual works principle, we have deduced dynamics fundamental

principle of the rigid body S: the dynamics tensor and external forces tensor are
equals. This matrix formulation is identical to the mechanic classic formulation
of the six equations of a rigid solid motion.

Note that in the matrix formulation of motion equations appear six scalar
equations independents. indeed, a 4×4 skew symmetric matrix has six indepen-
dent components such as the six independent equations of rigid body motion.
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5. RESULTING THEOREM AND RESULTING MOMENTUM THEOREM

We’ll establish in the two following subsections the link between the classic
formulation of the rigid body motion equations and the matrix formulation that
we have just developed.

The three matrices product below is calculated by blocs(
R̈ T̈/l

0t 0

)(
K0 l

∫∫∫
S

Y0dm∫∫∫
S

Y0
tdm ml2

)(
Rt 0

0t 1

)

=

(
R̈K0 + T̈

∫∫∫
S

Y0
tdm l

(
R̈
∫∫∫

S
Y0dm+mT̈

)
0t 0

)(
Rt 0

0t 1

)

=

(
R̈K0R

t + T̈
(
R
∫∫∫

S
Y0

tdm
)t

l
(
R̈
∫∫∫

S
Y0dm+mT̈

)
0t 0

)
.

Deducting the transpose of this, we have the 4x4 skew symmetric matrix: R̈K0R
t −RtK0R̈+ T̈

(∫∫∫
S Ydm

)t − (∫∫∫S Ydm
)
T̈ t l

(
R̈
∫∫∫

S Y0dm+mT̈
)

−l
(
R̈
∫∫∫

S Y0dm+mT̈
)

0

 .

The form of this dynamics tensor is the same as the form of external forces
tensor. The resulting theorem and momentum resulting theorem are deduced
by equalization of these two tensors.

Let’s calculate the resulting theorem and the resulting momentum theorem in
classic mechanics.

5.1. Resulting Theorem. The dynamics resulting
(
R̈
∫∫∫

S
Y0dm+mT̈

)
is equal

to the external forces resulting

mT̈ + R̈

∫∫∫
S

Y0dm = R.

Remark The mass center G acceleration a(G) of the part S is the second deriv-
ative of the components of vector OG = OA + AG:

ma(G) = mT̈ + R̈

∫∫∫
S0

Y0dm0.

It results the classic resulting theorem

ma(G) = R.



3204 K. Atchonouglo and K. Nwuitcha

5.2. Resulting Momentum Theorem. The dynamics momentum at the point
A

j−1

(
R̈K0R

t −RK0R̈
t + T̈

∫∫∫
S

Ytdm−
(∫∫∫

S

Ydm

)
T̈t

)
is equal to the external forces momentum at the point A

R̈K0R
t −RK0R̈

t + T̈

∫∫∫
S

Ytdm−
(∫∫∫

S

Ydm

)
T̈ t = j(ℵA).

Remark: Since Ṙ = j(Ω)R, the second derivative of rotation matrix is

R̈ = j(Ω)Ṙ + j(Ω̇)R =
(
j(Ω)j(Ω) + j(Ω̇)

)
R.

Then it comes

R̈t = Rt
(
j(Ω)j(Ω)− j(Ω̇)

)
,RK0R̈

t = K
(
j(Ω)j(Ω)− j(Ω̇)

)
.

R̈K0R
t =

(
j(Ω)j(Ω)− j(Ω̇)

)
K.

From the formula j(Ω)j(Ω) = ΩΩt − (ΩtΩ)I we deduce

R̈K0R
t −RK0R̈

t = Ω(KΩ)t − (KΩ)Ωt + j(Ω̇)K + Kj(Ω̇).

From the trace definition(
KΩ̇,Ω,W

)
+
(
Ω̇,KΩ,W

)
+
(
Ω̇,Ω,KW

)
= (trK)

(
Ω̇,Ω,W

)
available for all vector W , it results that (see scalar product definition)(

[K− (trK)I]Ω̇,Ω,W
)

= −g
(
Ω̇× (KΩ),W

)
− g

(
K(Ω̇×Ω),W

)
.

where g is the linear application associated to the scalar product: given two
vectors u and v : < u,v >= utv = g(u,v).

Then j(Ω̇)K + Kj(Ω̇) = j(JΩ̇). Since (see double vector product definition)

Ω(KΩ)t− (KΩ)Ωt = j ((KΩ)×Ω) = −j ((JΩ)×Ω)

then the equation R̈K0R
t −RK0R̈

t can be rewritten

j
(
JΩ̇ + Ω× (JΩ)

)
.

Similarly,

T̈

∫∫∫
S

Ytdm−
∫∫∫

S

YdmT̈ t = j

(∫∫∫
S

Ydm× T̈

)
.



SOLID RIGID MOTIONS 3205

Finally, the equality between dynamics momentum at the point A and the
external forces momentum at the point A is equivalent to

JΩ̇ + Ω× (JΩ) +

∫∫∫
S

Ydm× T̈ = ℵA.

The first member of this equality is equal to the integral
∫∫∫

S
Y × a(M)dm .

Indeed∫∫∫
S

Y × a(M)dm =

∫∫∫
S

Y ×
(
T̈ + R̈Y0

)
dm

=

∫∫∫
S

Y × T̈dm+

∫∫∫
S

Y ×
(
R̈RtY

)
dm

=

∫∫∫
S

Y × T̈dm+

∫∫∫
S

Y × [Ω× (Ω×Y)]dm

+

∫∫∫
S

Y × [Ω̇×Y]dm.

Remark that JΩ̇ =
∫∫∫

S
Y × [Ω̇×Y]dm∫∫∫

S

Y × a(M)dm =

∫∫∫
S

Y × T̈dm+ JΩ̇−
∫∫∫

S

g(Y,Ω)Ω×Ydm

=

∫∫∫
S

Y × T̈dm+ JΩ̇ +

∫∫∫
S

Ω× [Y × (Ω×Y)]dm

=

∫∫∫
S

Y × T̈dm+ JΩ̇ + Ω×
∫∫∫

S

Y × (Ω×Y)dm

=

∫∫∫
S

Y × T̈dm+ JΩ̇ + Ω× (JΩ).

So, from the matrix formulation developed in this article, one can obtain the
classic resulting momentum theorem and the resulting theorem.

6. CONCLUSION AND PERSPECTIVES

We have formulated the six motion equations of a rigid body in a 4 × 4 skew
symmetric matrix form, involving the generalized Poinsot inertia matrix which
is 4× 4 symmetric and positive definite.

This formulation has several applications already being exploited in our re-
searches.
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It is used to determine the ten inertia characteristics of a rigid body. Indeed,
instead of using the formalism of Newton-Euler for determining a 10×1 column
vector containing the ten inertia characteristics by introducing some conditions
such as the positivity of the body’s mass, we determine the generalized Poinsot
tensor by a projected gradient algorithm on the cone of symmetric positive def-
inite matrices.

In our formulation, external forces and torques are gathered in a 4x4 skew
symmetric matrix. Our matrix formulation can help, in our opinion, the deter-
mination of rigid body movement by control optimal theory. This approach is a
part of our futures applications.

As a future work, this formulation will be extended to rigid multibody dynam-
ics.
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