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ON POINTWISE APPROXIMATION OF FUNCTIONS OF SEVERAL
VARIABLES BY SINGULAR INTEGRALS

Sevgi Esen Almali

ABSTRACT. We prove a theorem on weighted pointwise convergence of multi-
dimensional integral operators with radial kernels to generating function of sev-
eral variables, which are in general non-integrable in n-dimensional Euclidean

space F, in the sense of Lebesgue. Main result holds at almost every point of
E,.

1. INTRODUCTION

It is well known that classical singular integrals, such as Abel-Poisson, Gauss-
Weierstrass and Picard are widely used approximate identities in the theory of
approximation of functions which belong to Lebesgue spaces. In particular,
we know that this approximation is valid at each Lebesgue point of indicated
Lebesgue integrable function by the previous literature (see, e.g., [20]). Some
of the results in the literature concerning approximation by singular integrals
may be given as follows: approximation by convolution type [5,(10]; conver-
gence of singular integrals depending on two parameters [12,21]; approxi-
mation by non-convolution type singular integrals [1,6,/13]; after the initial
study given by Taberski [22], approximation of functions of two variables by
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three-parameter singular integrals [[16-18,24,26]]; approximation of functions
in weighted sense [1,[23]].

Throughout the years, above-mentioned type results were extended to the
multivariate case by constructing n—dimensional generalizations of integral op-
erators with kernels satisfying suitable conditions. Among these works, we refer
the reader to [7,9,/15] and fundamental monographies [8,(19,20]. Also, for
some of the contemporary research results, we refer the reader to [2-4,25]].

Let £, denote n—dimensional Euclidean space and L; (F,) denote the set of
all functions which are integrable on whole Euclidean space F, in the sense
of Lebesgue. In the present paper, we consider the following problem: Let f
be a non-integrable function together with % € L, (F,) for a positive (weight)
function p belonging to L, (£,,). In this case, we consider the problem of approx-
imation of function f at Lebesgue points of functions p and % by the family of
multidimensional integral operators with non-negative radial kernels. We note
that these kinds of operators have been studied for the one-dimensional case
in [10].

Let us recall some notations which will be used in the sequel. Let E, de-
note n—dimensional Euclidean space and L, (E,) denote the set of all functions
which are integrable on whole Euclidean space FE,, in the sense of Lebesgue.We
use the notations =z = (zy,xs,...,x,) and t = (t1,t,,...,t,) for the elements of
E,.. The operators are defined by the family of multidimensional integral opera-
tors with non-negative radial kernels given by

T)\(f,l‘hl'g,...,l‘n):/.../f(l’l—f—tl,...,J}n+tn)KA(t1,t27...,tn)dtldtg...dtn7

and their simplified forms are given as

To(f.x) = / F( + Db,

where dt = dt,dt, . .. dt, denotes the ordinary Lebesgue measure.
We say that K, (t) is a radial function, if there is K (t) = K (v/t1 + &2+ ... +t,)
Ky(r)with 0 <r < c0.
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In the present article, we will prove the pointwise convergence of the opera-
tors:

@ To(f,a") = / Fla* + £ E(8)dt

under suitable conditions to f ¢ L,(F,) at Lebesgue points =* of functions p and
%. We use the approach similar to used in [11},14].

2. APPROXIMATION

In this section, we shall investigate the approximation of non-integrable func-
tions of several variables by singular integral 7,(f,z*) in (1). Let p € Ly(E,)
with p > 0 and A, is Lebesgue points set of p. Also let A; is Lebesgue points set
of % with f ¢ L,(FE,) and % € Li(E,). Welet A = A£ ﬂpAp, here A is the set of
Lebesgue points of p and %.

Moreover, we consider the following function o which is connected with the
function p :

plz+y)

a(d) := sup ———== < 0.

ly|<é

Obviously that () is monotonically increasing function and for any y, a(6) > 1.
The main theorem of this paper is as follows:

Theorem 2.1. Let £ € Ly(E,) for p € Li(E,) with p > 0 and f ¢ Li(E,).
Suppose that the following conditions are satisfied:

a) p(z* + t)K,(t) is non-negative and bounded for any fixed z* € E,,, A > 0
and for all t € E,, and Alim [ K\(t)dt = 1.
—oo

b) K, (t) is non-negative and radial (i.e., K,(t) K/t +...+t2) =

K\ (r) > 0) and «o(r)K(r) is non-increasing on [0, o) .
c) For any positive number § and p > 0, p € Li(E,),

lim sup (p(z* +t)K,\(t)) = 0.

A—00 [t|>5

for any fixed z*.
d) [r*ta(r)K\(r)dr is finite.
0
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e) For any fixed 6 > 0,

A—00
[t| >0

lim / p(z* +t)K,(t)dt = 0.

f) For any fixed ¢ > 0,

o0

lim Ky\(r)dr =0
A—00 §
and
A—00

Then, we have
lim T5(f,z%) = f(z")
A—00
at every Lebesgue point x* € A.

First, we show the existence of the operators.

Lemma 2.1. Let % € Li(E,), f & Li(E,), p > 0and K, verify condition (a) of
Theorem 2.1. Then, T)(f,x*) is finite in E, for fixed A > 0 and z* € E,,.

Proof. We can write
(o) = [ 0K
ETL

< sup (p(e” + 1) Kx (1)) H%

teE’IL

Li(Ey)

Thus the proof is completed. O
Now, let us give the proof of the theorem.

Proof. For integral (1), we can write

R e B o RO

n

[ ot + 00— pia)

n
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and in view of (b), we have

ITA(f, ") — f(2")] A

p(z0)

L/ p(x™ + 1) K)\(t)dt — p(x*)]

n

pla™ + ) K(t)dt

A
e
e )
H* %3*
+ |+
~ | ~+

+|453

= Li(z"\) + (2", \).

Since p € L1(FE,) and z* is a Lebesgue point of p, we know that

lim [ p(a” + ) KA (t)dt = p(a”)
E,
holds at every Lebesgue point z* of p. Therefore, I5(z*,\) — 0 as A — oc.
Now, we will calculate the 7;(z*, A\). For any fixed § > 0, we can write to

I (z*, \) as follows.

Li(z", ) = / flasd) Az

plz™ + ) K (t)dt

(x*+t)  p(z¥)
It|>6
fz* +1t) i (%)
Ky (t)dt
/ (x* +t)  pla*) pla +HR(E)
[t]<d

= 111(117*, )\) + 112(17*, )\)

It is sufficent to show that terms on right hand side of the last expression tends
to zero as A — oo.

First, we consider I1;(x*, \),
(z" +1)  f(a")

S B vr ey

p(z* + t) K, (t)dt.

[t[=4

By condition (c), we get

‘ flz f@") ‘
Lii(z*,N) < |st|u>1?s,0 z* + ) Ky\(t / ‘ 'dt—i— ‘p(ﬂ) t|>/§ p(z* + t)K,\(t)dt
f fz") "
< E}L%p(w + ) K\(t H . + ’p@*) |t[5 p(x* +t)K\(t)dt.

According to (e) and (c), we obtain I;;(z*, \) tends to zero as A — oc.
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Next we consider [15(x*, ).
By the definition of Lebesgue point

/fx+t f(x*)

(x*+1t)  p(z¥)

dt = 0.

This means

/ / f(z*+00)  f(z")
lim —

r—0 7" (2" +00)  p(x*)
where df is element of area of sphere S™~1,

Therefore, for any given ¢ > 0, there exists a positive number ¢ such that for
all » <4, one has

/ / J@ 00 T oy < o,
(x*+00)  p(x¥)
Now, we let
/ f(z* + o0) f(x*) n
(z*+06)  p(z*)
and

One obtains that
2) G(r) <er”,
for all » < 4. It is clear that for any fixed z*
pla” +1) < a([t)p(z?).

Thus, by above inequality, we get




POINTWISE APPROXIMATION 3219

Using integration by parts, we obtain the following inequality:

Lp(a™A) < G(r)a(r)Ka(r) [y —/G(T)d(a(r)fﬁ(r))

< ed"a(r)Kx(r) [§ —5/T"d(a(r)K,\(r)).

Using integrating by parts again, we get
5
Lia(z", ) < &?n/r”la(r)K,\(r)dr.
0

It is follows from condition (d) that /;5(z*, A\) — 0 as A — oo. Hence, collecting
the estimates, we have I, (z*, \) + I12(x*, A) tends to zero as A — oo for arbitrary
¢ > 0. That is, we obtain

lim T)\(f,z") = f(z")

A—00

and this completes the proof. O

3. APPLICATIONS

Now, we give examples about the functions p, f and % satisfiying above prop-
erties.

Example 1. Let us consider the function

1 .
tl-t2---tn(1+t%.t%...t%)’ lf O < tk < 1 or tk Z 1’ k - 17 N ,n

ft) =

0, for other t’s
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Then, we can write

1 1

dtydty .. dt,
t)dt
// /f g / /tl.tg...tn(uﬁ.t;. 2)
—00 —00 0 0

1 1
1/ /dtldtg...dtn
> - [ ... ] ——— =o.
2 tity. . t,
0 0
We say that f ¢ Li(E,).
Now, we let

\/tl.tz...tn(htl.m...tn)7 ifO<ty,<lorty,>1,k=1,....n

p(t) =

Y
e (ltrl++ltn]) for other t's

with t = (t1,ta, .., t,). We will show that p € L,(—00, 00).

Let P" = F,/(0,1)X ... X(0,1,)U(1,00)X ...(1,00). It is clear that

dt, T T dty. . dt, )
Dt — / / iy cdb i) < o,
Vi t2 / / 3.3 3 /

143t 2

Hence, we showed that p € L,(FE,).
Now, we look %. That is

\/tl.tg%.frtil(.ﬁ.t.ft%..‘t%)7lf O<tpy<lorty>l,k=1....n

-
~

~
N—

e}

—~
~

N—

0, for otherwise t's

i) For0 <ty <1,k=1,...,n, the inequality

) 2
o0) " Vit

is satisfied.

ii) For t;, > 1, we have
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£(6) / / 2t .. 7 7 .,
I g < SRR
/ (t) V. t2 3 *

3
7. tQ .t

Then, we obtain L 5 € Li(Ey).

Now, we will examine «(5) = sup 2 (px(i;“)t). We can write

zo€EFE
<o
p(xg +t)
p(o)
( . \
if 0<tp<l
Z01...-Ton (14+T01...Ton) or
V (tr4201). (tn+a0n) 1+ (t1+201) - (tn+20n)) |
te>1k=1,....n |t|<1

—(It1+zo1 |+ +tntzonl)

L e (g o for other t's J

at a fixed point xo = (g, . . . 2on). It is clear that a () = sup 22t —

<5 p(zo)
Now, we take K(t) = 2pe > (it

= “x N (@ +-41) (kernel of Gauss-Weierstrass). It is clear
that these functions are non- negative foreveryt € E,.

On the other hand, for integral 2 f . e~ NUHA) gty

tion Mt = u (u = (uq, Up)) is made, we have

. dty, if the transforma-

X[ gy g, = L / e N gy |y = 1.
2 JE, T2 "
Also, K,(t) is radial. Hence, the functions K,(r) are in the form of K,(r)
1 ,—\%r2
e :
T2

We will investigate other conditions of the theorem

a) First, we look limy_, supy,s(p(zo + 1) Kx(t)) = 0.
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i)For 0<ty,<lort,>1,k=1,...,n, we have

sup(plizo + KA (1))
[t|>0

= Sup(A_Ze_’\Q(t%'i'""H%)
>6 77

1 )

' \/(tl + 1301) .. (tn + l’()n)(l + (tl + ZE01> . (tn + ZL’On))

< ﬁe_AQ(;Q 1 .

ToTme (.1701) ce (ZEOn)(l + Zo1 - - .l’on)

ii) For other t's, we get

n

sup(p(zo + 1)Ky () = Sup()‘_ﬂe—v(t%...ﬂi)e—(|t1+a:01|+‘..+|tn+m0n\))
[t|>0 [t|>8 T2

/\TL )\252 (|

Z e~ e 1‘01|+~--+|$0n|)‘

T2

A

Therefore, we obtain

lim sup(p(zo + t)Kx\(t)) = 0.

A—00 [t|>5

b) [r"a(r)K,(r)dr is finite since
0

,\
no
T
_

=

, n—1=2k
k! n—1=2k+1 |~

¢) We will show that lim [ p(xzg+ t)K,(t)dt = 0.

)\Hoomz(s
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i)For 0<ty,<lort,>1,k=1,...,n, we have

/ p(xg + t)K\(t)dt

[t|>0
A" —A2(t3+...+12)
- A ¢ dty ... dt,
T2 s \/(tl + 1'01) e (tn + l‘gn)(l + (tl + l‘()l) Ce (tn + fL‘On))
] :L‘Ol...xon<1+$01....ﬁlfon)

[t|=d

§ Snfl

An 1 i
= = / / e N drdy!
T2 ./:1:01...1;0n(1+x01...:1:0n)

1 27z 1 / n—1_—r2
= e r" e dr.
a2z I 5) o1 - - .J]On(l + Zo1 . - .I’On) e

Here, S,,_, denotes the surface of the unit sphere and g?f) is the surface area of the
2

unit sphere S,,_1 of E,.
ii) For other t' s,

T
[t|=6

A7 7
/ plzo +1)K\(t)dt < e (ot Flron) / / e drat!
2
5 Sn—l

A" 272 -
— _6—(\x01\+---+\xon|) P lo=Nr g

- ome ()
= 2n—€_(|$°1|+‘”+|$°"|)/T”_le_TZ)dT.
F(i) A0

o0
. 2
Hence, since [ r"~'e™" dr tends to zero as A — oo,
A6

A—00
B

Therefore, all of the conditions of main result are satisfied.
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s <1
Example 2. Let p(t) = 2 with t = (t1,ta, .., t,). We will show
W7 ’t| >

that p € Ly(—00,00).

It is clear that
1 1
/p(t)dt: / P / et < oo
t 2

Ey, [t]<1 |t]>1

Hence, we showed that p € Li(E,,).

el <1 |
We let f(t) = ! . Then, we can write
1
/f(t)dt: / —dt + / At = 0o
i g
En <1 lt[>1

and we see that f ¢ L,(FE,).

, Lt <1
Now, we look %, that is, ﬁ(—t)) = 2 . Then, we obtain % €
TR lt| > 1
Li(E,).
Also, we will examine «(9) = sup 2 (pfij)t). We can write
bl
,0(5(]0 +t) . |:UIOOTI7€|%’ |t‘ é 1
- 2n
i T

at a fixed point xoy = (xo1 . .. xoy). It is clear that «(d) = sup plzott) _ q

X
20CE p(xo)
[t]<é
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