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A HARMONIC MEAN INEQUALITY CONCERNING THE GENERALIZED
EXPONENTIAL INTEGRAL FUNCTION

Kwara Nantomah

ABSTRACT. In this paper, we prove that for s ∈ (0,∞), the harmonic mean of
Ek(s) and Ek(1/s) is always less than or equal to Γ(1 − k, 1). Where Ek(s) is
the generalized exponential integral function, Γ(u, s) is the upper incomplete
gamma function and k ∈ N.

1. INTRODUCTION

Special functions play a pivotal role in both pure and applied mathematics.
In particular, they are frequently encountered in mathematical analysis, mathe-
matical physics, probability and statistics, and engineeering.

The classical exponential integral which is one of the most celebrated special
functions is defined for s > 0 as [1, p. 228]

E(s) =

∫ ∞
s

e−t

t
dt =

∫ ∞
1

e−st

t
dt = Γ(0, s),

where Γ(u, s) is the upper incomplete gamma function defined as

Γ(u, s) =

∫ ∞
s

tu−1e−tdt.
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It may also be defined as follows

E(s) = −γ − ln s+
∞∑
r=1

(−1)r+1sr

r!r

= − ln s+ e−s
∞∑
r=0

sr

r!
ψ(r + 1),

where γ is the Euler-Mascheroni constant and ψ(.) is the digamma function.
The generalized exponential integral function is defined as [2]

Ek(s) = sk−1
∫ ∞
s

e−t

tk
dt

=

∫ ∞
1

e−st

tk
dt(1.1)

= sk−1Γ(1− k, s),(1.2)

where k ∈ N is the order of the integral and E1(s) = E(s). It is also known in
some text as the Theis well function [3]. This special function has useful applica-
tions in astrophysics, neutron physics, quantum chemistry, hydrology and other
applied sciences. As a result of its practical importance, it has been investigated
in different directions. For example, see [3], [4], [5], [6], [7], [8], [9], [11]
and the references therein.

In a recent work [12], it was established that for s ∈ (0,∞), the harmonic
mean of E(s) and E(1/s) is always less than or equal to Γ(0, 1) = 0.21938393....
In this work, the goal is to extend this result to the generalized function Ek(s).
We present our findings in the following sections.

2. RESULTS

Lemma 2.1. The function sE′
k(s)

E2
k(s)

is strictly decreasing on (0,∞).

Proof. By identity (1.2) we obtain

E ′k(s) =
(k − 1)Ek(s)− e−s

s

and since Ek(s) is decreasing, then

(2.1) (k − 1)Ek(s) < e−s.
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Now let

T (s) =
sE ′k(s)

E2
k(s)

=
(k − 1)Ek(s)− e−s

E2
k(s)

for s ∈ (0,∞). Then by differentiating and using (1.1) and (2.1), we obtain

E3
k(s)T ′(s) = −(k − 1)Ek(s)E ′k(s) + e−sEk(s) + 2e−sE ′k(s)

< −e−sE ′k(s) + e−sEk(s) + 2e−sE ′k(s)

= e−s [Ek(s) + E ′k(s)]

= e−s
∫ ∞
1

[
1− t
tk

]
e−stdt

< 0.

Hence, T ′(s) < 0 and this completes the proof of the lemma. �

Theorem 2.1. For s ∈ (0,∞) and k ∈ N, the inequality

(2.2)
2Ek(s)Ek(1/s)

Ek(s) + Ek(1/s)
≤ Γ(1− k, 1)

is satisfied. Equality holds when s = 1.

Proof. The case for s = 1 is apparent. So let Q(s) = 2Ek(s)Ek(1/s)
Ek(s)+Ek(1/s)

and χ(s) =

lnQ(s) for s ∈ (0, 1) ∪ (1,∞). Then by direct computation, we obtain

χ′(s) =
E ′k(s)

Ek(s)
− 1

s2
E ′k(1/s)

Ek(1/s)
−
E ′k(s)− 1

s2
E ′k(1/s)

Ek(s) + Ek(1/s)

and this implies that

s [Ek(s) + Ek(1/s)]χ′(s) = s
E ′k(s)

Ek(s)
Ek(1/s)− 1

s

E ′k(1/s)

Ek(1/s)
Ek(s).

Further manipulation reveals that

s

[
1

Ek(s)
+

1

Ek(1/s)

]
χ′(s) = s

E ′k(s)

E2
k(s)
− 1

s

E ′k(1/s)

E2
k(1/s)

= A(s).

As a consequence of Lemma 2.1, we conclude that A(s) > 0 if s ∈ (0, 1) and
A(s) < 0 if s ∈ (1,∞). This implies that, χ′(z) > 0 if s ∈ (0, 1) and χ′(s) < 0 if
s ∈ (1,∞). Therefore, Q(s) is increasing on (0, 1) and decreasing on (1,∞). For
both cases, we arrive at

Q(s) < lim
s→1

Q(s) = Ek(1) = Γ(1− k, 1)

and this concludes the proof of the theorem. �
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Figure 1 is a graphical illustration of the results of Theorem 2.1 for the special
cases where k = 1, k = 2, k = 3, k = 4 and k = 5.

FIGURE 1. Plot of Q(s) for some particular values of k.

3. CONCLUDING REMARKS

Let H(u, v) = 2uv
u+v

, A(u, v) = u+v
2

and Q(u, v) =
√

u2+v2

2
respectively be the

harmonic mean, arithmetic mean and root-square mean of u and v. In this
paper, we have proved that

(3.1) H (Ek(s), Ek(1/s)) ≤ Γ(1− k, 1),

where s ∈ (0,∞). This is equivalent to

(3.2) A
(

1

Ek(s)
,

1

Ek(1/s)

)
≥ 1

Γ(1− k, 1)
.

Also, since Q(u, v) ≥ A(u, v) [10], then we have

(3.3) Q
(

1

Ek(s)
,

1

Ek(1/s)

)
≥ 1

Γ(1− k, 1)
,

which implies that

(3.4) H
(
E2

k(s), E2
k(1/s)

)
≤ Γ2(1− k, 1) < Γ(1− k, 1).
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For the particular case where k = 1, inequality (3.1) reduces to the results
of [12]. We anticipate that the results of this paper will inspire further studies
on the generalized exponential integral function.
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