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THE DYNAMICAL EVOLUTION OF GEOMETRIC UNCERTAINTY PRINCIPLE
FOR SPIN 1/2 SYSTEM

H. Umair1, H. Zainuddin, K.T. Chan, and Sh.K. Said Husain

ABSTRACT. Geometric Quantum Mechanics is a formulation that demonstrates
how quantum theory may be casted in the language of Hamiltonian phase-space
dynamics. In this framework, the states are referring to points in complex pro-
jective Hilbert space, the observables are real valued functions on the space
and the Hamiltonian flow is defined by Schrödinger equation. Recently, the
effort to cast uncertainty principle in terms of geometrical language appeared
to become the subject of intense study in geometric quantum mechanics. One
has shown that the stronger version of uncertainty relation i.e. the Robertson-
Schrödinger uncertainty relation can be expressed in terms of the symplectic
form and Riemannian metric. In this paper, we investigate the dynamical be-
havior of the uncertainty relation for spin 1

2 system based on this formulation.
We show that the Robertson-Schrödinger uncertainty principle is not invariant
under Hamiltonian flow. This is due to the fact that during evolution process,
unlike symplectic area, the Riemannian metric is not invariant under the flow.

1. INTRODUCTION

Topology and geometry which have complex and advanced mathematical con-
structions have been commonly utilized in physics to explain the laws of nature
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[1]. These mathematical theories have found applications in many areas of
physics [2,3] and one of the recent development is to apply the geometrical
ideas of complex projective space CP n to explain the peculiar properties of en-
tanglement phenomena in quantum information theory [4,5].

There are numerous motivations for attempting to express quantum physics in
geometrical terms. The fact that classical mechanics, general relativity and oth-
ers are highly geometrical, for instance, inspired some physicists to cast quan-
tum mechanics in geometrical language in order to better understanding the
quantum-classical transition. The research line referred as Geometric Quantum
Mechanics was partly motivated by work of Kibble in 1979 [6] which demon-
strates how quantum theory may be formulated in the language of Hamiltonian
phase-space dynamics. Many researchers have recently contributed to formulate
the geometric version of quantum mechanics and demonstrate the significant of
this formulation in order to provides us with crucial information about quan-
tum realm and various application in foundations of quantum mechanics such
as uncertainty principle, entanglement and many others [7,8].

It is generally accepted that uncertainty principle is a purely quantum con-
cept and cannot be described using classical mechanics. However, this state-
ment is not entirely true when one had shown that the uncertainty principle can
naturally arise from the structure of classical mechanics [9]. This is achieved
through a topological tool known as symplectic capacity together with the no-
tion of quantum blob. Thus, it is clear that the uncertainty principle in this
context is invariant under symplectic transformation since it can be expressed
in term of symplectic capacity. In this paper, motivated by this work [9], the pos-
sibility of the uncertainty principle in geometric quantum mechanics is invariant
under the Hamiltonian flows has been demonstrated since in this formulation
the uncertainty principle is partly expressed in terms of symplectic form [10].
This research may becomes a significant step in order to constructs a connection
between geometric quantum mechanics and symplectic topology.

In particular, section 2 briefly discuss the derivation of the geometric Robertson-
Schrödinger uncertainty relation and the description on how to compute its evo-
lution along Hamiltonian flow. Section 3 and 4 are the authors contribution
where the calculation of the results of the geometric formulation of uncertainty
principle for the case of spin 1

2
system. All the author’s research findings have

been discussed and summarized in section 5.
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2. ROBERTSON-SCHRÖDINGER UNCERTAINTY RELATION

Uncertainty principle, firstly discovered by the German theoretical physicist
Werner Heisenberg is one of the fundamental concepts that shows the weirdness
of quantum mechanics. It sets the limitation of complementary variables such
as position and momentum to be measured simultaneously with high precision.
After that, this principle was generalized to an arbitrary observables Â and B̂

known as Robertson uncertainty principle given by

(2.1) (∆Â)(∆B̂) ≥
∣∣∣∣ 1

2i
〈[Â, B̂]〉

∣∣∣∣ ,
and within a year, the stronger extension named Roberson-Schrödinger uncer-
tainty principle was proposed by adding covariance term to the formulation

(2.2) (∆Â)2(∆B̂)2 ≥
∣∣∣∣ 1

2i
〈[Â, B̂]〉

∣∣∣∣2 +

∣∣∣∣12〈[Â, B̂]+〉 − 〈Â〉〈B̂〉
∣∣∣∣2 .

In geometric quantum mechanics, Ashtekar [10] shows that the symplectic form
Ω and Riemannian metric G allow one to formulate a geometric version of
Roberton-Schrödinger uncertainty principle. Let Ψ be a normalized state vec-
tor, the above formula (2.2) can be rephrased in Hilbert space H as

(2.3) (∆Â)2(∆B̂)2 ≥
(
~
2

Ω(XÂ, XB̂)

)2

+

(
~
2
G(XÂ, XB̂)− AB

)2

,

where (∆Â)2 denotes a function on H given by (∆Â)2(Ψ) := (∆Â)2
Ψ and

(2.4) XÂ = − i
~
ÂΨ, XB̂ = − i

~
B̂Ψ

are Schrödinger vector fields. We may see how the Robertson-Schrödinger un-
certainty principle can also be expressed on the complex projective Hilbert space
P (H) i.e. the proper quantum phase space. Let consider the expectation values
A(Ψ) and B(Ψ) of two quantum observables Â and B̂ respectively, and let a and
b be the corresponding functions on P (H), i.e.,

(2.5) a ◦ Π = 〈Â〉Ψ = A(Ψ), b ◦ Π = 〈B̂〉Ψ = B(Ψ),

where Π is the canonical projectionH → P (H). Thus, for any Xa = Π∗(XÂ) and
Xb = Π∗(XB̂) are elements of tangent vector at point ψ on P (H) i.e. TψP (H),
the uncertainty principle may be rephrased as the following equation in terms
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of symplectic form ω and Riemannian metric g define on P (H):

(2.6) (∆a)2(∆b)2 ≥ ~2

4
(ω(Xa, Xb)

2 + g(Xa, Xb)
2),

where (∆a)2(ψ) := (∆A)2(Ψ) and (∆b)2(ψ) := (∆B)2(Ψ).
In order to carry out this study, the Schrödinger vector field with respect to

spin 1
2

operators has been calculated followed by finding the solution of the state
vector of the system. After that, these vector fields have been push-forwarded
to one dimensional complex projective Hilbert space CP 1 since it is the proper
quantum phase space of spin 1

2
system. Here, the contraction between push-

forward vector fields with symplectic form and the components of Riemannian
metrics have been computed. Finally, the evolution of Robertson-Schrödinger
uncertainty principle can be obtained by finding its expression along the projec-
tion of solution corresponds to a Schrödinger vector field.

3. THE EVOLUTION OF SCHRÖDINGER VECTOR FIELDS FOR SPIN 1
2

SYSTEM

Let us compute the Robertson-Schrödinger uncertainty principles for the case
of spin 1

2
particles where self-adjoint operator are

Ŝx =

(
0 ~

2
~
2

0

)
, Ŝy =

(
0 − i~

2
i~
2

0

)
, Ŝz =

(
~
2

0

0 −~
2

)
.

Consider the Hilbert space H ∼= C
2 and (e1, e2) represent the orthonormal basis

in C2 satisfy
〈eα|eβ〉 = δαβ.

Then the state of spin 1
2

particle in H is expressed as

|Ψ〉 = Z1 |e1〉+ Z2 |e2〉 .

First, we start with computing the Schrödinger vector field of the operators Ŝx,
Ŝy and Ŝz. The corresponding expectation value of these operators are

Sx(Ψ) = 〈Ψ| Ŝx |Ψ〉 =
~
2

(Z1Z̄2 + Z̄1Z2);(3.1)

Sy(Ψ) = 〈Ψ| Ŝy |Ψ〉 =
i~
2

(Z1Z̄2 − Z̄1Z2);(3.2)

Sz(Ψ) = 〈Ψ| Ŝz |Ψ〉 =
~
2

(|Z1|2 − |Z2|2).(3.3)
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Note that, here we we assume that C2 is complexification of real vector space R4.
Thus the complexified tangent space is spanned by 4 vectors; ∂

∂Z1
, ∂
∂Z2

, ∂
∂Z̄1

, ∂
∂Z̄2

.
Therefore, according to equation (2.4) the Schrödinger vector fields correspond
to these operators are

XŜx
= −Z2

2i

∂

∂Z1

− Z1

2i

∂

∂Z2

+
Z̄2

2i

∂

∂Z̄1

+
Z̄1

2i

∂

∂Z̄2

;(3.4)

XŜy
=
Z2

2

∂

∂Z1

− Z1

2

∂

∂Z2

+
Z̄2

2

∂

∂Z̄1

− Z̄1

2

∂

∂Z̄2

;(3.5)

XŜz
= −Z1

2i

∂

∂Z1

+
Z2

2i

∂

∂Z2

+
Z̄1

2i

∂

∂Z̄1

− Z̄2

2i

∂

∂Z̄2

.(3.6)

The solutions of Z1 and Z2 according to XŜx
are computed as follows. From

equation (3.4), we can show that

(3.7)
dZ1

dt
= −Z2

2i
,

dZ2

dt
= −Z1

2i
.

It is obvious that the general solution for equation Z1 is

(3.8) Z1(t) = Ae
it
2 +Be−

it
2 ,

where A and B are complex numbers. Note that, in this study, we assume that
the frequency ω = 1 is to simplify the calculation. Besides, from equation (3.8)
we get

Z2 = −2i
d

dt
(Ae

it
2 +Be−

it
2 ) = Ae

it
2 −Be−

it
2 .(3.9)

Furthermore, we calculate the solution for Z1 and Z2 with respect to XŜy
. Re-

ferring to equation (3.5), it is obvious that

(3.10)
dZ1

dt
=
Z2

2
,

dZ2

dt
= −Z1

2
.

Clearly, the general solution for Z1 and Z2 are

Z1(t) = Ce
it
2 +De−

it
2 ;(3.11)

Z2(t) = iCe
it
2 − iDe−

it
2(3.12)

where C,D ∈ C. This is not surprising that the solution (3.11) and (3.12) are
quite similar to (3.8) and (3.9) respectively since the expression of dZ1

dt
and dZ2

dt

for XŜy
are difference from XŜx

by a factor of i.
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Lastly, we find a solution of Z1 and Z2 for the case of XŜz
. According to

equation (3.6), one can show that

(3.13)
dZ1

dt
= −Z1

2i
,

dZ2

dt
=
Z2

2i
.

Solve the equations (3.13) we get

Z1(t) = Ee
it
2 ; Z2(t) = Fe−

it
2 ,

where E and F are complex numbers. These solutions are simple compared to
the case of XŜx

and XŜy
due to the fact that the eigenstates of operator Ŝz are

simply basis vectors of C2 i.e. |e1〉 , |e2〉 while eigenstates of the operators Ŝx and
Ŝy are more complicated which is a combination of the basis vectors. Note that
the solutions Z1(t) and Z2(t) which correspond to the evolution of vector fields
XŜx

, XŜy
and XŜz

preserve the initial value of expectation values Sx, Sy and
Sz respectively. Note that, any state vector Ψ,Φ ∈ H such that Φ = cΨ, c ∈ C

defines the same physical state. Thus, it is necessary to find the expression of
Robertson-Schrödinger uncertainty principle in CP 1 which is the quantum phase
space of spin 1

2
particle.

4. THE EVOLUTION OF GEOMETRIC UNCERTAINTY PRINCIPLE IN CP 1

In order to compute the Robertson-Schrödinger uncertainty principle on CP 1,
we need to find the pushforward vector fields of XŜx

, XŜy
and XŜz

under the
map Π∗ : TΨH → TψP (H). Let Π(Z1, Z2) = z = Z2

Z1
be a local coordinate of U1

where Z1 6= 0. Then, the pushforward vector fields correspond to XŜx
, XŜy

and
XŜz

are

Π∗XŜx
= −Z1z

2i

(
−Z2

Z2
1

∂

∂z

)
− Z1

2i

(
1

Z1

∂

∂z

)
+
Z̄1z̄

2i

(
− Z̄2

Z̄2
1

∂

∂z̄

)
+
Z̄1

2i

(
1

Z̄1

∂

∂z̄

)
=

zZ2

2iZ1

∂

∂z
− 1

2i

∂

∂z
− z̄Z̄2

2iZ̄1

∂

∂z̄
+

1

2i

∂

∂z̄
=

(z2 − 1)

2i

∂

∂z
− (z̄2 − 1)

2i

∂

∂z̄
;(4.1)

Π∗XŜy
=
Z1z

2

(
−Z2

Z2
1

∂

∂z

)
− Z1

2

(
1

Z1

∂

∂z

)
+
Z̄1z̄

2

(
− Z̄2

Z̄2
1

∂

∂z̄

)
− Z̄1

2

(
1

Z̄1

∂

∂z̄

)
= −zZ2

2Z1

∂

∂z
− 1

2

∂

∂z
− z̄Z̄2

2Z̄1

∂

∂z̄
− 1

2

∂

∂z̄
= −(z2 + 1)

2

∂

∂z
− (z̄2 + 1)

2

∂

∂z̄
;(4.2)
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Π∗XŜz
= −Z1

2i

(
−Z2

Z2
1

∂

∂z

)
+
Z1z

2i

(
1

Z1

∂

∂z

)
+
Z̄1

2i

(
− Z̄2

Z̄2
1

∂

∂z̄

)
− Z̄1z̄

2i

(
1

Z̄1

∂

∂z̄

)
=

Z2

2iZ1

∂

∂z
+
z

2i

∂

∂z
− Z̄2

2iZ̄1

∂

∂z̄
− z̄

2i

∂

∂z̄
= −iz ∂

∂z
+ iz̄

∂

∂z̄
.(4.3)

Note that, in CP 1, the symplectic form ω is expressed as

ω = i~
dz ∧ dz̄

(1 + |z|2)2
= i~

dz ⊗ dz̄
(1 + |z|2)2

− i~ dz̄ ⊗ dz
(1 + |z|2)2

and the Riemannian metric is denoted by

g = ~
dz ⊗ dz̄

(1 + |z|2)2
+ ~

dz̄ ⊗ dz
(1 + |z|2)2

.

Now we are ready to compute the Robertson-Schrödinger uncertainty prin-
ciple for the case of spin 1

2
on CP 1. Let us define the Robertson-Schrödinger

uncertainty relations for this case as

(∆Ŝy)
2(∆Ŝz)

2 ≥ ~2

4
[ω(Π∗XŜy

,Π∗XŜz
)2 + g(Π∗XŜy

,Π∗XŜz
)2];(4.4)

(∆Ŝx)
2(∆Ŝz)

2 ≥ ~2

4
[ω(Π∗XŜx

,Π∗XŜz
)2 + g(Π∗XŜx

,Π∗XŜz
)2];(4.5)

(∆Ŝx)
2(∆Ŝy)

2 ≥ ~2

4
[ω(Π∗XŜx

,Π∗XŜy
)2 + g(Π∗XŜx

,Π∗XŜy
)2],(4.6)

where the contraction of pushforward vector fields with symplectic form ω are

ω(Π∗XŜy
,Π∗XŜz

) = ιΠ∗XŜy
ιΠ∗XŜz

ω = − ~(z̄ + z)

2(1 + |z|2)
;(4.7)

ω(Π∗XŜx
,Π∗XŜz

) = ιΠ∗XŜx
ιΠ∗XŜz

ω =
i~(z̄ − z)

2(1 + |z|2)
;(4.8)

ω(Π∗XŜx
,Π∗XŜy

) = ιΠ∗XŜx
ιΠ∗XŜy

ω =
~(|z|4 − 1)

2(1 + |z2|)2
(4.9)

and components of the Riemannian metrics correspond to these vectors are
given as

(4.10) g(Π∗XŜy
,Π∗XŜz

) = −i~[(|z|2 − 1)(z − z̄)]

2(1 + |z|2)2
;

(4.11) g(Π∗XŜx
,Π∗XŜz

) =
~[(|z|2 − 1)(z + z̄)]

2(1 + |z|2)2
;
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(4.12) g(Π∗XŜx
,Π∗XŜy

) =
i~(z2 − z̄2)

2(1 + |z|2)2
.

Equations (4.4), (4.5) and (4.6) can now be expressed by

(∆Ŝy)
2(∆Ŝz)

2 ≥ 1

16

[(
−~2[z̄ + z]

1 + |z|2

)2

+

(
−i~

2[(|z|2 − 1)(z − z̄)]

[1 + |z|2]2

)2
]

;(4.13)

(∆Ŝx)
2(∆Ŝz)

2 ≥ 1

16

[(
i~2[z̄ − z]

1 + |z|2

)2

+

(
~2[(|z|2 − 1)(z + z̄)]

[1 + |z|2]2

)2
]

;(4.14)

(∆Ŝx)
2(∆Ŝy)

2 ≥ 1

16

(~2[|z|4 − 1]

[1 + |z|2]2

2
)2

+

(
i~2[z2 − z̄2]

[1 + |z|2]2

)2
 .(4.15)

Thus, the evolution of Robertson-Schrödinger uncertainty principle for the
case of
• Ŝy and Ŝz is

(∆Ŝy)
2(∆Ŝz)

2 ≥ 1

16

[
(2~2[|B|2 − |A|2])2

+(4i~2[A2B̄2e2it − Ā2B2e−2it])2
]

(4.16)

along the projection of solution associated with Schrödinger vector field XŜx

(4.17) Π(Ψ(t)) =
Z2(t)

Z1(t)
=
Ae

it
2 −Be− it

2

Ae
it
2 +Be−

it
2

;

• Ŝx and Ŝz is

(∆Ŝx)
2(∆Ŝz)

2 ≥ 1

16

[
(2~2[|C|2 − |D|2])2

+(4i~2[C2D̄2e2it − C̄2D2e−2it])2
]

(4.18)

along the projection of solution corresponds to Schrödinger vector field XŜy

(4.19) Π(Ψ(t)) =
Z2(t)

Z1(t)
=
i(Ce

it
2 −De− it

2 )

Ce
it
2 +De−

it
2

;

• Ŝx and Ŝy is

(4.20) (∆Ŝx)
2(∆Ŝy)

2 ≥ 1

16

[
(~2[|F |2 − |E|2])2 + (i~2[F 2Ē2e2it − F̄ 2E2e−2it])2

]
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along the projection of solution corresponds to Schrödinger vector field XŜz

(4.21) Π(Ψ(t)) =
Z2(t)

Z1(t)
=
Fe−

it
2

Ee
it
2

.

5. DISCUSSION AND CONCLUSION

Let i, j, k = x, y, z and i 6= j 6= k. According to the computations above we
show that:

(1) The contraction of Π∗XŜi
and Π∗XŜj

with symplectic form ω(Π∗XŜi
,

Π∗XŜj
) is invariant under projection of Hamiltonian flow induced by

XŜk
implies that the area between vectors Π∗XŜi

and Π∗XŜj
is pre-

served under the transformation. This is because ω(Π∗XŜi
,Π∗XŜj

) =

Ω(XŜi
, XŜj

) = Sk and the expectation value Sk is uniquely conserved
along XŜk

since it satisfies the condition ιXŜk
Ω = dSk.

(2) The Riemannian metric g(Π∗XŜi
,Π∗XŜj

) is non-zero and varies under
any Hamiltonian flow showing that the magnitude and angle between
Π∗XŜi

and Π∗XŜj
are changing under the transformation. However

these vectors preserve the symplectic area ω(Π∗XŜi
,Π∗XŜj

). Besides,
the Riemannian metric g(Π∗XŜi

,Π∗XŜj
) represent the covariance since

g(Π∗XŜi
,Π∗XŜj

) = G(XŜi
, XŜj

)− 2
~SiSj. Here, it is clear that the covari-

ance is purely depend on product of the expectation values SiSj since
G(XŜi

, XŜj
) = 0.

(3) The right hand side of uncertainty principle can be fully expressed by
contraction of symplectic form with Hamiltonian vector fields that is

(∆Ŝy)
2(∆Ŝz)

2 ≥ ~2

4

[
ω(Π∗XŜy

,Π∗XŜz
)2

+
4

~2
ω(Π∗XŜx

,Π∗XŜy
)2ω(Π∗XŜx

,Π∗XŜz
)2

]
;

(∆Ŝx)
2(∆Ŝz)

2 ≥ ~2

4

[
ω(Π∗XŜx

,Π∗XŜz
)2

+
4

~2
ω(Π∗XŜx

,Π∗XŜy
)2ω(Π∗XŜy

,Π∗XŜz
)2

]
;
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(∆Ŝx)
2(∆Ŝy)

2 ≥ ~2

4

[
ω(Π∗XŜx

,Π∗XŜy
)2

+
4

~2
ω(Π∗XŜx

,Π∗XŜz
)2ω(Π∗XŜy

,Π∗XŜz
)2

]
.

Thus, it is obvious that the uncertainty principle of spin 1
2

particle in
CP 1 varies with time along any Hamiltonian flows since there is no such
Hamiltonian flows that can preserve ω(Π∗XŜx

,Π∗XŜz
), ω(Π∗XŜy

,Π∗XŜz
)

and ω(Π∗XŜx
,Π∗XŜy

) simultaneously at any given time. However, if we
reduce the result to the case of the Robertson uncertainty principle i.e.

(∆Ŝi)
2(∆Ŝj)

2 ≥
(
~
2
ω(Π∗XŜi

,Π∗XŜj
)

)2

,

it will become invariant under projection of Hamiltonian flow generated
by XŜk

.This invariant property of uncertainty principle may becomes a
significant step in order to constructs a connection between geometric
quantum mechanics and symplectic topology.
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