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THE GENERALIZED GEOMETRIC UNCERTAINTY PRINCIPLE FOR SPIN
1/2 SYSTEM

H. Umair1, H. Zainuddin2, K.T. Chan3, and Sh.K. Said Husain4

ABSTRACT. Geometric Quantum Mechanics is a version of quantum theory that
has been formulated in terms of Hamiltonian phase-space dynamics. The states
in this framework belong to points in complex projective Hilbert space, the ob-
servables are real valued functions on the space, and the Hamiltonian flow is
described by the Schrödinger equation. Besides, one has demonstrated that the
stronger version of the uncertainty relation, namely the Robertson-Schrödinger
uncertainty relation, may be stated using symplectic form and Riemannian met-
ric. In this research, the generalized Robertson-Schrödinger uncertainty princi-
ple for spin 1

2 system has been constructed by considering the operators corre-
sponding to arbitrary direction.

1. INTRODUCTION

Quantum mechanics and classical mechanics are two main fundamental the-
ories in physics that describe the behavior of physical object. While there is no
question that quantum and classical descriptions are doing well in their own im-
plementation scales, one would consider a smooth transition between these two
descriptions to be feasible, at least at theoretically. However, there is a problem
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in order to carry out such transition since both theories are quite different in
several aspects. For instance, the classical mechanics is based on geometry and
most of the systems are non-linear whereas quantum mechanics is intrinsically
formulated as algebraic and linear. The linearity seems to be necessary condi-
tion since none of standard quantum mechanics postulate can be stated without
referring to it. This distinction is quite strange since in general, linear structure
in physics arises as approximations to more accurate non-linear ones, but in this
case the situation happens in opposite way.

This problem has motivate some physicists to develop a formulation that does
not involve the quantization process as such but acknowledges quantum theory
as provided. The research line referred as Geometric Quantum Mechanics was
partly motivated by Kibble’s work in 1979 [1] which demonstrates how quan-
tum theory may be formulated in the language of Hamiltonian phase-space dy-
namics. Further examination in this framework reveals that the Hilbert space
H is not a proper phase space, since any two state vectors Ψ,Φ ∈ H are said
to be physically equivalent (Ψ v Φ) if Ψ = αΦ. Therefore, the true quantum
phase space refers to the collection of rays that intersect at the origin in H,
i.e. P (H) := H/ v which is known as the complex projective Hilbert space
for both finite and infinite dimensional H. Besides, the fact that H is equipped
with Hermitian inner product provides P (H) with the structure of Kähler man-
ifold (ω, g, j) where ω is non-degenerate, closed symplectic two-form, g is Rie-
mannian metric and j is the compatible complex structure satisfying j2 = −1

[2]. Therefore, similar to classical mechanics, the proper quantum phase space
can also be considered as a symplectic manifold. In terms of observable, one
can define a real valued function in H corresponds to a self adjoint operator
through its expectation value that has well defined projection h to P (H) [1].
This function then induces a flow along with its Hamiltonian vector field Xh [3]
on Hilbert space. Deeper investigation shows that the flow is explicitly gener-
ated by the well known Schrödinger equation which means that the solution
of this equation is perfectly represents the Hamiltonian flow on quantum phase
space P (H). Many researchers have contributed to formulate the geometric
version of quantum mechanics and demonstrate the significant of this formula-
tion in order to provides us with crucial information about quantum realm and
various application in foundations of quantum mechanics such as uncertainty
principle, entanglement and many others [4-6].
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Despite the successful of quantum mechanics in terms of application, the
true nature of this theory is still far from being understood. In other words,
some of its principles and concepts are clearly counter-intuitive and very dif-
ficult to explain in simple language since most of them do not have classical
analogue. One of the famous examples to describe the weirdness of quantum
mechanics is the uncertainty principle. The effort to cast uncertainty princi-
ple in term of geometrical language appeared to become the subject of intense
study in geometric quantum mechanics. One of earliest studies refers to the
work of Anandan [7] who proposes a new geometric meaning of times-energy
uncertainty principle for an arbitrary quantum system. After that, Ashtekar [2]
has shown that for pure quantum state, the fact that the expectation values of
observables correspond to the Riemannian and symplectic structure allow one
to formulate a geometric version of Robertson-Schröodinger uncertainty rela-
tion. In this paper, we extend this work by constructing the generalized version
of Robertson-Schrödinger uncertainty principle for spin 1

2
system by consider-

ing the operators corresponding to arbitrary direction generated by rotation of
the system operators. Specifically, in section 2 the derivation of the geometric
Robertson-Schrödinger uncertainty relation is briefly discussed. The findings of
the generalized geometric formulation of the uncertainty principle for the case
of spin 1

2
system is presented in Section 3. In section 4, the author’s study results

have been addressed and summarized.

2. ROBERTSON-SCHRÖDINGER UNCERTAINTY RELATION

One of the key ideas that demonstrates the strangeness of quantum mechanics
is the uncertainty principle, which was initially established by German theoret-
ical physicist Werner Heisenberg [8]. It imposed a restriction on the simultane-
ous measurement of complementary variables such as position and momentum
with high accuracy. After that, Robertson [9] generalized the inequality to an
arbitrary observables Â and B̂ given by

(2.1) (∆Â)(∆B̂) ≥
∣∣∣∣ 1

2i
〈[Â, B̂]〉

∣∣∣∣
and in the following year, Schrödinger [10] offered a stronger extension by
including a covariance element in the formulation as follows
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(2.2) (∆Â)2(∆B̂)2 ≥
∣∣∣∣ 1

2i
〈[Â, B̂]〉

∣∣∣∣2 +

∣∣∣∣12〈[Â, B̂]+〉 − 〈Â〉〈B̂〉
∣∣∣∣2 .

In geometrical version of quantum mechanics, Ashtekar [6] demonstrates that
the Roberton-Schrödinger uncertainty principle (2.2) can be casted in terms of
symplectic form Ω and Riemannian metric G in Hilbert space H. Let us consider
Ψ be a normalized state vector, then the inequality can be expressed as

(2.3) (∆Â)2(∆B̂)2 ≥
(
~
2

Ω(XÂ, XB̂)

)2

+

(
~
2
G(XÂ, XB̂)− AB

)2

,

where (∆Â)2 represents a function on H that is (∆Â)2(Ψ) := (∆Â)2
Ψ and

(2.4) XÂ = − i
~
ÂΨ, XB̂ = − i

~
B̂Ψ

are Schrödinger vector fields. Besides, the Robertson-Schrödinger uncertainty
principle may also be defined on the complex projective Hilbert space P (H), i.e.
the appropriate quantum phase space. Let consider the expectation values A(Ψ)

and B(Ψ) of two quantum observables Â and B̂ respectively, and let a and b be
the corresponding functions on P (H), i.e.,

(2.5) a ◦ Π = 〈Â〉Ψ = A(Ψ), b ◦ Π = 〈B̂〉Ψ = B(Ψ),

where Π is the canonical projectionH → P (H). Thus, for any Xa = Π∗(XÂ) and
Xb = Π∗(XB̂) are elements of tangent vector at point ψ on P (H) i.e. TψP (H),
the uncertainty principle may be expressed in terms of symplectic form ω and
Riemannian metric g defined on P (H) as follows

(2.6) (∆a)2(∆b)2 ≥ ~2

4
(ω(Xa, Xb)

2 + g(Xa, Xb)
2),

where (∆a)2(ψ) := (∆A)2(Ψ) and (∆b)2(ψ) := (∆B)2(Ψ).

3. THE UNCERTAINTY PRINCIPLE OF GENERAL SPIN 1
2

OPERATOR

In this section, the generalized Robertson-Schrödinger uncertainty principle
for spin 1

2
system is constructed by considering the operators corresponding to

arbitrary direction generated by rotation of operators:

Ŝx =

(
0 ~

2
~
2

0

)
, Ŝy =

(
0 − i~

2
i~
2

0

)
, Ŝz =

(
~
2

0

0 −~
2

)
.
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Consider the operator Â′ which generated by a rotation by angle θ about the
arbitrary axis n̂ expressed as follows

(3.1) Â′ = Un̂(θ)ÂU †n̂(θ),

where

Un̂(θ) =

(
cos θ

2
− in3 sin θ

2
−in1 sin θ

2
− n2 sin θ

2

−in1 sin θ
2

+ n2 sin θ
2

cos θ
2

+ in3 sin θ
2

)
.

Applying equation (3.1) to operators Ŝx, Ŝy and Ŝz and we get

Ŝu = Un̂(θ)ŜxU
†
n̂(θ) =

~
2

(
αu βu
βu −αu

)
,(3.2)

Ŝv = Un̂(θ)ŜyU
†
n̂(θ) =

~
2

(
iαv −iβv
iβv −iαv

)
,(3.3)

Ŝw = Un̂(θ)ŜzU
†
n̂(θ) =

~
2

(
αw βw
βw −αw

)
,(3.4)

where

αu = −2n2 sin
θ

2
cos

θ

2
+ 2n1n3 sin2 θ

2
;

αv = −2in1 sin
θ

2
cos

θ

2
− 2in2n3 sin2 θ

2
;

αw = n3
2 sin2 θ

2
+ cos2 θ

2
− (n1

2 + n2
2) sin2 θ

2
;

βu = (n1
2 − n2

2 − n3
2 − 2in1n2) sin2 θ

2
− 2in3 sin

θ

2
cos

θ

2
+ cos2 θ

2
;

βv = [−(n1
2 − n2

2 + n3
2) + 2in1n2] sin2 θ

2
+ cos2 θ

2
− 2in3 sin

θ

2
cos

θ

2
;

βw = 2(n2 + in1) sin
θ

2
cos

θ

2
+ 2(n1n3 − in2n3) sin2 θ

2
,

and β is refers to conjugate β. Note that, in this paper only one case of the
Robertson-Schrödinger uncertainty principle with respect to Ŝu and Ŝv opera-
tors has been considered since other cases can be obtained under appropriate
rotation. In order to calculate the uncertainty principle, firstly the Schrödinger
vector field of these operators must have been calculated. Let us consider the
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Hilbert space H ∼= C
2 and (e1, e2) represents the orthonormal basis in C2 satisfy

〈eα|eβ〉 = δαβ.

Then the state of spin 1
2

particle in H is expressed as

(3.5) |Ψ〉 = Z1 |e1〉+ Z2 |e2〉 .

The expectation value corresponding to these operators are

Su(Ψ) = 〈Ψ| Ŝu |Ψ〉 =
~
2

[αu(|Z1|2 − |Z2|2) + βuZ2Z̄1 + βuZ1Z̄2];(3.6)

Sv(Ψ) = 〈Ψ| Ŝv |Ψ〉 =
i~
2

[αv(|Z1|2 − |Z2|2)− βvZ2Z̄1 + βvZ1Z̄2](3.7)

and according to equation (2.4) we get

XŜu
|Ψ〉 =

dZ1

dt
|e1〉+

dZ2

dt
|e2〉 = − 1

i~
(Z1Ŝu |e1〉+ Z2Ŝu |e2〉);(3.8)

XŜv
|Ψ〉 =

dZ1

dt
|e1〉+

dZ2

dt
|e2〉 = − 1

i~
(Z1Ŝv |e1〉+ Z2Ŝv |e2〉),(3.9)

where

〈e1| Ŝu |e1〉 =
~
2

(
1 0

)(αu βu

βu −αu

)(
1

0

)
=

~
2
αu;

〈e1| Ŝu |e2〉 =
(

1 0
)(αu βu

βu −αu

)(
0

1

)
=

~
2
βu;

〈e1| Ŝv |e1〉 =
~
2

(
1 0

)(αv −iβv
βv −iαv

)(
1

0

)
=
i~
2
αv;

〈e1| Ŝv |e2〉 =
(

1 0
)(αv −iβv

βv −iαv

)(
0

1

)
= −i~

2
βv.

Therefore

〈e1|XŜu
|Ψ〉 =

dZ1

dt
= −(αuZ1 + βuZ2)

2i
;(3.10)

〈e1|XŜv
|Ψ〉 =

dZ1

dt
=
βvZ2 − αvZ1

2
.(3.11)
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and in the same way one obtain

〈e2|XŜu
|Ψ〉 =

dZ2

dt
= −(βuZ1 − αuZ2)

2i
;(3.12)

〈e2|XŜv
|Ψ〉 =

dZ2

dt
=
αvZ2 − βvZ1

2
.(3.13)

Besides dZ1

dt
and dZ2

dt
, the calculation on dZ̄1

dt
and dZ̄2

dt
is needed since here C2 is

assumed as a complexification of real vector space R4. Thus the complexified
tangent space is spanned by 4 vectors; ∂

∂Z1
, ∂
∂Z2

, ∂
∂Z̄1

, ∂
∂Z̄2

. Now let 〈Ψ| = Z̄1 〈e1|+
Z̄2 〈e2| be a state in dual Hilbert space H∗, then from equation (2.4) one finds
that

XŜu
〈Ψ| = dZ̄1

dt
〈e1|+

dZ̄2

dt
〈e2| =

1

i~
(Z̄1Ŝu 〈e1|+ Z̄2Ŝu 〈e2|);(3.14)

XŜv
〈Ψ| = dZ̄1

dt
〈e1|+

dZ̄2

dt
〈e2| =

1

i~
(Z̄1Ŝv 〈e1|+ Z̄2Ŝv 〈e2|).(3.15)

Then it is clear

(3.16) 〈Ψ|XŜu
|e1〉 =

dZ̄1

dt
=

(αuZ̄1 + βuZ̄2)

2i
;

(3.17) 〈Ψ|XŜv
|e1〉 =

dZ̄1

dt
=

(αvZ̄1 + βvZ̄2)

2
.

and

(3.18) 〈Ψ|XŜu
|e2〉 =

dZ̄2

dt
=
βuZ̄1 − αuZ̄2

2i
;

(3.19) 〈Ψ|XŜv
|e2〉 =

dZ̄2

dt
= −(βvZ̄1 + αvZ̄2)

2
.

The Schrödinger vector fields correspond to Ŝu and Ŝv are

XŜu
= −(αuZ1 + βuZ2)

2i

∂

∂Z1

− (βuZ1 − αuZ2)

2i

∂

∂Z2

+
αuZ̄1 + βuZ̄2

2i

∂

∂Z̄1

+
βuZ̄1 − αuZ̄2

2i

∂

∂Z̄2

;(3.20)
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XŜv
= −(αvZ1 − βvZ2)

2

∂

∂Z1

+
αvZ2 − βvZ1

2

∂

∂Z2

+
αvZ̄1 + βvZ̄2

2

∂

∂Z̄1

− (βvZ̄1 + αvZ̄2)

2

∂

∂Z̄2

.(3.21)

Let us define the Robertson-Schrödinger uncertainty relation for operator Ŝu and
Ŝv as

(3.22) (∆Ŝu)
2(∆Ŝv)

2 ≥
(
~
2

Ω(XŜu
, XŜv

)

)2

+

(
~
2
G(XŜu

, XŜv
)− SuSv

)2

,

where the contraction of Schrödinger vector fields XŜu
and XŜv

with symplectic
form Ω is

Ω(XŜu
, XŜv

) =
1

4

[
(βuβv + βuβv)(|Z2|2 − |Z1|2) + 2(αuβv − βuαv)Z1Z̄2

+2(αuβv + βuαv)Z2Z̄1

]
(3.23)

and the component of Riemannian metric corresponds to XŜu
and XŜv

can be
written as

(3.24) G(XŜu
, XŜv

) =
i~
4

(2αuαv − βuβv + βuβv)(|Z1|2 − |Z2|2).

Thus, the Robertson-Schrödinger uncertainty principle (3.22) can be expressed
as

(∆Ŝu)
2(∆Ŝv)

2 ≥
[

1

8
(βuβv + βuβv)(|Z2|2 − |Z1|2)

]2

+

[
1

4
(αuβv − βuαv)Z1Z̄2 +

1

4
(αuβv + βuαv)Z2Z̄1

]2

+

[
i~2

8
(2αuαv − βuβv + βuβv)(|Z1|2 − |Z2|2)

]2

.(3.25)

Note that, any state vector Ψ,Φ ∈ H such that Φ = cΨ, c ∈ C defines the
same physical state. Thus, it is necessary to find the expression of Robertson-
Schrödinger uncertainty principle in CP 1 which is the quantum phase space of
spin 1

2
particle.

In order to compute the Robertson-Schrödinger uncertainty principle on CP 1,
we need to find the pushforward vector fields of XŜu

and XŜv
under the map

Π∗ : TΨH → TψP (H). Let Π(Z1, Z2) = z = Z2

Z1
be a local coordinate of U1 ⊂ CP 1
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where Z1 6= 0. Then the pushforward vector fields correspond to these vector
fields are

Π∗XŜu
=

1

2i
(βuz

2 + 2αuz − βu)
∂

∂z
− 1

2i
(βuz̄

2 + 2αuz̄ − βu)
∂

∂z̄
;(3.26)

Π∗XŜv
= −1

2
(βvz

2 − 2αvz + βv)
∂

∂z
− 1

2
(βvz̄

2 + 2αvz̄ + βv)
∂

∂z̄
.(3.27)

Therefore, the Robertson-Schrödinger uncertainty relation for the case of Ŝu and
Ŝv in CP 1 is

(3.28) (∆Ŝu)
2(∆Ŝv)

2 ≥ ~2

4
[ω(Π∗XŜu

,Π∗XŜv
)2 + g(Π∗XŜu

,Π∗XŜv
)2]

where the contraction of Schrödinger vector field XŜu
and XŜv

with symplectic
form ω can be written as

ω(Π∗XŜu
,Π∗XŜv

) =
~[(βuβv + βuβv)(|z|4 − 1) + 2(αuβv + βuαv)(z[1 + zz̄])]

4(1 + |z|2)2

+
~[2(αuβv − βuαv)(z̄[1 + zz̄])]

4(1 + |z|2)2
(3.29)

and the component of Riemannian metric associated with XŜu
and XŜv

is de-
noted by

g(Π∗XŜu
,Π∗XŜv

) =
i~[(βuβv + βuβv)|z|4 − 2z(αuβv + βuαv)(zz̄ − 1)]

4(1 + |z|2)2

+
i~[2z̄(αuβv − βuαv)(zz̄ − 1)− (βuβv + βuβv)]

4(1 + |z|2)2

+
i~[2βuβvz

2 − 2βuβvz̄
2 + 8αuαvzz̄]

4(1 + |z|2)2
.(3.30)

4. CONCLUSION

In this study, the generalized geometric Robertson-Schrödinger uncertainty
relation for spin 1

2
system has been constructed. We shows that, the uncertainty

principle (3.28) may reduced to the standard expression of spin 1
2
’s uncertainty

principle when rotated at certain angles. For example, let take n1 = 0, n2 = 1,
n3 = 0 and θ = 900. Then, one gets αu = −1, βu = 0, αv = 0 and βv = 1 which
implies that the equation (3.28) is identical to the uncertainty principle for the
case of Ŝy and Ŝz operators.
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