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THREE-DIMENSIONAL STAGNATION-POINT FLOW OVER AN UNSTEADY
PERMEABLE SHRINKING SURFACE

Mohd Ezad Hafidz Hafidzuddin1, Roslinda Nazar, Norihan M. Arifin, and Ioan Pop

ABSTRACT. An analysis is carried out to theoretically investigate the unsteady
three dimensional stagnation-point of a viscous flow over a permeable stretch-
ing/shrinking sheet. A similarity transformation is used to reduce the governing
system of nonlinear partial differential equations to a set of nonlinear ordinary
(similarity) differential equations, which are then solved numerically using the
bvp4c function in MATLAB. Results show that multiple solutions exist for a cer-
tain range of unsteadiness and stretching/shrinking parameters. The effects
of the governing parameters on the skin friction coefficients and the velocity
profiles are presented and discussed.

1. INTRODUCTION

A stagnation point is a point in a flow field where the local velocity of the fluid
is brought to rest, where it encounters the highest pressure, the highest heat
transfer and the highest rates of mass deposition. The study of the stagnation-
point flow is important due to its wide range of applications in many industrial
manufacturing processes, such as aerodynamic extrusions of plastic sheet, the
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cooling and drying of papers and textiles, glass blowing and continuous cast-
ing and spinning of fibers. Early classical works include; the two dimensional
stagnation point flow impinging normally on a fixed flat plate by Hiemenz [1];
the three-dimensional flow near a stagnation point by Howarth [2]; and the
unsteady viscous flow in the vicinity of a stagnation point by Rott [3].

Unlike the stretching sheet where the velocity is moving away from the ori-
gin, the velocity on the boundary is moving towards a fixed point. The flow
induced by a shrinking sheet shows physical phenomena quite distinct from the
forward stretching flow. This phenomena can be found, for example, on a ris-
ing and shrinking balloon. It is found that there are two conditions that the
flow towards the shrinking sheet is likely to exist: by imposing an adequate suc-
tion on the boundary; or by considering the stagnation flow [4]. Since then,
the problems of stagnation flow towards a shrinking sheet are extended and
investigated for various type of fluids and various physical properties. Some
of the published papers regarding the unsteady stagnation-point flow towards
a stretching/shrinking sheet worth mentioning are; [5–9] and very recently by
Anuar and Bachok [10].

In this paper, we extend the work done in [4] to the problem of three dimen-
sional stagnation-point flow over an unsteady shrinking sheet with the addition
of suction effect. The governing partial differential equations are first trans-
formed into a system of ordinary differential equations, and then solved numer-
ically by using the bvp4c function. Our attention is devoted to obtaining the
numerical results for the critical points which define the range of the existence
of the dual solutions.

2. MATHEMATICAL FORMULATION

Consider the unsteady forced convection stagnation-point flow of an incom-
pressible viscous fluid over a permeable stretching/shrinking surface, where x,
y and z are the Cartesian coordinates. We assume that the velocities on the
stretching/shrinking surface are uw(x, t) = b(x+c)

1−αt and w(t) = w0√
1−αt , where b

is the stretching rate (shrinking if (b < 0)), −c is the location of the stretch-
ing/shrinking origin, w0 is the mass transfer velocity with w0 < 0 for suc-
tion and w0 > 0 for injection, and α is positive or negative constant. Notice
that the stretching/shrinking axis and the stagnation flow are, in general, not
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aligned. It is also assumed that the components of the inviscid (potential) flow
are ue(x) = ax

1−αt and we(z) = − az
1−αt , where a is the constant positive strength

of the stagnation flow. Based on these assumptions, the basic unsteady Navier-
Stokes equations of the problem in the usual notations are
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subject to the initial and boundary conditions

t < 0 : v = 0, u = 0, w = 0 for any x, y, z,

t ≥ 0 :

{
v = vw(t), u = uw(x, t) =

1

1− αtb (x+ c) ,

w(t) = ww(t) =
w0√
1− αt

}
at z = 0,

u→ 0, w → 0 as z →∞.

(2.5)

Here (u, v, w) are the velocity components along (x, y, z) directions, p is the
pressure, ν is the kinematic viscosity, ρ is the density and ∇2 = ∂2

∂x2
+ ∂2

∂y2
+ ∂2

∂z2
is

the Laplacian in the Cartesian coordinates (x, y, z).
Velocity of the inviscid free stream are defined as u = ue(x, t), v = ve(y, t) and

w = we(z, t) [5, 7]. Therefore, momentum equations (2.2)-(2.4) can be written
as
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We look now for a similarity solution of Eqs. (2.1) and (2.6)-(2.8) subjected to
the initial and boundary condition (2.5) of the following form

u =
1

1− αt [axf
′(η) + bcg(η)] , v = 0, w = −

√
aν

1− αtf(η),

η =

√
a

ν(1− αt)z,
(2.9)

where prime denotes differentiation with respect to η. Thus, from (2.5) and
(2.9), we have

(2.10) ww(t) =

√
aν

1− αts,

with the constant s being defined as s = −w0/
√
aν. Thus, s > 0 and s < 0

correspond to suction and injection, respectively.
Using (2.9), (2.1) is automatically satisfied, while (2.6)-(2.8) are reduced to

the following ordinary (similarity) differential equations

f ′′′ + ff ′′ + 1− f ′2 + β
(
1− f ′ − η

2
f ′′
)
= 0,(2.11)

g′′ + fg′ − f ′g − β
(
g +

η

2

)
= 0,(2.12)

while the boundary conditions (2.5) become

f(0) = s, f ′(0) =
b

a
= λ, g(0) = 1,

f ′(η)→ 1, g(η)→ 0 as η →∞,
(2.13)

where β = α
a

is the unsteadiness parameter with β < 0 for decelerating stretch-
ing/shrinking sheet. It is worth mentioning that the equations (2.11)-(2.13) are
identical with those reported in [4] for the cases of steady flow (β = 0) and
impermeable (s = 0).

The skin friction coefficient is defined as Cf = τw
ρu2e

, where τw = µ
(
∂u
∂z

)
z=0

.
Using these informations, we then have

(2.14) Re1/2x Cf = f ′′(0) +
bc

ax
g′(0),

where Rex = uex/ν is the local Reynolds number.
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3. RESULTS AND DISCUSSION

The system of ordinary differential equations (2.11) and (2.12) along with the
boundary conditions (2.13) was solved numerically using the bvp4c function in
MATLAB for several values of the governing parameters.To verify the accuracy
of the present method, we made a comparison for the initial values f ′′(0) and
g′(0) with those reported in [4]. The comparison, which displayed in Table 1,
are found to be in a very good agreement, and thus we are confident that the
present method and results are accurate.

TABLE 1. Values of f ′′(0), g′(0) and h′(0) for different values of λ
when β, s = 0 [h′(0) in [4] are equivalent to g′(0) in this study]

[4] Present study
λ f ′′(0) h′(0) f ′′(0) g′(0)

−1.24658 − − 0.56934 0.97298
−1.15 1.08223 0.297995 1.08223 0.297995

[0.116702] [0.276345] [0.116702] [0.276345]
−1 1.32882 0 1.32882 0
Note: Lower branch solutions are given in parenthesis.

The existence of dual solutions in this problem are illustrated in Figs. 1 and 2.
From these figures, it can be seen that dual (upper and lower branch) solutions
exist for a certain range of β(< 0). The upper and lower branch solutions are
represented with solid and dashed lines, respectively. In addition, when β is
equal to a certain value, say β = βc, where βc is the critical values (and turning
points) of β, there is only one (unique) solution. There is no solution when
β < βc, due to the separation of boundary layer from the surface, and thus the
solution based on boundary layer approximations is no longer applicable. To
obtain further solutions, one need to consider the full Navier-Stokes equations,
which is beyond the scope of this paper.

Figs. 1 and 2 show the variations of the reduced skin friction coefficients
f ′′(0) and g′(0) with unsteadiness parameter β for some values of suction pa-
rameter s when λ = −1. It is observed that with the increase of s, the solution
domain expands with the critical value βc moving further to the left. The wall
shear stress f ′′(0) in Fig. 2 is seen to decrease with the increase of |β| and
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FIGURE 1. f ′′(0) versus β for different values of s when λ = −1
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FIGURE 2. g′(0) versus β for different values of s when λ = −1

s for the upper branch solution. At a certain value of β, f ′′(0) becomes zero
and continue decreases to negative, which implies that there is velocity over-
shoot near the shrinking sheet with the velocity in the fluid higher than the wall
speed.However, in some cases of small s, f ′′(0) can be positive for both of the
solution branches, which in this case, is when s = 0 and s = 0.5. Meanwhile, in
Fig. 2, it is seen that the values of g′(0) for upper branch solution increase grad-
ually with the increase of |β| until it reaches the critical (turning) point βc, and
then the lower branch solution increases rapidly after the turning point. Also, it
is seen that the values of |βc| increase with the increase of s. Hence, suction or
blowing parameter widens the range of λ for which solutions exist.
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FIGURE 3. Velocity profiles f ′(η) for different values of β when
s = 0.5 and λ = −1
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FIGURE 4. Velocity profiles g(η) for different values of β when
s = 0.5 and λ = −1

The influence of the unsteadiness parameter β on the velocity profiles f ′(η)
and g(η) are shown in Figs. 3 and 4, respectively. For the upper branch solution,
the increase of |β| leads to the increase of the boundary layer thickness and
the decrease of the velocity gradient at the wall. The lower branch solution,
however, displays the opposite effect from the upper branch solution.
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FIGURE 5. Velocity profiles f ′(η) for different values of s when
β = −0.5 and λ = −1
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FIGURE 6. Velocity profiles g(η) for different values of s when β =

−0.5 and λ = −1

Meanwhile, the influence of the suction parameter s on the velocity profiles
f ′(η) and g(η) are shown in Figs. 5 and 6, respectively. It is seen that the increase
of s decreases the boundary layer thickness and increases the velocity gradient
at the wall. This happened because suction (s > 0) reduces drag force in order
to avoid boundary layer separation.



STAGNATION-POINT FLOW OVER AN UNSTEADY PERMEABLE SHRINKING SURFACE 3271

4. CONCLUSION

The problem of unsteady three-dimensional stagnation-point flow of a vis-
cous fluid over a permeable stretching/shrinking sheet is solved numerically
using the bvp4c function in MATLAB. The effects of the unsteadiness param-
eter β, suction or blowing parameter s and stretching/shrinking parameter λ
have been analyzed and presented. Dual solutions are found for a certain range
of unsteadiness and stretching/shrinking parameters. Suction or blowing pa-
rameter widens the range of stretching/shrinking parameter for which similar-
ity solutions exist. The increase of unsteadiness and stretching/shrinking pa-
rameters increase the initial values f ′′(0) but decrease the initial values g′(0).
The boundary layer thickness increases with the increase of unsteadiness and
stretching/shrinking parameters, while decreases with the increase of suction
or blowing parameter.
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