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THREE-DIMENSIONAL STAGNATION-POINT FLOW OVER A PERMEABLE
STRETCHING/SHRINKING SHEET WITH A SECOND ORDER SLIP FLOW

Mohd Ezad Hafidz Hafidzuddin1, Roslinda Nazar, Norihan M. Arifin, and Ioan Pop

ABSTRACT. The problem of steady laminar three-dimensional stagnation-point
flow on a permeable stretching/shrinking sheet with second order slip flow
model is studied numerically. Similarity transformation has been used to reduce
the governing system of nonlinear partial differential equations into the system
of ordinary (similarity) differential equations. The transformed equations are
then solved numerically using the bvp4c function in MATLAB. Multiple solu-
tions are found for a certain range of the governing parameters. The effects
of the governing parameters on the skin friction coefficients and the velocity
profiles are presented and discussed. It is found that the second order slip flow
model is necessary to predict the flow characteristics accurately.

1. INTRODUCTION

The study of stagnation point-flows is important due to its numerous ap-
plications in industry, such as flows over the tips of aircrafts and submarines.
Hiemenz [1] was the first to obtain an exact solution for the two-dimensional
stagnation-point flow against a stationary semi-infinite wall. Later, Hiemenz’s
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work was extended by Homann [2] to the axisymmetric case. Libby [3] ex-
tended Homann’s work to the case of three-dimensional stagnation flow to-
wards a moving plate. The flows induced by a plate moving normal to planar
(Hiemenz) and axisymmetric (Homann) stagnation-point flows was discussed
by Weidman and Sprague [4]. Very recently, Khashi’ie et al. [5] investigated
the effect of suction on the stagnation point flow of hybrid nanofluid toward a
permeable and vertical Riga plate.

In 2008, Wu [6] proposed a second order slip flow model for rarefied gas
flows at arbitrary Knudsen number, which is based on numerical simulation of
linearized Boltzmann equation. Following [6], Fang et al. [7] studied the viscous
flow over a shrinking sheet, while Nandeppanavar et al. [8] discussed the second
order slip flow and heat transfer over a stretching sheet with non-linear Navier
boundary condition. Soid et al. [9] studied the axisymmetric stagnation-point
flow over a stretching/shrinking vertical surface with a second-order velocity
slip and temperature jump. Recently, Waini et al. [10] examined the behaviour
of a hybrid nanofluid flow towards a stagnation point on a stretching or shrink-
ing surface with second-order slip and melting heat transfer effects.

To date, it is seen in the literature that a proper numerical study of second
order slip flow for a three dimensional stagnation-point flow is scarce. There-
fore, the main purpose of this paper is to extend the work in [9] by considering
the three-dimensional stagnation-point flow. The governing partial differential
equations are first transformed into a system of ordinary differential equations,
and then solved numerically by using the bvp4c function.

2. MATHEMATICAL FORMULATION

Consider the steady three-dimensional laminar boundary layer stagnation-
point flow of a viscous fluid past a permeable stretching/shrinking sheet. The
Cartesian coordinates x, y and z are measured in the xy−plane, while fluid
is placed along the z−axis. We assume that the constant mass flux velocity is
denoted by w0, where w0 < 0 is for suction and w0 > 0 is for injection. Under
these assumptions, the governing boundary layer equations can be written as

∂u

∂x
+
∂v

∂y
+
∂w

∂z
= 0,(2.1)
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where u, v and w are the velocities along x, y and z directions, respectively,
ue(x) = ax, ve(x) = ay and we(z) = −2az are the velocities of the outer (invis-
cid) flow, and is the kinematic viscosity of the fluid. The boundary conditions
are given as

u = uw(x) = λUw(x) + usl(x), v = vw(y) = λVw(y) + vsl(y), w = w0 at z = 0,

u→ ue(x), v → ve(y), w → we(z) as z →∞.
(2.5)

where λ is the stretching (λ > 0) or shrinking (λ < 0) parameter. Here, we
assume that Uw(x) = ax and Vw(x) = ay, where a is a positive constant. Fur-
ther, usl and vsl are the slip velocities at the sheet along the x and y direction,
respectively, as given by Wu [6]. In this paper, we extend the slip velocities to a
three-dimensional slip flow, as following [9]:

usl(x) =
2

3
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3− ϕl3

ϕ
− 3
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vsl(y) =
2

3

(
3− ϕl3

ϕ
− 3

2

1− l2

Kn

)
ϑ
∂v

∂z
− 1

4

(
l4 +

2

K2
n

(
1− l2

))
ϑ2∂

2v

∂z2
,

= Ay
∂v

∂z
+By

∂2v
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where ϕ(0 ≤ ϕ ≤ 1) is the momentum accommodation coefficient, Ax, Bx, Ay

and By are constants, Kn is a Knudsen number, l is defined as l = min(1/Kn, 1),
and ϑ(> 0) is the molecular mean free path. Based on the definitions of l and ϑ,
for any number of Kn, it results in that Ax and Ay are always positive, while Bx

and By are always negative. The subscripts x and y denote the slip velocities for
x and y−axis, respectively.
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We now introduce the following similarity variables

(2.8) u = axf ′(η), v = ayg′(η), w =
√
aν (f(η) + g(η)) , η = z

√
a/ν,

where primes denote the differentiation with respect to η. Here, s = −w0/
√
aν

is defined as surface mass transfer with s < 0 for injection and s > 0 for suction,
respectively, which then gives f(0) + g(0) = s. Without loss of generality to
the velocity, we can write f(0) = s, g(0) = 0. Substituting (2.8) into equations
(2.1)-(2.4), equation (2.1) is automatically satisfied, while equations (2.2) and
(2.3) are reduced to the following ordinary differential equations

f ′′′ + (f + g) f ′′ − f ′2 + 1 = 0,(2.9)

g′′′ + (f + g) g′′ − g′2 + 1 = 0,(2.10)

and the boundary conditions (2.5) become

f(0) = s, g(0) = 0,

f ′(0) = λ+ a1f
′′(0) + b1f

′′′(0),

g′(0) = λ+ a2g
′′(0) + b2g

′′′(0),

f ′(η)→ 1, g′(η)→ 1 as η →∞,(2.11)

where a1 and a2 (a1, a2 > 0) are the first order slip velocity parameters, while
b1 and b2 (b1, b2 < 0) are the second order slip velocity parameters, which are
defined as a1 = Ax

√
a
ν
, a2 = Ay

√
a
ν
, b1 = Bx

a
ν
, b2 = By

a
ν
.

The quantities of physical interest are the local skin friction coefficients Cfx
and Cfy, which are given as

(2.12) Cfx =
ν

U2
w

(
∂u

∂z

)
z=0

, Cfy =
ν

V 2
w

(
∂v

∂z

)
z=0

.

Substituting (2.8) into (2.12), we obtain the following

(2.13) Re1/2x Cfx = f ′′(0), Re1/2y Cfy = g′′(0),

where Rex = Uwx/ν and Rey = Vwy/ν are the local Reynolds numbers based on
Uw(x) and Vw(y), respectively.
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3. RESULTS AND DISCUSSION

Numerical solutions to the governing nonlinear ordinary differential equa-
tions (2.9) and (2.10) subject to the boundary conditions (2.11) were obtained
using the bvp4c function in Matlab for some values of the governing parameters.
To verify the accuracy of the present method, a comparison for the values of the
reduced skin friction coefficients f ′′(0) has been made with those of [9]. The
comparisons, as shown in Table 1, are found to be in excellent agreement, and
thus we are confident that the present method is accurate.

TABLE 1. Comparison values of f ′′(0) when λ = 0, s = 0,
a2, b1, b2 = 0.

a1 [9] Present study
0 1.311938 1.311938
1 0.617300 0.617300
5 0.179287 0.179284
10 0.094597 0.094597

FIGURE 1. Variations of
f ′′(0) with λ for different
values of s

FIGURE 2. Variations of
g′′(0) with λ for different
values of s

Variations of f ′′(0) and g′′(0) with λ for different values of s are presented
in Figs. 1 and 2. Dual (upper and lower branch) solutions are found in these
figures. The upper and lower branch solutions are illustrated with solid and
dashed lines, respectively. It seems that there is no solution for s < sc, where
sc is the critical values of s. Beyond these critical values, the boundary layer
separates from the surface and thus the solution based upon the boundary layer
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approximations are not possible. From the figures, it can be seen that the values
of f ′′(0) and g′′(0) increase with the increase of s, while opposite behavior is
observed for the lower branch solution g′′(0). In addition, f ′′(0) and g′′(0) are
seen to decrease to negative when the sheet is stretching (λ > 0).

Figs. 3 and 4 display the variations of f ′′(0) and g′′(0) with λ for different
values of first order slip parameters a1, a2 when s = 2 and b1, b2 = 0, while
Figs. 5 and 6 display the variations of f ′′(0) and g′′(0) with λ for different values
of second order slip parameters b1, b2 when s = 2 and a1, a2 = 0. The figures
show that the values of f ′′(0) and g′′(0) decrease with the increase of the slip
parameters a1, a2 and b1, b2. Increasing slip at the boundary decreases the wall

FIGURE 3. Variations of
f ′′(0) with λ for different
values of a1, a2

FIGURE 4. Variations of
g′′(0) with λ for different
values of a1, a2

FIGURE 5. Variations of
f ′′(0) with λ for different
values b1, b2

FIGURE 6. Variations of
g′′(0) with λ for different
values b1, b2
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shear stress, thus reducing the vorticity generated for shrinking velocity due to
the weakening fluid adhesion strength. However with the effects of suction,
the vorticity remained confined within the boundary layer for larger shrinking
velocity, and the steady solution is possible for some large values of λ. Further-
more, this shows that the inclusion of the slip parameters can greatly change
the wall drag force [7].
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FIGURE 7. Velocity profiles
f ′(η) for different values of a1
and a2
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FIGURE 8. Velocity profiles
g′(η) for different values of a1
and a2
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FIGURE 9. Velocity profiles
f ′(η) for different values of b1
and b2 when s = 2, λ = −2.2,
a1, a2 = 0
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FIGURE 10. Velocity profiles
g′(η) for different values of b1
and b2 when s = 2, λ = −2.2,
a1, a2 = 0

Figs. 7 and 8 illustrate the velocity profiles f ′(η) and g′(η), respectively for
different values of first order slip parameters a1, a2 when s = 2, λ = −2.2 and
b1, b2 = 0. Further, the effects of the second order slip parameter b1, b2 on the
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velocity profiles f ′(η) and g′(η) when s = 2, λ = −2.2 and a1, a2 = 0 are shown
in Figs 9 and 10, respectively. From these figures, it is seen that for the given
suction and stretching/shrinking parameters, the boundary layer thickness for
both solution branches becomes smaller with the increase of the slip parameters.
Increasing slip allows more fluid to flow through the surface, thus reducing the
boundary layer thickness. All profiles displayed in Figs. 7-12 satisfy the far field
boundary conditions (2.11) asymptotically, thus supporting the validity of the
dual solutions obtained in this study.
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FIGURE 11. Velocity profiles f ′(η) for different values of s when λ = −2.2,
a1 = 1.5, b1 = −1.5, a2 = 1 and b2 = −1
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FIGURE 12. Velocity profiles g′(η) for different values of s when λ = −2.2,
a1 = 1.5, b1 = −1.5, a2 = 1 and b2 = −1
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4. CONCLUSION

The problem of steady three-dimensional stagnation-point flow of a viscous
and incompressible fluid past a permeable stretching/shrinking sheet with sec-
ond order slip flow model has been studied numerically. This problem was
solved by using the bvp4c function from MATLAB. The effects of the suction
parameter s, first order slip parameters a1, a2 and second order slip parameters
b1, b2 have been analyzed and presented. Multiple (dual) solutions are found
for a certain range of the suction and stretching/shrinking parameters. The suc-
tion parameter widens the range of stretching/shrinking parameter for which
similarity solutions exist. The values of the reduced skin friction coefficients are
found to increase with the increase of suction and stretching/shrinking param-
eters, while decrease with the increase of slip parameters.
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