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ESTIMATION AND UNIQUENESS OF THE GOMPERTZ FORCE OF
MORTALITY IN TERMS OF THE MODAL AGE AT DEATH

K.A. George1 and Dr. M. Sumathi

ABSTRACT. The initial level of mortality and the rate at which mortality rises with
age are generally expressed in terms of the Gompertz force of mortality (hazard
function). In their paper, James W. Vaupel and others define the Gompertz force of
mortality as the rate at which mortality rises with age and the modal age at death.
In this paper we estimate the Gompertz force of mortality and prove uniqueness
theorem.

1. INTRODUCTION

The Gompertz force of mortality as a feature of the mode M (and b) first appears
in a short segment of Emil J. Gumbel’s Statistics of Extremes citegum, and later in
two working papers by John H. Pollard in a demographic sense [7, 8]. Horiuchi
et al. [4] recently derived expressions for the hazard in terms of the modal age at
death (from senescent causes) in six mortality models: the Gompertz, the Weibull,
and the logistic model in the presence or absence of a Makeham word in the
Gompertz, Weibull, and logistic models.
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Tests of the dispersion of deaths around the modal age at death have been
considered in research on the modal age at death. Rather than analysing the
standard deviation around the mean, i.e. around life expectancy, the standard
deviation around the mode [1] or the standard deviation above the modal age
[4,5,9] can be used to determine the dispersion of the death distribution.

As suggested by [5] the standard deviation above the mode pertains to senescent
mortality without much distortion from non-senescent mortality beyond the modal
age. In Kannisto’s study, confirmed by [9], the standard deviation above the mode
has declined at a slower pace or stagnated in recent decades and the modal age at
death has increased with life expectancy, suggesting that mortality is declining at
roughly the same rate at all older ages, leading to a shift in the force of mortality
to higher and higher ages [10].

In conclusion, the modal age of death is a valuable metric. In certain cases,
it is more useful than the value of the power of death at age zero. As a result,
expressing the Gompertz power of mortality in terms of b and M leads to a better
interpretation than expressing it in terms of a and b [12]. In section 2, we give an
estimation for the Gompertz force of mortality and prove the uniqueness in section
3.

2. ESTIMATION OF PARAMETERS

The Gompertz force of mortality (or hazard) at age x, µpxq, has been expressed
as

(2.1) µpxq � aebx

where a denotes the level of mortality at the initial age, i.e., at x � 0, and b is the
rate of mortality increase over age. Note that x � 0 refers to the starting age of
analysis and might not correspond to biological age 0.

Alternatively, following Gumbel (1958) [3], the Gompertz force of mortality can
be represented as a function of M and b as

(2.2) µpxq � bebpx�Mq

where M is the old-age modal age at death, or for short, modal age at death. In
other words, M is the age at which the maximum number of deaths occurs after
the high number of deaths in the first years of life, assuming stable age groups
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for populations with senescent mortality. In other words, the power of mortality
equals its relative derivative with respect to age at x �M .

(2.3) µpxq �
dµpxq{dx

µpxq

In the case of the Gompertz force of mortality given in (2.1), the relationship in
(2.3) implies that the mode is

(2.4) M �
1

b
ln
b

a
.

From (2.4) the parameter a can be expressed in terms of M and b as

(2.5) a � be�bM .

Substituting (2.5) in (2.1) yields (2.2).
The corresponding survival function can be obtained by integrating the mortal-

ity rate function equation (2.2)

(2.6) Sptq � ee
�bMp1�ebtq

.

In most cases, an experimentalist knows the human lifespans and can estimate
the model parameters using standard techniques like MLE or linear regression.
When lifespans are not understood precisely or at all for any reason, a problem
occurs. Estimating these parameters becomes even more complex in these circum-
stances.

When it comes to ageing, evolutionary biologists are often left with a survival
curve and no data on lifespan. It is crucial in this area to have reliable b figures. If
we know M and also know Sptq, then equation 2.6 is a transcendental equation in
the unknown b that can be solved using normal numerical methods.

In general, agreeing on a specific value of t to use in equation 2.6 is difficult.
If we are looking at the evolution of longevity, however, starting with t � tmax,
the known maximum lifespan, is a good place to start.Finally for ease of analysis
we may set Sptmq � 1

N� (the populationcontains only one number left from an
original population size N�). Hence we have

Sptmq � ee
�bMp1�ebtm q u

1

N�
.

Taking natural logarithm on both sides we get

� lnN� � e�bMp1�ebtm q,
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which can be rewritten as

lnN� � e�bMpebtm�1q

Simplifying further we get

lnplnN�q � �bMpebtm�1q

M �
1

b

�
lnplnN�q

p1� ebtmq

�
.

The above equation gives an estimation for the modal age with respect to the
population size and maximum lifespan.

We obtain the following equation for tm (the time at which the population has
only one number and which approximates the maximum lifespan t�m)

t�m � tm �
1

b
ln

�
1�

lnN�

e�bM

�
.(2.7)

The average mortality rate of a steady-state population subject to age-specific mor-
tality rates is (Finch et al [2])

(2.8) Aavg �
1³8

0
Sptqdt

.

After a little algebra equation (2.7) leads to

(2.9) e�bM �
lnN�

ebtm � 1

and upon substitution of equation (2.6) into equation (2.8) we arrive at

(2.10)
1

Aavg

�

» 8

0

ee
�bMp1�ebtq

dt.

A simple substitution in the integral gives

(2.11) b � Aavge
e�bM

» 8

e�bM

e�y

y
dy

and using (2.9), we get

(2.12) b � Aavge
lnN�

ebtm�1

» 8

lnN�

ebtm�1

e�y

y
dy.

The basic equation (2.12) is transcendental, involving exponential, integral and
the age-dependent parameter b is a function of Aavg, lnN� and tm.
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3. UNIQUENESS OF THE GOMPERTZ FORCE OF MORTALITY

3.1 Uniqueness theorem

Theorem 3.1. The parameter estimation for the Gompertz force of mortality given
in equation (2.12) has a unique solution if 2Aavgtm   1, for b ¡ 0.

Proof. Suppose b1 and b2 are two positive distinct solutions of equation (2.12), that
is

b1 � Aavge
lnN�

eb1tm�1

» 8

lnN�

eb1tm�1

e�y

y
dy,

b2 � Aavge
lnN�

eb2tm�1

» 8

lnN�

eb2tm�1

e�y

y
dy.

Now,

b1 � b2 � Aavg

�
eu1

» 8

u1

e�y

y
dy � eu2

» 8

u2

e�y

y
dy

�
,

where ui � lnN�

ebitm�1
, for i � 1, 2.

A simple substitution in the above equation gives

(3.1) b1 � b2 � Aavg

» 8

0

e�v

�
1

v � u1
�

1

v � u2

�
dv,

where v � y � ui, for i � 1, 2. Also e�v ¥ 1, @v ¤ 0. Hence we obtain

|b1 � b2| ¤ Aavg |u1 � u2|

» 8

0

dv

pv � u1qpv � u2q

� Aavg

����lnru1u2 s
����

6 |b1 � b2| ¤ Aavg

����ln
�
eb2tm � 1

eb1tm � 1

�����
� Aavg

����ln
�
eb2tmp1� e�b2tmq

eb1tmp1� e�b1tmq

�����
� Aavg

�����ln
�
eb2tm

eb1tm


�����
����ln

�
1� e�b2tm

1� e�b1tm


����
�

� Aavg

�
|b2tm � b1tm| �

��lnp1� e�b2tmq � lnp1� e�b1tmq
��� .



3302 K.A. George and Dr. M. Sumathi

Applying mean value theorem, we get

|b1 � b2| ¤ Aavg|b2 � b1|tm � Av ln
��e�b1tm � e�b2tm

��
� Aavg|b2 � b1|tm � Av|b2 � b1|tm

� 2Aavgtm|b2 � b1|.

That is,

p2Aavgtm � 1q|b2 � b1| ¥ 0.

Since 2Aavgtm   1, the last inequality implies that b1 � b2 for b ¡ 0. Hence we
conclude that equation (2.12) has a unique solution if 2Aavgtm   1, for b ¡ 0. �

3.2 Necessary condition for uniqueness

Theorem 3.2. The necessary condition to have a unique solution of equation (2.12)
is that Aavgtm

lnN
  1, for b ¡ 0.

Proof. Suppose b1 and b2 are two positive distinct solutions of equation (2.12), that
is from equation (3.1),

b1 � b2 � Aavgpu2 � u1q

» 8

0

e�v

pv � u1qpv � u2q
dv

� Aavg

�
1

eb2tm � 1
�

1

eb1tm � 1



peb1tm � 1qpeb2tm � 1q

�

» 8

0

e�y lnN�

p1� ypeb1tm � 1qqp1� ypeb2tm � 1qq
dy.

Since

e�y lnN�

p1� ypeb1tm � 1qqp1� ypeb2tm � 1qq
¤ 1,

we get

b1 � b2 ¤ Aavg

�
1

eb2tm � 1
�

1

eb1tm � 1



peb1tm � 1qpeb2tm � 1q

» 8

0

e�y lnN�

dy

� Asvg

�
1

eb2tm � 1
�

1

eb1tm � 1



peb1tm � 1qpeb2tm � 1q

1

lnN�
.
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Hence

|b1 � b2| ¤
Aavg

lnN�

��peb1tm � 1q � peb2tm � 1q
��

�
Aavg

lnN�

����pb1tmq
�
eb1tm � 1

b1tm



� pb2tmq

�
eb2tm � 1

b2tm


����

�
Aavg

lnN�

������
b1tm�
b1tm

eb1tm�1

	 �
b2tm�
b2tm

eb2tm�1

	
������ .

Thus,

(3.2) |b1 � b2| ¤
Aavgtm|b1 � b2|

lnN�max
�

b1tm
eb1tm�1

, b2tm
eb2tm�1

	 .

Suppose equation (2.12) has a unique solution, it follows from (3.2) that

(3.3)
Aavgtm

lnN�max
�

b1tm
eb1tm�1

, b2tm
eb2tm�1

	   1.

Since 0   t
et�1

¤ 1, @t ¥ 0, from (3.3) we get

Aavgtm
lnN�

  min

�
b1tm

eb1tm � 1
,

b2tm
eb2tm � 1



  max

�
b1tm

eb1tm � 1
,

b2tm
eb2tm � 1




1 ¤ min

�
b1tm

eb1tm � 1
,

b2tm
eb2tm � 1



¤ max

�
b1tm

eb1tm � 1
,

b2tm
eb2tm � 1



.

Note that
�

btm
ebtm�1

�
attains 1 only if btm � 0.

Hence the above inequalities implies that Aavgtm
lnN�   1, for b ¡ 0. Thus we

conclude that to have a unique solution of equation (2.12) it is necessary that
Aavgtm
lnN�   1, for b ¡ 0 (see Table 1). �

Remark 3.1. Theorem 3.1 shows that the condition for uniqueness of b is indepen-
dent of population size N�, but theorem 2 shows that the necessary condition for
uniqueness of b is dependent on population size N�. As a consequence, Theorem 3.2
outperforms Theorem 3.1.
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TABLE 1. (reprinted from [6])

Aavg{year IMR/year MRD/year tmpyearsq

Herring gull
0.34

N=(652) 0.18 2.82 11.3
N=103 11.5
N=109 15.7

Human
0.015
N=103 0.0002 7.967 105
N=105 110
N=107 114

N=(80,750,000) 115
N=109 117
N=1011 120

Mouse
0.74

N=25 0.049 0.27 2.2
N=50 2.3

N=100 2.3
N=(738) 2.5

N=103 2.5
N=109 2.9

Rat
0.64

N=(250) 0.025 0.26 2.6
N=103 2.7
N=109 3.1

4. CONCLUSION

The aim of this discussion was to look at how to express the Gompertz force of
mortality in terms of the rate at which mortality rises with age and the modal age
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Aavg{year IMR/year MRD/year tmpyearsq

Japanese quail
0.35

N=(29) 0.091 1.163 5.8
N=103 6.9
N=109 8.8

at death. The fact that the modal age parameter M has no impact on estimating
and proving the uniqueness of b is quite interesting. It can also be noted that
the estimation of the gompertz force of mortality parameter b, is the same as the
estimation of the Gompertz parameter.
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