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ABSTRACT. Mathematical and Statistical model help researchers to examine vari-
ous laws and dupes in aiding decision making associated with claims to our com-
munity. It possesses the potential to expect and evaluate likely results and repre-
sent various scenarios before they have to be examined in sensibility. This study
considers a stochastic model to figure out a kidney affected human system. Using a
shock model concept to describe, we presented a complex subject with five factors;
F1-Blood glucose random, F2-Blood urea, F3-Serum creatinine, F4-Hemoglobin
and F5-Age group based on certain medical data to examine the impact of factors
illustrating the Survival rate of expectation. Our model studies in the background
with these five factors influencing a patient’s human system.Based on shock model
approach with a survival function, Laplace transformation and inter-arrival time,
the expected survival estimate is observed and draws relevant inferences on these
factors to the community. The results show that in initial stage (stage 1) when
the disease is found, the easier to ratify. Whereas in stage 2 and stage 3, the risk
of survival is double the chance as measured in stage 1. In conclusion, as age
increases, the risk is been developing.

1. INTRODUCTION

It should be noted that in the general population, the previous goals are differ-
ent because they are based on determining comorbidities rather than age, race, or
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gender.Kidney disease does not take place overnight, develops in different stages.
People having syndromes may not detect thing amiss in the early stage. If detected
and treated kidney problem can be slowed or avoided. Chronic Kidney Disease
(CKD) is well recognized as a major public health issue with enormous financial
implications for human health systems [2], [[14]. CKD is associated with a de-
creased quality of life, as well as an increased risk of death and cardiovascular fail-
ure [6]. A rapid decline in kidney function is linked to an increased risk of death
and cardiovascular problems[ [[18], [22]]. CKD is comorbid with much prevalent
illnesses comprising hypertension, diabetes, anemia and mineral/bone complica-
tions [20]. Diabetes and hypertension are the starting elements of CKD[9]. Ac-
cording to the National Kidney Foundation’s guidelines, CKD can be divided into
five stages based on estimated Glomerular Filtration Rate (eGFR) grade intervals.
Globally, the prevalence of CKD ranges from 10.5% to 13.1% [21]]. To measure
how effectively the kidneys are operating, the status of creatinine in the blood
is tested. Measured rate later applied to determine the predicted glomerular fil-
tration rate (eGFR). Natural kidney function in normal adults falls off by age;
example, adults of 20-30 years have an eGFR of 115 mL/min/1.73m2 whereas
it considers declined to 85 mL/min/1.73m2, in 60-69-year age group Epidemic
models can be applied as analytical devices investigate to transmit infectious dis-
eases. An epidemic model provides an accessible outline to contagious illness data,
but an important purpose is to make an idea of the biological and sociology pro-
cesses of infection transmission [[15]. Current epidemic models represent many
hypotheses on disease transmission process. These hypotheses are to the extent
approximations for the original process.

2. BACKGROUND

Initial recognition and focused intervention of CKD drew substantial concern
from analysts and investigators since both have the possible to bring the number
of cases continuing to End Stage Renal Disease and less the fatality rate associated
to CKD and related healthcare costs[16].A comprehensive research assessment
of statistical approaches adopted for examining risk aspects of CKD evolution is
showed by [3]. One of their findings, which was reported in longitudinal ex-
amples when the entire renal route was operated on over time, was that linear
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mixed designs can be used to identify both risk factors and their linked confi-
dence ranges.Stochastic models help in understanding the mechanism of diseases
to explain relationships between developing and progressing in disease stages
and other relevant covariates. Applications of stochastic processes in medicine
and their use in controlling disease-related morbidity and mortality have been at-
tempted by some authors [4]. The progression of CKD can be visualized using
a Markov process that only allows forward transitions from one state to another
over time [|13]. The progression of disease is continuous, and the timing of tran-
sitions is a random variable. The appropriate model to describe the course of
CKD progression is a homogeneous continuous time multistage model based on
Markov processes [1]]. With the hidden Markov model (HMM), the true stages of
disease are assumed to be hidden (unobservable or latent). A disease marker can
be used to determine the actual stage of the disease. Given the genuine stages,
it is expected that the obtained perceptions are independent. Speech and sig-
nal processing have both benefited from HMM [7]].HMM was used by Satten and
Longini [19] to describe HIV infection at different stages based on CD4 cell num-
bers. The HMM model was used by Jackson et al. to depict the loss in lung
function post lung transplantation [[11].

3. DATA PREPARATION AND CLEANING

In this article the progression of CKD using data with age group observed be-
tween 30 to 90 [10]. Patients with all kinds of primary renal disease are included
in the study.A population of 400 was observed with almost twenty variables; four-
teen nominal variables (Specific Gravity, Albumin, Sugar, Red blood cells, Pus cell,
pus cell clumps, Bacteria, Hypertension, Diabetes Mellitus, Coronary Artery Dis-
ease, Appetite, Pedal Edema, Class) and eleven numerical variables (Age, Blood
Pressure, Blood glucose random, Blood urea, Serum creatinine, Sodium, Potas-
sium, Hemoglobin, Packed cell volume, White blood cell counts, Red blood cell
counts) were present.The goals are to look at the factors that influence renal dis-
ease outcomes and progression in CKD patients, with a particular focus on age-
related risk factors. The model development in our view is performed with five
factors affecting CKD, F1-Blood glucose random, F2-Blood urea, F3-Serum crea-
tinine, F4-Hemoglobin and F5-Age group. Theoretical modeling of epidemics is



3366 T. Elizabeth Sangeetha, P. Pandiyan, R. Hareesh Kumar, and G. Subash Chandra Bose

necessary when the number of virulent entities is small or when the anxiety in
transmission, recovery, births, deaths, or the environment changes the epidemic
outcome. The uncertainty identified with individual changes such as automatic
transmission, healing, births or deaths is pointed out as demographic variability.
The volatility related to the environment, such as conditions referred to terres-
trial or marine sites, is pointed out as environmental uncertainty. Environmental
variability is effective in designing zoonotic infectious diseases, vector-borne epi-
demics, and waterborne diseases [?]. Practice of statistical models and structure
understanding approaches has been developing in evaluating health and disease
issues. Length of the infections period not seen being defined is most usually
considered an exponential family. Distribution of exponential family is effective
because of its consistent hazard rate and its lack of memory property.

4. MODEL DEVELOPMENT

Mathematical models of outbreaks of infectious illnesses may be organized into
two broad classes: deterministic and stochastic. The term “stochastic” relates to
being or including a random variable. Stochastic processes vary in the basic hy-
potheses about the time and the state variables. Stochastic models will serve us
determine and expect the concealed components. Lifetime data with increasing,
decreasing, and upside-down bathtub shaped breakdown rates can be modelled
using the Shifted Exponential Distribution (SED) [8].Because of its simplicity and
mathematical feasibility, the Shifted Exponential Distribution is the most widely
used distribution for lifetime data analysis. However, we rarely come across engi-
neering systems in the real world that have a consistent hazard rate throughout
their lifetime. As a result, it seems reasonable to assume hazard rate as a function
of time, leading to the construction of an alternative lifetime data analysis model.
In general, the threshold Y follows (SED) with parameter . It can be shown that,

z—0 (z—0)

P<Y) = [TawR@d = [ a@e T = [Ca@e s

On simplifications we get,

(4.1) = [¢—]F
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When a patient is dealing with risks from any of the five criteria, age is the pos-
sibility of surviving in various stages. A system of different stages gives included
material as to turn up the predicted survival of the patients. Patients showed
whether they have ever been proved with CKD.The possibility that the accumu-
lated threshold will break only after time t is given by the survival function.

S(t) P(T > t) = The chance that cumulative damage last longer than ¢

= Z P { exactly k decisions in (0, ¢] * P(cumulative threshold (0, ¢]}.

The survival function S(t) which is the probability that an individual survives
for a time t. Renewal process observes that

P(T=t) = iFk(t)P(Xi > )
= ZFk k+1(){9*%r
- [ Sl

P(T > t) = L(t) =the distribution function of life time (t). Using convolution
theorem for Laplace transforms, F;(¢t) = land on simplification, it can be shown

that,
1-0\] < 1—6¢Y
(4.3) L(t) = 1— [1 —q (—)} S R |9 | —— .
g — g
By taking Laplace-Stieltjes transform from equation (4.3). Let the random vari-
able with inter-arrival time follows exponential with parameter, f*(s) = £, sub-

stituting we get,
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After first and second derivatives on simplification we get the expected time of
SED with parameterf. It can be shown that,

14 pp—0
(4.5) E(T) = c[f—fe]
5. RESULTS

The three parameters which were selected for our model estimation are Blood
glucose random, Serum creatinine and Hemoglobin. A selectively twelve obser-
vation was estimated in equation (6) to see the goodness of fit with age group
between 48 to 76.The parameters assigned for the model fit are; Blood glucose
random - (u), Serum creatinine - (3), Hemoglobin - (#). The inter-arrival (c) is
been the Age group which access the survival rate at the three stages of the CKD
patients. From Table 2 and Fig. 2, we can predict that as the age group increases;
in the first stage when the age of the patient was 48 the survival rate of the pa-
tients was found 81.53, as the age increased the survival rate also increased and
at age 76 the survival rate showed a high risk of 2056.83 (i.e., expected chance
of risk is high as age increased). In stage 2, the patient with age 48 found the
survival rate at a high risk of 288.12 and also in the third stage the risk increased
to 830.00 for the patient with age 48. This case is observed for all different age
of patients. Jing Zhao et al. [12] established and justified a prediction model of
estimated glomerular filtration rate (EGFR) by data got from a local health organi-
zation. Age, gender, body mass index, obesity, hypertension, and diabetes, which
brought about a mean coefficient of conviction of 0.95. The scientists discovered
that a model based on real-world electronic medical record parameters can pre-
dict future kidney functions and help with clinical decision-making.Noura Anwar
and Mahmoud Riad [17] designed a theoretical model that illustrates the evolu-
tion process of CKD, measures the meantime invested in each stage of illness that
precedes improving end-stage renal failure and to measure the life expectancy of a
CKD patient. They have suggested a positive construct of the transition probability
matrix of CKD process with five states, the initial four of them illustrate the 2nd,
3rd, 4th, and end-stage renal disease of CKD conforming to the Kidney Disease
Outcomes Quality Initiative analysis, and the last state is death.
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Table -1: Survival rate of the patient with age group

Age Stage-1 Stage-2 Stage-3
76 2056.83 4647.48 8297.05
75 1179.03 4167.11 2155.39
71 1245.74 2511.65 3938.39
68 1074.47 2441.71 4383.78
67 723.07 1653.22 2985.84
65 632.35 1436.73 2578.94
62 532.34 1218.77 2204.06
60 489.25 1133.32 2072.59
59 486.14 1357.15 3060.89
54 288.73 818.16 1871.80
50 134.61 235.20 298.32
48 81.5 288.12 830.00

T i 7

Stage 1

FIGURE 1. Survival of CKD patient at three different stages

6. CONCLUSION

This model proves that when the CKD patient has been affected with different
factors of CKD then immediate attention should be given to the immune system
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so that we can rectify the disease at the early stage (ie., at stage 1). As observed
in Table 1 and Fig 1, if unnoticed and no treatment made at the initial stage
survival rate of the patients increases drastically in stage 2, as well as in stage
3 also. Misclassification of levels can occur as a result of a failure to determine
the subject’s history. The model aids us in determining the critical relationship
of advanced CKD. The study concludes that misclassification of stages in the CKD
process can occur due to behavior or a lack of prognostic concerns. The presence
of variables such as hypertension and diabetes may improve CKD stages, as their
absence adds to stage misunderstanding. The study reveals that the likelihood of
stage misclassification is larger in the early stages of sickness than the later stages.
When stage misclassification is investigated, the mean sojourn duration increases.
In subsequent researches, stochastic models were to apply to subject-individual
indicators of CKD progression. Our model has an excellent match for all illness
groups, and our parameter predictions have been proven to be accurate. Both the
research and the CKD’s judgment support these claims in part.Various samples can
be handled for the model selection method to defend against over-fitting to our
data. The stochastic model where the expected time period applied for measuring
parameters.
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