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RECURSIVE FORMULAE FOR DROPLETS TRANSIENT HEATING AND
EVAPORATION MODELS VIA A COMBINED METHOD OF INTEGRAL

TRANSFORMS

Kwassi Anani1

ABSTRACT. The transient heating of a spherical droplet at rest in a hot gas en-
vironment, is analysed when the temperature distribution is initially assumed to
be non uniform inside the droplet. A combined method of integral transforms,
namely the classical Fourier cosine transform together with the unilateral Laplace
transform, is used in solving the resulting initial-boundary value problem, stated
in the dimensionless form. Explicit solutions of the problem are first obtained
in the Laplace domain, and then analytical approximations in short time limits
(timessteps) are derived for the droplet internal and surface temperature fields.
The analytical approximation for the droplet internal temperature during the time
step is proven to be highly accurate, while the innovative recursive formula ob-
tained for the droplet surface temperature may lead to computationally efficient
droplets and sprays vaporization models.

1. INTRODUCTION

In this paper, a combined method of two classical integral transforms is used in
solving the spherically symmetric droplet transient heating equation. The related
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initial-boundary value problem is stated in the dimensionless form as:

(1.1) r
∂T

∂t
− ∂2(rT )

∂r2
= 0, 0 < r < 1, t > 0,

with the initial and boundary conditions:

(1.2) T (r, t = 0) = T0(r);

(1.3)
∂T

∂r
(r = 0, t) = 0;

(1.4)
∂T

∂r
(r = 1, t) = K(Tg(t)− Ts(t)) = qs(t).

Equation (1.1) can be recast as:

(1.5)
∂T

∂t
−
(
∂2T

∂r2
+

2

r

∂T

∂r

)
= 0,

where T ≡ T (r, t) represents the temperature function to be determined at time t
and distance r from the unity-radius droplet centre. A non-uniform temperature
distribution T (r, t = 0) = T0(r), is initially assumed inside the droplet or at the
beginning of the time step ∆t. The zero temperature gradient at the centre assures
the spherical symmetry of the droplet which is surrounded by a gas phase at time-
evolving temperature Tg(t). The coefficient K = kg/kl, 0 < K < 1, denotes
the ratio of liquid and gas thermal conductivity. These latter are assumed to be
constant with time as well as the specific heat capacities and the densities of both
phases. Thus, in the dimensionless form of the problem, the thermal diffusivity of
the droplet is scaled to unity. The unknown temperature gradient qs(t) and surface
temperature Ts(t) are related by the boundary condition of the third kind (1.4),
and must be determined as part of the solution of equation (1.1).

In Computational Fluid Dynamics (CFD) codes for sprays, the droplet transient
heating and evaporation processes are treated by a time step analysis, where the
location of the droplet surface is assumed fixed during the time step, but varies
from one time step to another. Nevertheless, the time-evolving temperature of
the surrounding gas-phase mixture at the immediate vicinity of the droplet can be
estimated at each time step (confer [1] and [2]). Due to the important number of
droplets involved in liquid fuel combustion mechanisms, the combination of model
simplicity and capability to accurately predict droplet surface temperature (which
solely affects evaporation rate) is crucial for efficient use in a CFD spray model.
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In the latter case, the use of high-precision numerical as in [3] or exact analytical
solutions of the heat transfer equation when considering a single droplet, seems to
be impractical. Thus, many approximate analytical approaches as the power law,
the polynomial approximations and the heat balance integral methods, have been
formulated through physical considerations [4]. On the other hand, the method
of the Laplace integral transform and its inversion formula as well as that of the
separation of variables, have been used for deriving exact series solutions for the
spherical solid body heating/cooling problem with prescribed expressions of the
ambient gas temperature as in [5], [6], [7] and [8]. But, the classical Fourier
sine or cosine integral applied to space coordinates, has being validated only for
infinite and semi-infinite solids, while the Laplace transform method is found to
be not appropriate for solving boundary value problems with a non-uniform initial
space function [5].

In the present paper, efficient analytical solutions in short time limits are ob-
tained for the spherically symmetric droplet heating problem (1.1)-(1.4), by us-
ing the classical Fourier cosine integral transform (FCIT) in combination with the
Laplace integral transform (LIT). Similarly to a former combined method of the
Fourier sine and the Laplace transforms as performed in [9], the present combined
method is introduced in section 2, and an integral form of the temperature distri-
bution inside the droplet is obtained. In section 3, explicit solutions in the Laplace
domain are derived for the droplet internal and surface temperature fields. In
section 4, analytical solutions in short time limits are obtained for the droplet in-
ternal and surface temperatures. The recursive formula derived for the droplet
surface temperature is proved to be sufficiently simple for implementing in spray
CFD codes. Finally, section 5 outlines the conclusion.

2. THE FOURIER COSINE INTEGRAL TRANSFORM METHOD

The classical Fourier cosine integral transform (see [11]) is applied to the prob-
lem (1.1)-(1.4). The surrounding gas temperature Tg(t) is assumed to be bounded
and continuous with time.

Lemma 2.1. Assuming that T = T (r, t) is a solution of the problem (1.1)-(1.4),
then, the FCIT or Fourier Cosine Integral Transform Vc(λ, t) of the function T =
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T (r, t), defined as:

Vc(λ, t) =

√
2

π

∫ +∞

0

T cos(λr)dr =

√
2

π

∫ 1

0

T cos(λr)dr

is solution of the following differential equation:

(2.1)

∂

∂λ

(
∂

∂t

∂Vc(λ, t)

∂λ
+ λ2

∂Vc(λ, t)

∂λ

)
= −

√
2

π
(qs(t) cosλ+ λTs(t) sinλ), λ ≥ 0, t > 0.

Proof. Since we are here concerned only with the temperature within the droplet,
the function T (r, t) can be taken null outside the interval [0, 1] without lost of
generality. According to equation (1.5), the solution T = T (r, t) should be con-
tinuously differentiable for 0 ≤ r ≤ 1 and for t > 0. Therefore, T is absolutely
integrable in respect to the variable r on [0, 1] ⊂ [0,+∞[ and the FCIT of the
function T ≡ T (r, t) is reduced to:

Vc(λ, t) =

√
2

π

∫ +∞

0

T cos(λr)dr =

√
2

π

∫ 1

0

T cos(λr)dr.

Likewise, at any time t > 0, the terms r ∂T
∂r
, ∂

2(rT )
∂r2

mentioned in equation (1.1) are
absolutely integrable in respect to the radial variable r on [0,+∞[. The FCIT can
now be applied to these terms. For convenience, equation (1.1) is first multiplied
by r and reads:

(2.2)
r2∂T

∂t
− r∂

2(rT )

∂r2
= 0.

Applying the FCIT (denoted by Fc) to the first term of equation (2.2), we have:

A(λ) = Fc

[
r2∂T

∂t

]
=

√
2

π

∂

∂t

∫ 1

0

Tr2 cos(λr)dr,

which is equivalent to:

(2.3) A(λ) = −
√

2

π

∂

∂t

∂

∂λ

∫ 1

0

rT sin(λr)dr = − ∂

∂t

∂2

∂λ2
Vc(λ, t),

since, ∂2

∂λ2
cos(λr) = −r2 cos(λr). The application of the FCIT to the diffusion term

of equation (2.2) leads to:

(2.4) C(λ) = Fc

[
−r∂

2(rT )

∂r2

]
= −

√
2

π

∫ 1

0

r
∂2(rT )

∂r2
cos(λr)dr.
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The integral (2.4) can be transformed using the technique of integration by parts.
The first integration by parts is performed by writing:

u1(r) = r cos(λr)⇒ u′1(r) = cos(λr)− rλ sin(λr),

and

v′1(r) =
∂2(rT )

∂r2
⇒ v1(r) =

∂(rT )

∂r
.

Equation (2.4) is then transformed into:

(2.5)

−
√
π

2
C(λ) =

∫ 1

0

r
∂2(rT )

∂r2
cos(λr)dr = [u1v1]

1
0 −

∫ 1

0

u′1v1dr

=

[
r cos(λr)

∂(rT )

∂r

]1
0

−
∫ 1

0

∂(rT )

∂r
cos(λr)dr +

∫ 1

0

∂(rT )

∂r
rλ sin(λr)dr

= C1 − C2 + C3,

where, the term C1 is calculated as:

(2.6)
C1 =

[
r cos(λr)

∂(rT )

∂r

]1
0

=

[
r cos(λr)

(
T + r

∂T

∂r

)]1
0

= cos(λ)Ts(t) + qs(t) cos(λ).

The term C2 of equation (2.5) can be equally transformed by using an integration
by parts with:

u′2 =
∂(rT )

∂r
⇒ u2 = rT ; v2 = cos(λr)⇒ v′2 = −λ sin(λr).

This leads to:

(2.7)

C2 =

∫ 1

0

∂(rT )

∂r
cos(λr)dr = [u2v2]

1
0 −

∫ 1

0

u2v
′
2dr

= [rT cos(λr)]10 +

∫ 1

0

rTλ sin(λr)dr

= cos(λ)Ts(t) +

∫ 1

0

rTλ sin(λr)dr

= cos(λ)Ts(t)−
√
π

2
λ
∂Vc(λ, t)

∂λ
.

The third term C3 in equation (2.5) can also be calculated by integration by parts
with:

u3 = r sin(λr) ⇒ u′3 = sin(λr) + λr cos(λr);

v′3 =
∂(rT )

∂r
⇒ v3 = rT,
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and gives:

(2.8)

C3 =

∫ 1

0

∂(rT )

∂r
rλ sin(λr)dr = λ

∫ 1

0

∂(rT )

∂r
r sin(λr)dr

= λ

(
[u3v3]

1
0 −

∫ 1

0

u′3v3dr

)
= λ[r2T sin(λr)]10

+λ
(
−
∫ 1

0
rT sin(λr)dr − λ

∫ 1

0
r2T cos(λr)dr

)
= λ

(
sin(λ)Ts +

√
π

2

∂Vc(λ, t)

∂λ
+

√
π

2
λ
∂2Vc(λ, t)

∂λ2

)
.

So, by using successive integration by parts over the unity radius of the droplet
with consideration to the boundary conditions (1.3)-(1.4), equation (2.5) is trans-
formed, by combination of equations (2.6)-(2.8), into:

(2.9) C(λ) = −
√

2

π
(qs cosλ+ λTs sinλ)− ∂

∂λ

(
λ2
∂Vc(λ, t)

∂λ

)
.

By combining equations (2.2)-(2.4) and (2.9), the system (1.1)-(1.4) is finally
transformed into equation (2.1) as in the Lemma 2.1, the proof of which is com-
pleted. �

Proposition 2.1. The temperature function T (r, t), solution of the initial-boundary
value problem (1.1)-(1.4) can be written as:

(2.10)

T (r, t) =
1

r
√
π

∫ t

0

Ts(t− η)
(− (r+1)

2
e−

(r+1)2

4η + (1−r)
2

e−
(1−r)2

4η )

2η
3
2

dη

− 1

r
√
π

∫ t

0

P (t− η)
(1
2
e−

(r+1)2

4η − 1
2
e−

(r−1)2

4η )
√
η

dη

− 1

r
√
π

∫ 1

0

xT0(x)
(1
2
e−

(r+x)2

4t − 1
2
e−

(r−x)2
4t )

√
t

dx,

where P = Ts + qs, Ts and qs being respectively the temperature and its gradient at
the droplet surface.

Proof. Let us consider the partial differential equation (2.1). A first integration
with respect to λ gives:

(2.11)

∂2Vc(λ, t)

∂t∂λ
+ λ2

∂Vc(λ, t)

∂λ

= −
√

2

π
[qs(t) sinλ+ (−λ cosλ+ sinλ)Ts(t)] + a1(t),
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with a1(t) a function to be determined. By tending λ to 0 in equation (2.11), we
find:

(2.12)
∂2Vc(λ, t)

∂t∂λ

∣∣∣∣
λ=0

= a1(t).

Now the quantity
∂2Vc(λ, t)

∂t∂λ

∣∣∣∣
λ=0

= −
√

2

π

∂

∂t

∫ 1

0

rTsin(λr)dr

∣∣∣∣∣
λ=0

= 0. Thus, from

equation (2.12), one has

(2.13) a1(t) = 0.

Equation (2.11) is then reduced into:

(2.14)

∂2Vc(λ, t)

∂t∂λ
+ λ2

∂Vc(λ, t)

∂λ

= −
√

2

π
[qs(t) sinλ+ (−λ cosλ+ sinλ)Ts(t)].

Writing Wc(λ, t) =
∂Vc(λ, t)

∂λ
and multiplying the equation (2.14) by eλ

2t, we ob-
tain:

eλ
2t∂Wc(λ, t)

∂t
+ λ2eλ

2tWc(λ, t)

= −
√

2

π
[qs(t) sinλ+ (−λ cosλ+ sinλ)Ts(t)]e

λ2t,

which can be reduced into:

(2.15)

∂(eλ
2tWc(λ, t))

∂t

=

√
2

π
[−qs(t) sinλ+ (λ cosλ− sinλ)Ts(t)]e

λ2t.

By integrating equation (2.15) with respect to the time variable, η going from 0 to
t, it can be written that:

eλ
2tWc(λ, t)−Wc(λ, t = 0)

=

√
2

π

∫ t

0

[−qs(η) sinλ+ (λ cosλ− sinλ)Ts(η)]eλ
2ηdη.

Now,

Wc(λ, t = 0) =
∂Vc(λ, t = 0)

∂λ
=

√
2

π

∂

∂λ

∫ 1

0
T0(r) cos(λr)dr

= −
√

2

π

∫ 1

0
rT0(r) sin(λr)dr,
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as the initial condition T (r, t = 0) ≡ T0(r). Equation (2.15) is then integrated as:

(2.16)

Wc(λ, t) =
∂Vc(λ, t)

∂λ

=

√
2

π
e−λ

2t

∫ t

0

[−qs(η) sinλ+ (λ cosλ− sinλ)Ts(η)]eλ
2ηdη

−
√

2

π
e−λ

2t

∫ 1

0

rT0(r) sin(λr)dr.

Since Vc(λ, t) is a FCIT and therefore cancels when λ tends to +∞ according to
the Fourier transform properties, Vc(λ, t) can be written as:

Vc(λ, t) = −
∫ ∞
λ

∂Vc(x, t)

∂x
dx,

and equation (2.16) can be integrated with respect to λ, the dummy variable
x going from λ to +∞. By using such integration of equation (2.16) and then
reversing the order of integration (that is allowed due the uniform convergence of
Vs(λ, t) and of its derivative relatively to λ), it can be deduced for t > 0:

(2.17)

Vc(λ, t) =

√
2

π

∫ t

0

dη

[
Ts(η)

(
−
∫ ∞
λ

ex
2(η−t)x cos(x)dx

)]
+

√
2

π

∫ t

0

dη

[
(−qs(η)− Ts(η))

(
−
∫ ∞
λ

ex
2(η−t) sin(x)dx

)]
−
√

2

π

∫ 1

0

RT0(R)dR

(
−
∫ ∞
λ

sin(xR)e−x
2tdx

)
.

To obtain T (r, t) from the FCIT Vc(λ, t), the inversion formula reads:

(2.18) T (r, t) =

√
2

π

∫ +∞

0

Vc(λ, t) cos(rλ)dλ,

and can be applied to equation (2.17). We first calculate the following integrals:

Ia =

√
2

π

∫ ∞
0

(
−
∫ ∞
λ

ex
2(η−t)x cos(x)dx

)
cos(λr)dλ,

Ib =

√
2

π

∫ ∞
0

(
−
∫ ∞
λ

ex
2(η−t) sin(x)dx

)
cos(λr)dλ,

and

Ii =

√
2

π

∫ ∞
0

(
−
∫ ∞
λ

ex
2t sin(xR)dx

)
cos(λr)dλ.
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An integration by parts is performed on Ia as follows:

u4 = −
∫ ∞
λ

ex
2(η−t)x cos(x)dx⇒ u′4 = eλ

2(η−t)λ cos(λ);

v′4 = cos(λr)⇒ v4 =
sin(λr)

r
,

and then

Ia =

√
2

π

[
−sin(λr)

r

∫ ∞
λ

ex
2(η−t)x cos(x)dx

]+∞
0

−
√

2

r
√
π

∫ ∞
0

eλ
2(η−t)λ cos(λ) sin(λr)dλ

= −
√
2

4r(t−η)
3
2

(
(1+r)

2
e−

(1+r)2

4(t−η) − (1−r)
2

e−
(1−r)2
4(t−η)

)
.

Likewise, for Ib, the integration by parts:

u5 = −
∫ ∞
λ

ex
2(η−t) sin(x)dx⇒ u′5 = eλ

2(η−t) sin(λ);

v′5 = cos(λr)⇒ v5 =
sin(λr)

r
,

leads to:

Ib =

√
2

π

[
−sin(λr)

r

∫ ∞
λ

ex
2(η−t) sin(x)dx

]+∞
0

−
√

2

r
√
π

∫ ∞
0

eλ
2(η−t) sin(λr) sin(λ)dλ

= − 1

r
√

2(t−η)

(
−1

2
e−

(1+r)2

4(t−η) + 1
2
e−

(r−1)2

4(t−η)

)
.

And by an alike technique of integration by parts:

u6 = −
∫ ∞
λ

ex
2t sin(xR)dx⇒ u′6 = eλ

2t sin(λR);

v′6 = cos(λr)⇒ v6 =
sin(λr)

r
,

Ii is obtained for t > 0 as:

Ii =

√
2

π

[
−sin(λr)

r

∫ ∞
λ

e−x
2t sin(xR)dx

]+∞
0

−
√

2

r
√
π

∫ ∞
0

e−λ
2t sin(λR) sin(λr)dλ

= − 1

r
√

2t
(−1

2
e−

(r+R)2

4t + 1
2
e−

(r−R)2

4t ).
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Now, equation (2.17) is reversed by using the formula (2.18) and the temperature
function T (r, t) is derived through the above expressions of Ia, Ib and Ii. Finally,
by changing integration variables from η and R to η′ = t − η and x = R, the
temperature function T (r, t) is determined by equation (2.10) as in the proposition
2.1. This completes the proof of the proposition. �

Corollary 2.1. The initial condition (1.2) of the problem (1.1)-(1.4) is satisfied by
the integral form of the temperature function T (r, t) given by equation (2.10).

Proof. In order to verify if the initial condition (1.2) is satisfied by the above ex-
pression of T (r, t), we consider the following functionG(t, r, x), 0 ≤ r, x ≤ 1, t > 0:

(2.19) G(t, r, x) = − 1√
πt

(
1

2
e−

(x+r)2

4t − 1

2
e−

(r−x)2
4t

)
,

such as the last integral in equation (2.10) can be equally written:

(2.20) − 1

r

1√
πt

∫ 1

0

xT0(x)

[
1

2
e−

(x+r)2

4t − 1

2
e−

(r−x)2
4t

]
dx =

1

r

∫ 1

0

xT0(x)G(t, r, x)dx.

It is seen from the definition (2.19) that G(t, r, x) tends to zero when t → 0 at all
points of the unity square 0 ≤ r, x ≤ 1 with the exception of the diagonal x = r

where it becomes infinitely large. One may admit that G(t, r, x) is an analogue of
Green’s function and:

lim
t→0

G(t, r, x) = δ(x− r),

where δ(x − r) is the Dirac delta function. In consequence, the initial condition
(1.2) is satisfied by the integral expression (2.10). Indeed, when t → 0, equation
(2.10) reduces to:

(2.21) rT (r, t = 0) =

∫ 1

0

xT0(x)δ(x− r)dx =

∫ 1

0

rT0(r)δ(r − x)dr = rT0(r).

The verification of the corollary 2.1 is completed. �

Remark 2.1. The temperature distribution T (r, t) expressed in equation (2.10) may
be separated into two parts and we can set:

(2.22) T (r, t) = T1(r, t) + T2(r, t),
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where

(2.23)
T1(r, t) =

1

r
√
π

∫ t

0

Ts(t− η)
(− (r+1)

2
e−

(r+1)2

4η + (1−r)
2

e−
(1−r)2

4η )

2η
3
2

dη

− 1

r
√
π

∫ t

0

P (t− η)
(1
2
e−

(r+1)2

4η − 1
2
e−

(r−1)2

4η )
√
η

dη,

and

(2.24)
T2(r, t) = − 1

r
√
π

∫ 1

0

xT0(x)
(1
2
e−

(r+x)2

4t − 1
2
e−

(r−x)2
4t )

√
t

dx

=
1

r

∫ 1

0
xT0(x)G(t, r, x)dx.

It’s easily verifiable that the function T2(r, t) is an exact solution of the equation (1.1)
taken into consideration in this study.

Remark 2.2. The FCIT method has permitted us to determine an integral expression
of the solution of the problem (1.1)-(1.4). But, the unknown droplet surface temper-
ature Ts(t) and temperature gradient qs(t) are not easily derivable from the internal
temperature function expressed by equation (2.10). The Laplace integral transform
(LIT) will be introduced in order to express these time-varying functions in the Laplace
domain.

3. LAPLACE DOMAIN SOLUTIONS

Proposition 3.1. The droplet surface temperature Ts(t), the surface temperature
gradient qs(t) and the temperature field inside the droplet T (r, t) are respectively
expressed in the Laplace domain by LTs(p), Lqs(p) and LT (r, p) as follow:

(3.1) LTs(p) = − K (e−2
√
p − 1)LTg(p) + U(T0(x), p)

e−2
√
p√p−K e−2

√
p + e−2

√
p +
√
p+K − 1

,

(3.2) Lqs(p) =
K (e−2

√
p√p+ e−2

√
p +
√
p− 1)LTg(p) +K U(T0(x), p)

e−2
√
p√p−K e−2

√
p + e−2

√
p +
√
p+K − 1

,
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and

(3.3)

LT (r, p)

=
1

2

e−
√
p(er

√
p − e−r

√
p)[2K

√
pLTg(p) + (K −√p− 1)U(T0(x), p)]

r(e−2
√
p√p−K e−2

√
p + e−2

√
p +
√
p+K − 1)

√
p

− 1

2r
√
p

∫ 1

0

xT0(x)
(
e−(x+r)

√
p − e−|r−x|

√
p
)
dx,

where the p-dependent operator U is applied to the initial temperature function T0(x)

as:

(3.4) U(T0(x), p) = e−
√
p

∫ 1

0

xT0(x)e−x
√
pdx− e−

√
p

∫ 1

0

xT0(x)ex
√
pdx,

and LTg(p) is the Laplace transform of the gas temperature Tg(t).

Proof. Since the LIT of the droplet internal temperature T (r, t) is denoted by
LT (r, p), the initial-boundary-value problem (1.1)-(1.4) can be reformulated in
the Laplace domain as:

(3.5) p rLT (r, p)− d2(rLT (r, p))

dr2
= 0,

subject to the initial condition:

(3.6) pLT (r, p)|r,p=∞ = T0(r),

and to the boundary conditions:

(3.7)



dLT (r, p)

dr

∣∣∣∣
r=0,p

= 0

dLT (r, p)

dr

∣∣∣∣
r=1,p

= Lqs(p) = K (LTg(p)− LTs(p))

.

The equation (3.6), which expresses the initial condition in the Laplace domain,
results from the Initial Value Theorem (see Debnath [12]).

According to the remark 2.1, the LIT of equation (2.10) is obtained as the sum
of the LIT of functions T1(r, t) and T2(r, t):

(3.8) LT (r, p) = LT1(r, p) + LT2(r, p).
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The Convolution Theorem (see again Debnath [12]) can be applied to the equation
(2.23) and the LIT of T1(r, t) (see remark 2.1) reads:

(3.9) LT1(r, p) =
1

r
√
p

e−
√
p

(
1

2
er
√
p − 1

2
e−r
√
p

)
[Lqs(p) + LTs(p) +

√
pLTs(p)].

Next, the LIT of the time-varying function T2(r, t) as mentioned in the remark
2.1, is obtained by using Maple software or tables of transforms as in [13]. Since
0 ≤ r, x ≤ 1, we obtain:

(3.10) LT2(r, p) = − 1

2r
√
p

∫ 1

0

xT0(x)
(
e−(x+r)

√
p − e−|r−x|

√
p
)
dx,

where |r − x| is the absolute value of r − x. Formula (3.8) now reads:

(3.11)
LT (r, p) =

1

r
√
p

e−
√
p

(
1

2
er
√
p − 1

2
e−r
√
p

)
[Lqs(p) + LTs(p) +

√
pLTs(p)]

− 1

2r
√
p

∫ 1

0

xT0(x)
(
e−(x+r)

√
p − e−|r−x|

√
p
)
dx.

Now, according to the above equation (3.9), rLT1(r, p) can be written in the
form of:

rLT1(r, p) = C(p)

(
er
√
p − e−r

√
p
)

2
= sinh(r

√
p),

where the p-dependent coefficient C(p) = 1√
p
e−
√
p[Lqs(p) + LTs(p) +

√
pLTs(p)]

doesn’t depend on the variable r. Under this form, it is easily verifiable that
LT1(r, p) is an exact solution of the Laplace domain equation (3.5). Consequently,
T1(r, p) is an exact solution of the time domain equation (1.1) considered in this
study, whatever is the value of C(p). As already mentioned in the remark 2.1, the
function T2(r, t) is also an exact solution of the equation (1.1). Hence, the inte-
gral form T (r, t) = T1(r, t) + T2(r, t), as reported in equation (2.10), is an exact
solution of the time domain equation (1.1) and satisfies the initial condition (1.2).
This implies that LT (r, p) = LT1(r, p)+LT2(r, p) is a so-called operational solution
to the initial value problem (3.5)-(3.6). It remains to show that LT (r, p) satisfies
also the boundary conditions (3.7). By substituting r = 1 in the above expression
of LT (r, p), the droplet surface temperature is derived in the Laplace domain as:

(3.12) LTs(p) = −(e−2
√
p − 1)Lqs(p) + U(T0(x), p)

e−2
√
p√p+ e−2

√
p +
√
p− 1

,

where U(T0(x), p) is the operator defined by the equation (3.4) of the proposi-
tion 3.1. The LIT of the temperature gradient at the droplet surface, written in
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conditions (3.7), is recalled as:

(3.13) Lqs(p) = K (LTg(p)− LTs(p)) ,

where K = kg/kl is a constant ratio such as 0 < K < 1, and LTg(p) is the Laplace
transform of the surrounding gas-phase temperature Tg(t). Combining the above
equations (3.12) and (3.13) that are expressions of LTs(p) and Lqs(p), the surface
temperature and its gradient are respectively obtained in the Laplace domain by
equations (3.1) and (3.2) as in the proposition 3.1. Combining now equations
(3.1), (3.2) and (3.11), an explicit solution in the Laplace domain LT (r, p) of
the temperature field inside the droplet is obtained as in proposition 3.1 by the
equation (3.3). As expected, the boundary conditions (3.7) are satisfied by the
Laplace domain solution LT (r, p) given by the equation (3.3) when considering
the transform of the droplet surface temperature (3.1) and that of the temperature
gradient (3.2). Finally, the proof of the proposition 3.1 is completed. �

Remark 3.1. In all cases, inverse Laplace transforms can be accomplished numer-
ically regardless of the complexity of the involved solutions (see for examples [14]
and [15]). However, analytical solutions from the Laplace domain into the time
domain may be also sought by means of Laplace inversion theorems.

4. ANALYTICAL SOLUTIONS IN SHORT TIME LIMITS

We now seek for a general approximate solution for the droplet internal tem-
perature, which is valid during any small value of the time step ∆t, (t ∈ [0,∆t]).
The order of magnitude of the time step ∆t is typically 10−6 s for internal combus-
tion engines as mentioned in [10] and we recall that the dimensionless coefficient
K = kg/kl verifies 0 < K < 1.

Proposition 4.1. A truncated expansion of the droplet internal temperature rT (r, t)

during a short time step ∆t (t ∈ [0, ∆t]) can be expressed as:

rT (r, t) = K

∫ t

0

Tg(t− η)e
−(1−r)2

4η

(
1
√
πη

+ 2(1−K)2
√
η

π

)
dη

+K(1−K)(r +K −Kr)
∫ t

0

Tg(t− η)erfc

(
1− r
2
√
η

)
dη

+T0(1)

∫ t

0

e
−(1−r)2

4η

(
(1− r)

2
√
πη3/2

+
2(1−K)
√
πη

+ 4(1−K)3
√
η

π

)
dη
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(4.1)
+2(1−K)2(r +K −Kr)T0(1)

∫ t

0

erfc

(
1− r
2
√
η

)
dη

+rT0(r) + O(E(r, t)),

for 0 ≤ r < 1, while at the droplet surface r = 1, the following first order truncated
expansion is obtained for the temperature Ts(t):

(4.2)

Ts(t)

= K

∫ t

0

Tg(t− η)

(
1
√
πη

+ (1−K) + 2(1−K)2
√
η

π

)
dη

+2(1−K)T0(1)

∫ t

0

(
1
√
πη

+ (1−K) + 2(1−K)2
√
η

π

)
dη

+T0(1) + O(t).

In expressions (4.1) and (4.2), T0(r) and T0(1) are respectively the initial temper-
ature distribution inside the droplet 0 ≤ r < 1 and at its surface r = 1, the big
O() is the asymptotic notation, erfc is the complementary error function defined as
erfc(x) = 1− erf(x), and

erf(x) =
2√
π

∫ x

0

ez
2

dz,

and finally

E(r, t) =

√
t

π
(−1 + r)e

−(1−r)2
4t +

[(r − 1)2 + 2t]

2
erfc

(
1− r
2
√
t

)
,

is the inverse Laplace transform of e−(1−r)
√
p/p2 as computed with Maple software.

Proof. The Laplace domain solution (3.3) can be recast as the sum of three terms:

(4.3)

LT (r, p)

=
Ke−

√
p(er

√
p − e−r

√
p)

r(e−2
√
p√p−K e−2

√
p + e−2

√
p +
√
p+K − 1)

LTg(p)

+
(K −√p− 1)e−

√
p(er

√
p − e−r

√
p)

r(e−2
√
p√p−K e−2

√
p + e−2

√
p +
√
p+K − 1)

[U(T0(x), p)]

2
√
p

− 1

2r
√
p

∫ 1

0

xT0(x)
(
e−(x+r)

√
p − e−|r−x|

√
p
)
dx,

where U(T0(x), p) is given by the relation (3.4). The limiting case of short time
duration (t tending to 0) corresponds to a very large Laplace domain variable
(p tending to +∞). According to the LIT properties, the transforms LTg(p) and
U(T0(x), p) tend to zero as p tends to +∞. Then, the asymptotic expansion of
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second order for the droplet internal temperature LT (r, p), can be derived from
the formula (4.3) by computing the asymptotic expansions of the corresponding
terms (the last term remains unchanged):
(4.4)

rLT (r, p) = KLTg(p)
(

1
√
p

+
(1−K)

p
+

(1−K)2

p3/2

)
e−(1−r)

√
p

−U(T0(x), p)

2
√
p

(
1 +

2(1−K)
√
p

+
2(1−K)2

p
+

2(1−K)3

p3/2

)
e−(1−r)

√
p

+LT2(r, p) + O

(
e−(1−r)

√
p

p2

)
,

as the last integral term is identical to LT2(r, p), according to the equation (3.10).
By using the corollary 2.1, the inverse Laplace transform of LT2(r, p), which is
T2(r, t), tends to rT0(r) when p tends to +∞ or equivalently when t tends to 0. It
is also remarkable that the factor −U(T0(x), p)/(2

√
p) in the expression (4.4) can

be identified to LT2(r = 1, p). Consequently, this factor goes in the time domain to
T0(1) as p tends to +∞. Concerning the first term, the inverse Laplace transform
of LTg(p) is evidently the time-varying temperature of the gas phase Tg(t). Due to
all these considerations, the convolution theorem (see [12]) and the converse to
Watson’s Lemma (see [16]), can be used in order to derive from equation (4.4),
analytical approximations of the droplet internal and surface temperatures at the
earliest time of the process or after any short time step ∆t (t ∈ [0, ∆t]). This
leads to the formulae (4.1) and (4.2) as specified in the proposition 4.1. Since for
0 ≤ r < 1, it can be written that the limit when t tends to 0 of E(r, t)/tn = 0 for
all n ≥ 1, the analytical approximation (4.1) is valid for an arbitrary order n ≥ 1

of the related truncated expansion, if yet the surrounding gas temperature Tg(t)
at the immediate vicinity of the droplet is assumed to be known during the time
step. This implies that, the absolute error committed by this approximation of
rT (r, t), is at the same order of magnitude as (∆t)n for all n ≥ 1. This proves the
accuracy of the formula (4.1) expressing the droplet internal temperature during
a short time step ∆t. However, for r = 1 i.e. at the droplet surface, E(r = 1, t) = t

and the formula (4.2) is valid only for the first order n = 1. Consequently, the
absolute error committed in the evaluation of the droplet surface temperature
Ts(t) by using formula (4.2) is at the same order of magnitude as ∆t. Now, the
formula (4.2) is recursive since the droplet surface temperature Ts(t) during the
time step ∆t is given as a function of T0(1), which is the surface temperature at the
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end of the previous time step. In CFD codes for droplets and sprays, as mentioned
in the introduction, the surface temperature evaluation is sufficient, instead of the
whole droplet internal temperature field, to determine the estimation of the heat
and mass transferred by an evaporating droplet during a short time step. �

Corollary 4.1. In the case of constant temperature Tg(t) = T g of the surrounding
gas phase during the small time step ∆t, the analytical approximation of the droplet
surface temperature Ts(t) is obtained during t ∈ [0,∆t] as:

(4.5) Ts(t) = T0(1) + 2K
[T g − 2(1−K)T0(1)]√

π

√
t+ O(t),

where T0(1) is recalled as the initial temperature of the droplet surface at the begin-
ning of the time step ∆t.

Proof. If the surrounding gas phase is assumed to be at constant temperature
Tg(t) = T g during the time step ∆t, then LTg(q) = T g/q and the approxima-
tion formula (4.2) can be explicitly evaluated. Retaining only the terms of order
less than t in this evaluation, the analytical approximation of the droplet surface
temperature Ts(t) is derived from relation (4.2) by the approximation (4.5) as in
the corollary. This completes the proof of the corollary. �

5. CONCLUSION

In this study, the combination of the classical Fourier cosine and Laplace inte-
gral transforms has permitted to obtain explicit solutions in the Laplace and time
domains, for the spherically symmetric heat diffusion equation inside a motion-
less droplet suspended in a hot gas environment. Numerical inverse transforms of
the droplet surface and internal temperatures from the Laplace domain into the
time domain will be possible, regardless of the complexity of the involved solu-
tions. However, the analytical approximations in short time limits obtained in the
study can be applied to time-step models of vaporizing droplets and sprays, since
they are recursive, and depend only on the appreciable time-evolving temperature
of the gas-mixture at the immediate vicinity of the droplet. The new analytical
approximations are proved to be computationally efficient, and may be gener-
ally useful for applications in droplets and spray modelling, as practised in CFD
codes. Moreover, the combined method of integral transforms, as presented in
the above study, is promising for divers moving-boundary-value problems, which



3380 Kwassi Anani

often arise from engineering models that involve one-dimensional transient heat
or mass transfer.
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