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ON SOME ASPECTS OF COHERENT STATES QUANTIZATION WITH
RELATED EXAMPLES

Isiaka Aremua1, Komi Sodoga2, and Paalamwé Komi Tchakpélé3

ABSTRACT. This work addresses the general procedure of quantization also known
as the Berezin-Klauder-Toeplitz quantization, or as coherent state (CS) (anti- Wick)
quantization. The method is first illustrated by the motion of a particle on the cir-
cle. Then, we take as second example, a set of generalized photon-added coherent
states related to associated hypergeometric functions. The nonclassical behaviour
of this set of coherent states is also investigated.

1. INTRODUCTION

Coherent states (CSs), known as an overcomplete family of vectors, represent
one of the most fundamental framework for the analysis, or decomposition, of
states in the Hilbert spaces, which are the underlying mathematical structures of
several physical phenomena. CSs were introduced for the first time by Schrödinger
in 1926 [1] in his study of quantum states that restore the classical behavior of
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a quantum observable. Klauder, Glauber, and Sudarshan reconsidered the defi-
nition of CSs introduced by Schrödinger at the beginning of the 1960s. In addi-
tion, Klauder formulated the so-called “Klauder’s minimal prescriptions (or condi-
tions)”that any CS must meet. For various generalizations, approaches and their
properties one may consult [2]- [5] and references therein.

Quantization is commonly understood as the transition from classical to quan-
tum mechanics, relating to a larger discipline than specific domains of physics
[4–6]. The coherent states (CSs) quantization (the quantization of measure spaces
through CSs) related to integral quantization in the complex quantum mechan-
ics has attracted much investigations [5]. For e.g., taking the phase space X =

C =
{
z = q+ip√

2

}
endowed with the measure d2z/π or X ≡ S1 × R, CSs have

been demonstrated to be useful in the quantization procedure, see for e.g., [7, 8]
and references therein. CSs can be defined over complex domains with H =

span{φm,m ∈ N}, the separable Hilbert space of the physical phenomena de-
scribed by a quantum Hamiltonian, as linear superposition of the states or eigen-
functions φm:

(1.1) |z〉 = (N (|z|))−
1
2

∞∑
m=0

zm√
ρ(m)

|φm〉, z = reiθ,

where 0 ≤ r ≤ ∞, 0 ≤ θ ≤ 2π, {ρ(m)}∞m=0 is a sequence of non-zero positive
numbers, determining the internal structure of the CSs, chosen to ensure the con-
vergence of the sum in a non-empty open subset D of the complex plane, N (|z|)
is the normalization factor ensuring that 〈z|z〉 = 1. Our work deals with some
aspects of the general procedure of CS quantization [4, 5] illustrated by some
quantum models.

The paper is organized as follows. In section 2, we revisit the CS quantization
procedure, and provide some notions on optical behaviour of a nonclassical field
containing photons. Section 3 revisits the quantization problem of the motion of a
particle on the circle studied in a previous work [7]. Let us note that the quantiza-
tion procedure has been also achieved in the complex plane in [8]. Here, we focus
on the construction of the building method of the operators acting on a Hilbert
space from their associated classical observables describing the physical system by
giving some details of calculations and proofs. As second illustration, we study
in section 4, a set of generalized photon-added associated hypergeometric CSs
(GPAH-CSs) related to associated hypergeometric functions [9]. These latter are
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obtained from a given analytical function not ever studied in the literature. The
resolution of the identity obtained from a positive weight function, provided in
terms of Meijer’s G-function, allows the CS quatization. The field of GPAH-CSs are
also characterized by the calculation of their corresponding Mandel’s Q-parameter
depicted through graphics ensuring their nonclassical behaviour. Concluding re-
marks are given in section 5.

2. SOME PRELIMINARIES

2.1. Coherent State Quantization: General Scheme. Let X be a set of param-
eters equipped with a measure µ and let L2(X,µ) be its associated Hilbert space
of complex-valued square integrable functions with respect to µ. Let us choose in
L2(X,µ) a finite or countable orthonormal setO = {φn , n = 0, 1, 2, . . . } satisfying:

〈φm|φn〉 =

∫
X

φm(x)φn(x)µ(dx) = δmn,

0 <
∑
n

|φn(x)|2 := N (x) <∞ a.e. .(2.1)

Let H := span(O) in L2(X,µ) be a separable complex Hilbert space with orthonor-
mal basis {|en〉 , n = 0, 1, 2, . . . }, in one-to-one correspondence with the elements
of O = {φn , n = 0, 1, 2, . . . }. One defines the family of states FH = {|x〉 , x ∈ X}
in H as:

|x〉 =
1√
N (x)

∑
n

φn(x) |en〉 ∈ H.

From conditions (2.1) these CSs are normalized, 〈x|x〉 = 1 and resolve the identity
in H:

(2.2)
∫
X

N (x) |x〉〈x| µ(dx) = IH .

The relation (2.2) allows us to implement a coherent state quantization of the
set of parameters X by associating to a function X 3 x 7→ f(x) that satisfies
appropriate conditions the operator Af in H as:

f(x) 7→ Af :=

∫
X

N (x) f(x) |x〉〈x| µ(dx).

The matrix elements of Af with respect to the basis |en〉 are given by:

(Af )nm = 〈en|Af |em〉 =

∫
X

f(x)φn(x)φm(x) µ(dx).
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The operator Af is (i) symmetric if f(x) is real valued, (ii) bounded if f(x) is
bounded (iii) self-adjoint if f(x) is real semi-bounded (through Friedrich’s exten-
sion, self ajoint extension). The “lower symbol” of Af , the mean value of Af is
defined as:

f̌(x) := 〈x|Af |x〉 =

∫
X

N (x′) f(x′) |〈x|x′〉|2 µ(dx′),

with f being the “upper symbol” of Af .

2.2. Mandel parameter. Several parameters can be introduced to characterize
the statistical properties, and the most popular one is the Mandel parameter [10],
denoted here by Q, known as a convenient noise-indicator of a non-classical field,
which is frequently used to measure the deviation from Poisson distribution, and
thus to distinguish quantum process from classical ones [11]- [13].

The Mandel parameter Q is defined as [10]

Q ≡ (∆N)2 − 〈N〉
〈N〉

=
2〈I〉
T

∫ T

0

dt2

∫ t2

0

dt1[1 + λ(t1)]− 〈I〉T,

where:

- 〈N〉 is the average counting number;
- (∆N)2 is the corresponding square variance;
- 〈I〉 = 〈N〉/T is the steady-state photon-counting rate expressed in units of

cps;
- λ(τ) = 〈∆I(t)∆I(t + τ)〉/〈I(t)〉〈I(t + τ)〉 is the normalized two-time cor-

relation of intensity fluctuations (∆I(t) = I(t) − 〈I(t)〉) of time difference
equal to the time τ [11].

Moreover, the Mandel parameter Q:

Q =
(∆N)2

〈N〉
− 1 ≡ F − 1,

is closely related to the normalized variance, also called the quantum Fano factor
F [12], given by F = (∆N)2/〈N〉, of the photon distribution. For F < 1(Q ≤ 0),
the emitted light is referred to as sub-Poissonian (corresponding to nonclassical
states); F = 1,Q = 0 corresponds to the Poisson distribution (case of standard
CS), whereas for F > 1, (Q > 0) the light is called super-Poissonian (correspond-
ing to classical states) [10]- [14].
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Let us take as direct application of the above scheme the motion of a particle on
the circle.

3. QUANTIZATION OF THE MOTION OF A PARTICLE ON THE CIRCLE

The CS quantization of this problem, is achieved by taking the observation set
X as the phase space of a particle moving on the circle, i.e., the cylinder:

X ≡ S1 × R = {x ≡ (ϕ, J), |0 ≤ ϕ < 2π, J ∈ R},

equipped with the measure µ(dx) = 1
2π
dJdϕ. The variables J ∈ R and ϕ (0 ≤ ϕ <

2π) are the action and angle variables satisfying:

(3.1) {J, ϕ} =
∂J

∂J

∂ϕ

∂ϕ
− ∂J

∂ϕ

∂ϕ

∂J
= 1.

Introduce a probability distribution on the range of the variable J:

R 3 J 7→ $σ(J) , $σ(J) = $σ(−J) ,

∫ +∞

−∞
$σ(J) dJ = 1 ,

being a non-negative, even, well-localized and normalized integrable function.
σ > 0 is a kind of width parameter with the function $σ satisfying some required
conditions [7].

Introducing the weighted Fourier exponentials φn(x) =
√
$σ
n(J) einϕ , n ∈ Z ,

the correspondent family of CSs on the circle reads as [7]:

|J, ϕ〉 =
1√
N σ(J)

∑
n∈Z

√
$σ
n(J) e−inϕ|en〉, N σ(J) =

∑
n∈Z

$σ
n(J).

By virtue of the CSs quantization described in the general scheme, the quantum
operator (acting on H) associated with the classical observable f(x) is obtained
through:

(3.2) Af :=

∫
X

f(x)|x〉〈x| N (x)µ(dx) =
∑
n,n′

(Af )nn′ |en〉〈en′ | .

We focus in this paragraph on the building method to obtain the operators AJ
and Aϕ by following the general scheme of CS quantization. Then, we have the
proposition:
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Proposition 3.1. Taking f(J, ϕ) = J and f(ϕ) = ϕ, 0 ≤ ϕ ≤ 2π, the operators AJ
and Aϕ, satisfying [AJ , Aϕ] = i

∑
n6=n′

$σ
n,n′ |en〉〈en′|, are obtained as:

AJ =

∫
X

N σ(J) J |J, ϕ〉〈J, ϕ|µ(dx) =
∑
n∈Z

n |en〉〈en|,

Aϕ = πIH + i
∑
n6=n′

$σ
n,n′

n− n′
|en〉〈en′ |.(3.3)

Proof. Using (3.2), the matrix element 〈x|Af |x〉 is:

〈x|Af |x〉 =

∫
X

N (x′)f(x′)|〈x|x′〉|2µ(dx′)

allowing, with X = S1 × R, x = (J, ϕ), x′ = (J ′, φ) where µ(dx′) = 1
2π
dϕdJ and

φn(x) =
√
$σ
n(J) einϕ , n ∈ Z that(

Af(J)

)
nn′ = δnn′

∫ +∞

−∞
$σen(J) f(J)dJ = δnn′〈f〉$σn

where 〈·〉$σn designates the mean value with respect to the distribution J 7→ $σ
n(J).

Since (
Af(J)

)
nn′ =

∫ +∞

−∞

√
$σ
n(J)$σ

n′(J)dJ

∫ 2π

0

e−i(n−n
′)ϕf(J, ϕ)

dϕ

2π
,

f(J, ϕ) = J =⇒ AJ =
∑
n,n′∈Z

∫ ∞
−∞

J$σ
n(J)δnn′ |en〉〈en′ |dJ

such that by a change of variable J ′ = J − n, we have:

AJ =
∑
n∈Z

∫ ∞
−∞

(J ′ + n)$σ
0 (J ′)|en〉〈en|dJ ′ =

∑
n∈Z

n|en〉〈en|.

From

(Af )nn′ =

∫ ∞
−∞

√
$σ
n(J)$σ

n′(J)dJ

∫ 2π

0

e−i(n−n
′)ϕf(J, ϕ)

dϕ

2π

taking f(J, ϕ) ≡ f(ϕ), we get

(Af(ϕ))nn′ = $σ
nn′

∫ 2π

0

f(ϕ)e−i(n−n
′)ϕdϕ

2π
= $σ

nn′cn−n′(f).

Then,

Aϕ =
∑
n∈Z

π

[∫ ∞
−∞

$σ
n(J)dJ

]
|en〉〈en|+

∑
n6=n′

i

n− n′

[∫ ∞
−∞

√
$σ
n(J)$σ

n′(J)dJ

]
|en〉〈en′ |
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= πIH + i
∑
n6=n′

$σ
n,n′

n− n′
|en〉〈en′ |.

which completes the proof of (3.3). �

4. GENERALIZED PHOTON-ADDED CSS RELATED TO ASSOCIATED HYPERGEOMETRIC

FUNCTIONS

The photon-added coherent states (PACSs) represent interesting states gener-
alizing both the Fock states and CSs. Indeed, they are obtained by repeatedly
operating the photon creation operator on an ordinary CS, see (1.1). In some pre-
vious works, the PACSs were assimilated to nonlinear CSs. Their various general-
izations were also performed [15]. They evidence some nonclassical effects, for
e.g, amplitude squeezing, sub-Poissonian behaviour, nonclassical quasi-probability
distribution [16].

4.1. Coherent states construction. In this paragraph, we apply the quantiza-
tion procedure to the generalized photon-added associated hypergeometric CSs
(GPAH-CSs) developed in [9] for Jacobi polynomials and hypergeometric func-
tions. We introduce as illustration the analytical function (see [9] for the nota-
tions):

(4.1) f(rm,n(k)) =

√
(ξ(rm,n(k); 1,−1))2.

This function (4.1) has not been treated in [9]. We obtain the expansion coefficient
as:

|Kp
n(m)| =

√
Γ(n+ 1)2Γ(n+m+ 2ν)2Γ(m+ ν)2

Γ(2m+ 2ν)Γ(n+ p+ 1)Γ(n+ p+ 2m+ 2ν)Γ(n+m+ ν)2
.

The normalization factor gives in terms of Meijer’s G-function:

Np(|z|2;m)

=

[
Γ(2m+ 2ν)

Γ(m+ ν)2
G1,4

4,4

(
−|z|2

∣∣∣∣∣ −p, 1− p− 2m− 2ν,−m− ν − 1,−m− ν − 1;

0 ; 0, 1− 2m− 2ν, 1− 2m− 2ν

)]−1/2

.

The explicit form of the GPAH-CSs defined for |z| < 1 follows as:

|z;m〉p = Np(|z|2;m)

√
Γ(2m+ 2ν)

Γ(m+ ν)2
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×
∞∑
n=0

{[
Γ(n+ p+ 1)Γ(n+m+ ν)2Γ(n+ p+ 2m+ 2ν)

Γ(n+m+ 2ν)2

]1/2
zn

n!
|n+ p〉

}
.(4.2)

The GPAH-CSs (4.2) fullfill the overcompleteness relation:

(4.3)
∫
C
d2z |z;m〉p ωp(|z|

2;m) p 〈z;m| = IHm,p ≡
∞∑
n=0

|n+ p〉 |n+ p| ,

with the weight function:

ωp(|z|2;m) =
1

π
G1,4

4,4

(
−|z|2

∣∣∣∣∣ −p, 1− p− 2m− 2ν,−m− ν − 1,−m− ν − 1;

0 ; 0, 1− 2m− 2ν, 1− 2m− 2ν

)

×G4,0
4,4

(
|z|2

∣∣∣∣∣ ; p,−1 +m+ ν,−1 +m+ ν,−1 + p+ 2m+ 2ν

0, 0,−1 +m+ 2ν,−1 +m+ 2ν ;

)
.(4.4)
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FIGURE 1. Plots of the weight function (4.4) of the GPAH-CSs (4.2) versus
x = |z|2: (a) with the parameters p = 1, ν = 1.3 and for different values of
p; (b) with the parameters p = 1, m = 2 and for different values of ν.

In Fig.1-a, we plot the weight function (4.4) versus x = |z|2 for m = 1, ν = 1.3

and for different values of the photon-added number p = 1, 2, 3. All the curves
are positive, this confirms the positivity of the weight function for the parameter
ν > 0. Fig.1-b shows that the polynome parameter ν does not affect the general
behaviour of the curves but increases their amplitude.

4.2. Quantization in the complex plane. The resolution of the identity (4.3)
allows us to implement CS quantization also named Berezin-Klauder-Toeplitz or
anti-Wick quantization of the complex plane by associating a function C 3 z 7→
f(z). Define the operator on the Hilbert space Hm,p:

f(z) 7→ Af =

∫
C
f(z) |z;m〉p p 〈z;m| Np(|z|2;m)ωp(|z|2;m),
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such that:

Af =
∞∑

k,n=0

|n+ p〉〈k + p|
k!n!

[
Γ(n+ p+ 1)Γ(n+m+ ν)2Γ(n+ p+ 2m+ 2ν)

Γ(n+m+ 2ν)2

]1/2

×
[

Γ(k + p+ 1)Γ(k +m+ ν)2Γ(k + p+ 2m+ 2ν)

Γ(k +m+ 2ν)2

]1/2
Γ(2m+ 2ν)

Γ(m+ ν)2

×
∫
C
Np(|z|2;m)ωp(|z|2;m)f(z)znz̄kd2z.

Then, we get the following matrix elements, via the maps z 7→ Az and z̄ 7→ Az̄

defined on the Hilbert space Hm,p:

(Az)k,n =
∞∑

k,n=0

|n+ p〉〈k + p|
k!n!

[
Γ(n+ p+ 1)Γ(n+m+ ν)2Γ(n+ p+ 2m+ 2ν)

Γ(n+m+ 2ν)2

]1/2

×
[

Γ(k + p+ 1)Γ(k +m+ ν)2Γ(k + p+ 2m+ 2ν)

Γ(k +m+ 2ν)2

]1/2
Γ(2m+ 2ν)

Γ(m+ ν)2

×
∫ 2π

0

∫ ∞
0

rdrdθei(n+1−k)θrn+1+kNp(|z|2;m)ωp(|z|2;m),

(Az̄)k,n =
∞∑

k,n=0

|n+ p〉〈k + p|
k!n!

[
Γ(n+ p+ 1)Γ(n+m+ ν)2Γ(n+ p+ 2m+ 2ν)

Γ(n+m+ 2ν)2

]1/2

×
[

Γ(k + p+ 1)Γ(k +m+ ν)2Γ(k + p+ 2m+ 2ν)

Γ(k +m+ 2ν)2

]1/2
Γ(2m+ 2ν)

Γ(m+ ν)2

×
∫ 2π

0

∫ ∞
0

rdrdθei(n−k−1)θrn+1+kNp(|z|2;m)ωp(|z|2;m).

For |z|2, we have:

(A|z|2)k,n =
∞∑

k,n=0

|n+ p〉〈k + p|
k!n!

[
Γ(n+ p+ 1)Γ(n+m+ ν)2Γ(n+ p+ 2m+ 2ν)

Γ(n+m+ 2ν)2

]1/2

×
[

Γ(k + p+ 1)Γ(k +m+ ν)2Γ(k + p+ 2m+ 2ν)

Γ(k +m+ 2ν)2

]1/2
Γ(2m+ 2ν)

Γ(m+ ν)2

×
∫ 2π

0

∫ ∞
0

rdrdθei(n−k)θrn+2+kNp(|z|2;m)ωp(|z|2;m),
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where the following relations

z = reiθ, z̄ = re−iθ and d2z = rdrdθ

∫ 2π

0

ei(n−m)θdθ =


0 if m 6= n,

2π if m = n

are used. Then, using (4.5)-(4.2), we get:

Az =
∞∑
n=0

(n+m+ 2ν)(n+ 1)

(n+m+ ν)
√

(n+ p+ 2)(n+ p+ 2m+ 2ν)
|n+ p〉〈n+ 1 + p|,

Az̄ =
∞∑
n=0

(n+m+ 2ν)(n+ 1)

(n+m+ ν)
√

(n+ p+ 2)(n+ p+ 2m+ 2ν)
|n+ 1 + p〉〈n+ p|,

A|z|2 =
∞∑
n=0

(n+m+ 2ν)2(n+ 1)2

(n+m+ ν)2(n+ p+ 1)(n+ p+ 2m+ 2ν)
|n+ p〉〈n+ p|.

Thereby, the commutator [Az, Az̄] is delivered as:

[Az, Az̄]

=
(m+ 2ν)2

(m+ ν)(p+ 2)(p+ 2m+ 2ν)
|0 + p〉〈0 + p|

+
∞∑
n=1

{
[(n+m+ 2ν)(n+ 1)]2

(n+m+ ν)(n+ p+ 2)(n+ p+ 2m+ 2ν)

− [(n− 1 +m+ 2ν)n]2

(n− 1 +m+ ν)(n− 1 + p+ 2)(n− 1 + p+ 2m+ 2ν)

}
|n+ p〉〈n+ p|.

4.3. Mandel parameter. Computing the relations which determine this quantity
(see [9]) in the case of the GPAH-CSs (4.2), we obtain:

(4.5) Q = (m+ p)

[
6F5(|z|2;m, p)

5F4(|z|2;m, p
− 5F4(|z|2;m, p)

4F3(|z|2;m, p)

]
− 1,
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where 4F3, 5F4 and 6F5 are the generalized hypergeometric functions:

4F3(|z|2;m, p) =4 F3

(
1 + p, 2m+ p+ 2ν,m+ ν,m+ ν;

1, 2m+ 2ν, 2m+ 2ν; |z|2

)
,

5F4(|z|2;m, p) =5 F4

(
1 + p,m+ p+ 1, p+ 2m+ 2ν,m+ ν,m+ ν;

1,m+ p, 2m+ 2ν, 2m+ 2ν; |z|2

)
,

6F5(|z|2;m, p) =6 F5

(
1 + p,m+ p+ 1,m+ p+ 1, p+ 2m+ 2ν,m+ ν,m+ ν;

1,m+ p,m+ p, 2m+ 2ν, 2m+ 2ν; |z|2

)
.

Fig.2 shows that the Mandel Q-parameter (4.5) increases with the amplitude |z|.
Fig.2-b shows that the parameter ν does not influence the behaviour of the curves.
For small values of |z|, the Mandel Q-parameter is negative and become positive
for high values of |z|. Then the GPAH-CSs (4.2) exhibit sub-poissonian distribution
for small values of the amplitude |z| and for sufficiently high values of |z| present
super-Poissonian distribution.

CONCLUDING REMARKS

In this work, we have reviewed the general procedure of CS quantization also
known as the Berezin-Klauder-Toeplitz quantization for a given set X of param-
eters equipped with a measure µ. As illustrations, the case of the motion of a
particle on a circle has first studied. Indeed, we have provided details of calcu-
lations of the operators associated to the action and angle variables. Next, the
CS quantization procedure has been applied to a set of generalized photon-added
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FIGURE 2. Plots of the Mandel Q-parameter (4.5) of the GPAH-CSs (4.2)
versus |z| with the parameters : (a) m = 2 and ν = 0.8 and for various
values of the photon-added number p. (b) p = 3 and m = 2 for various values
of ν.
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CSs related to associated hypergeometric functions, denoted GPAH-CSs. From the
resolution of the identity satisfied by the constructed CSs obtained by a positive
weight function, a CS quantization has been performed in the complex plane. In
addition, the nonclassical behaviour of the GPAH-CSs has been discussed by inves-
tigating the Mandel Q-parameter.
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