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CONFIDENCE INTERVALS OF THE ADJUSTED TAIL CONDITIONAL
EXPECTATION RISK MEASURE FOR A STATIONARY SERIE

Mami Tawfiq Fawzi, Ouadjed Hakim1, and Helal Nacera

ABSTRACT. In this paper we present a semi-parametric estimator of the adjusted
tail conditional expectation risk measure based on the theory of extreme values for
a stationary serie. We prove its asymptotic normality and we construct the confi-
dence intervals. The accuracy of these intervals is evaluated through a simulation
study.

1. INTRODUCTION

The principle of insurance is based on the concept of risk transfer: for a pre-
mium, the insured protects himself from a random financial risk. In order to be
solvent, an insurer must have a certain level of equity, and even add a security
charge to the net premium. To do this, it needs to measure the insured risk.

Some of the early risk measures in actuarial science were based on the so called
premium principles. The purpose is to develop an appropriate premium to charge
for a given risk.

Let X > 0 be loss random variable. The measure of risk is a function

R(X) : X → [0,∞).
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The use of risk measures in actuarial science was in the development of the prin-
ciple of calculating premiums. According to Artzner et al [1] a risk measure R(.)

is said to be coherent when it satisfies the following four coherence properties:

- (P1)-Positive homogeneity:

R(ζX) = ζR(X), ζ > 0.

- (P2)-Translation invariance:

R(X + δ) = R(X) + δ, δ ∈ R.

- (P3)-Sub-additivity: For any random loss variables X, Y :

R(X + Y ) ≤ R(X) +R(Y ).

- (P4)-Monotony: For any random loss variables X, Y , with X ≤ Y in prob-
ability

R(X) ≤ R(Y ).

Let X be an insurance risk, that is, a non-negative random variable representing
the total claim amount of an insurance policy in a given period of time. When
a risk measure R is used for premium calculation, it is often assumed that the
premium coincides with the risk measure of X.

Another property that must be checked by risk measures is that they contain a
safety load,

R(X) ≥ E(X).

There is growing interest among insurance and investment experts in the use of
the tail conditional expectation (TCE) as a measure of risk because of its desirable
properties and its flexibility. To define this premium principle, we suppose X has
distribution function F (x) and survival function given by S(x) = 1 − F (x). The
tail conditional expectation premium calculation principle is defined as

TCE1−p(X) = E[X|X > V aR1−p],

where (VaR) is the Value-at-Risk defined by the following qauntile function

V aR1−p(X) = Q(1− p) = F−1(1− p).

The probability level p is usually taken to be close to 0.
The TCE is a coherent risk measure, it takes into account the whole information

contained in the upper part of the tail distribution and, contrary to the V aR, on
the heaviness of the tail distribution.
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TCE is an important tail characteristic, which is most often studied in insurance
and finance (see [9], [10], [19]).

Once the degree of riskiness is known, there still is the problem of incorporating
a risk loading to be added to the net premium (E(X)). This led Denneberg [2]
and Wang [21] to develop the following distorted premium calculation principle.

The idea is indeed to make the tail of the distribution of the variable of interest
heavier in order to generate a load relative to the net premium. This transforma-
tion of the distribution function will be performed using a distortion function g,
be an increasing concave function defined on [0, 1] with g(0) = 0 and g(1) = 1.
Wang’s premium is given by

(1.1) Πg =

∫ +∞

0

g(S(x))dx.

The distortion risk measure in (1.1) has been studied by many authors such
that [5], [16], [17] and [18].

The TCE is a particular case of Πg using the following distortion function in
formula (1.1),

gTCE(x) =


x

1− p
if x ≤ 1− p,

1 if x > 1− p.

Li Zhu and Haijun Li [24] propose the so-called (ATCE): risk-adjusted or dis-
torted version of TCE. Their approach is inspired by Denneberg [2] and Wang
[21] in order to obtain a risk-loaded premium.

This measure is defined of any non-negative random variable X as follows:

(1.2) ATCE1−p =

∫ ∞
0

g(FX|X>V aR1−p(x))dx,

with FX|X>s(x) = 1− FX|X>s(x) = 1−P(X ≤ x|X > s).
Premium calculation is one of the most essential and complex tasks of an in-

surer. Premium flow must guarantee payments of claims, but on the other hand,
premiums must be competitive.

Very often loss distributions are skewed and have so-called fat tails. In this case,
the use of methods based on a priori assumptions about the normal distributions
is untenable, and it makes sense to use Extreme Value Theory (EVT).
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The objective of this paper is to propose an semi asymptotically normal ofATCE
for mixing heavy-tailed process using the EVT approach, since in insurance and
finance the real data sets are most often dependent.

2. HEAVY TAILED β-MIXING SEQUENCES

Let {Xi} a stationary sequence with common distribution function F of an in-
sured risk X > 0 satisfy the following condition of β-mixing dependence structure

β(l) := sup
m∈N

E

(
sup

A∈B∞m+l+1

|P (A|Bm1 )− P (A)|

)
→ 0,

as l → ∞, where Bm1 and B∞m+l+1 denote the σ-fields generated by (Xi)1≤i≤m and
(Xi)m+l+1≤i, respectively.

We assume that the tail S(x) = 1 − F (x) has regular variation function near
infinity with index −α, that is, for all x > 0,

(2.1) lim
t→∞

S(tx)

S(t)
= x−α,

where α > 0 is the tail index. It follows that the survival function can be expressed
as

(2.2) S(x) = x−αL(x), x > 0,

where L(x) is a slowly varying function at infinity:

(2.3) lim
t→∞

L(tx)

L(t)
= 1.

Such distribution function constitute a major subclass of the family of heavy-
tailed distributions, reflecting the extremely high variability that they capture.
These distributions have applications in finance, insurance, telecommunications,
and many other fields (see Embrechts et al. [6]).

Several estimators of α have been proposed. One of the famous estimators was
introduced by Hill [12] and defined by

(2.4) α̂H =

(
1

k

k∑
i=1

logXn−i,n − logXn−k+1,n

)−1
,
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where X1,n ≤ X2,n ≤ . . . ≤ Xn,n are the order statistics and k = kn is an interme-
diate sequence such that

(2.5) k →∞ , k/n→ 0, n→∞.

Weissman [22] proposed the following semi-parametric estimator of a high
quantile

(2.6) V̂ aR
H

1−p = Q̂H(1− p) = Xn−k,n

(np
k

)−1/α̂H
.

We present now our main regularity conditions that will be maintained through-
out.

(C1) Assumed that there exists a sequence ln, n ∈ N, such that

lim
n→∞

β(ln)

ln
n+ lnk

−1/2 log2 k = 0.

(C2) A regularity condition for the joint tail of (X1, X1+m):

cm(x, y) = lim
n→∞

n

k
P

[
X1 > F−1

(
1− k

n
x

)
, X1+m > F−1

(
1− k

n
y

)]
for all m ∈ N, x > 0, y ≤ 1 + ε, ε > 0 and F−1 denoting the inverse
function of F .

(C3) A uniform bound on the probability that both X1 and X1+m belong to an
extreme interval:
n

k
P (X1 ∈ In(x, y), X1+m ∈ In(x, y)) ≤ (y − x)

(
ρ̃(m) +D1

k

n

)
,

for all m ∈ N, 0 < x, y ≤ 1 + ε, where D1 ≥ 0 is a constant, ρ̃(m), is a
sequence satisfying

∑∞
m=1 ρ̃(m) <∞ and In(x, y) =]F−1(1−yk/n), F−1(1−

xk/n)].

(C4) The quantile function admits the following representation:

F−1(1− t) = dt−α
−1

(1− r(t)),

with |r(t)| ≤ Φ(t), for some constant d > 0 and a function Φ which is τ -
varying at 0 for τ > 0, or τ = 0 and Φ is non decreasing with limt↓0 Φ(t) = 0

(C5) A limiting behavior for k

lim
n→∞

√
kΦ(k/n)→ 0.
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3. ESTIMATION OF ATCE

Let {Xi} be a positive stationary β-mixing process satisfying (2.3) and (C1)-
(C5).

3.1. Empirical estimator. If g(x) = xρ, with 0 < ρ ≤ 1 called the distortion pa-
rameter or the risk-aversion index, we find the Proportional Hazards (PH) trans-
form which has been extensively studied in insurance applications (see Wang
[20]), then from Li Zhu and Haijun Li [24], we can rewrite (1.2) as

(3.1) ATCE1−p = V aR1−p +

∫ ∞
V aR1−p

(S(x))ρdx

pρ
.

By a change of variable, we have

ATCE1−p = V aR1−p −

∫ p

0

tρdQ(1− t)

pρ

Then

ÂTCE
emp

1−p = X[n(1−p)],n −

∫ p

0

tρdQn(1− t)

pρ
,

where Qn(t) is the empirical quantile function defined as

Qn(t) = Xi,n,
i− 1

n
< t <

i

n
, i = 1, . . . , n,

with Qn(0) = X1,n. By integration by parts we get

−
∫ p

0

tρdQn(1− t) = ρ

∫ p

0

tρ−1Qn(1− t)dt− pρX[n(1−p)],n

= ρ

∫ 1

1−p
(1− t)ρ−1Qn(t)dt− pρX[n(1−p)],n

=
n∑

i=[n(1−p)]

∫ i−1
n

i
n

(1− t)ρXi,n − pρX[n(1−p)],n

=
n∑

i=[n(1−p)]

[(
n− i+ 1

n

)ρ
−
(
n− i
n

)ρ]
Xi,n − pρX[n(1−p)],n.
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Then

(3.2) ÂTCE
emp

1−p =
1

pρ

n∑
i=[n(1−p)]

[(
n− i+ 1

n

)ρ
−
(
n− i
n

)ρ]
Xi,n.

3.2. Semi parametric estimator using Hill estimator. Recall, from Karamata’s
Theorem (see de Haan and Ferreira [8]), that for 1/α < ρ ≤ 1 we have∫ ∞

V aR1−p

(S(x))ρdx

V aR1−ppρ
→ 1

αρ− 1
, as p→ 0,

since (S(x))ρ is regular varying with index −αρ < −1 and V aR1−p →∞ as p→ 0.
Hence we have

(3.3) ATCE1−p =
αρ

αρ− 1
V aR1−p ,

with 1/α < ρ ≤ 1.
From (3.3) we have the following estimator

(3.4) ÂTCE
H

1−p =
α̂Hρ

α̂Hρ− 1
V̂ aR

H

1−p =
α̂Hρ

α̂Hρ− 1
Xn−k,n

(np
k

)−1/α̂H
.

Theorem 3.1. Under the conditions (C1)-(C5) with lnk/n → 0 as n → ∞ and
k/np→∞. For p→ 0, then

√
k

log (k/np)

log
ÂTCE

H

1−p

ATCE1−p

 D−→ N
(
0, σ2

H

)
,

where

(3.5) σ2
H = α2c(1, 1).

and

(3.6) c(x, y) = min (x, y) +
∞∑
m=1

[cm(x, y) + cm(y, x)].

Proof. We start with

ÂTCE
H

1−p − ATCE1−p =
α̂Hρ

α̂Hρ− 1
(V̂ aR

H

1−p − V aR1−p)

+ V aR1−p

(
α̂Hρ

α̂Hρ− 1
− αρ

αρ− 1

)
,
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then we have
√
k

V aR1−p log (k/np)
(ÂTCE

H

1−p − ATCE1−p)

=

(
α̂Hρ

α̂Hρ− 1

) √
k

log (k/np)

 V̂ aRH

1−p

V aR1−p
− 1


+

√
k

log (k/np)

(
α̂Hρ

α̂Hρ− 1
− αρ

αρ− 1

)
.

Hence we have √
k

log (k/np)

ÂTCEH

1−p

ATCE1−p
− 1

 = H1 +H2,

where

H1 =

(
αρ− 1

αρ

)(
α̂Hρ

α̂Hρ− 1

) √
k

log (k/np)

 V̂ aRH

1−p

V aR1−p
− 1


and

H2 =

(
αρ− 1

αρ

) √
k

log (k/np)

(
α̂Hρ

α̂Hρ− 1
− αρ

αρ− 1

)
.

From Theorem 2.2 of Drees [4] and Drees [3] we have

(3.7)

√
k

log (k/np)

 V̂ aRH

1−p

V aR1−p
− 1

 ∼ √k(α̂H − α)
D−→ N

(
0, σ2

H

)
,

where

(3.8) σ2
H = α2c(1, 1).

Since α̂ is a consistent estimator for α (see Hsing [13]), then for all large n and
k/np→∞, p→ 0,

(3.9) H1
D−→ N

(
0, σ2

H

)
.

By the application of the delta method, we find
√
k

(
α̂Hρ

α̂Hρ− 1
− αρ

αρ− 1

)
D−→ N

(
0,

ρ2

(αρ− 1)2
σ2
H

)
.

Hence

(3.10) H2 → 0.
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By combining (3.9) and (3.10) and using that log (1 + x) ∼ x as x→ 0, we find
the result of the Theorem 3.1. �

4. SIMULATION

In this section, we carry out a simulation study by means of the statistical soft-
ware R (see Ihaka and Gentleman [14]).

Consider now the stationary solution of the ARMAX(1) equation

(4.1) Xt = max(λXt−1, Zt), 1 ≤ t ≤ n,

where 0 < λ < 1 and {Zt} are independent and identically distributed, with tail
distribution 1− FZ(x) = 1− exp (−(1− λα)x−α).

Ferreira and Canto e Castro [7] showed that

c(x, y) = min(x, y) +
w−1∑
m=1

[cm(x, y) + cm(y, x)] + (x+ y)
λwα

1− λα
,

for

w ≡ wx,y = [max{α−1 log (x/y)/ log λ, α−1 log (y/x)/ log λ}] + 1

Then the variance in (3.8) becomes

(4.2) σ2
H = α2

(
1 + λα

1− λα

)
.

To calculate the confidence intervals for the ATCE, we fix the risk aversion
ρ = 0.8 and ρ = 0.9, then we follow the following steps:

(1) To select the optimal sample fraction k in Hill estimator, we remark that

P (X > x) = 1− exp (−x−α),

so from Hall [11], Meerschaert and Scheffler [15] we can choose the opti-
mal value as kopt = [n2/3].

(2) Compute the corresponding values of α̂H , ÂTCE
H

1−p denoted by α̂H,kopt ,

ÂTCE
H,kopt

1−p .
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(3) Compute the estimator of λ by λ̂ =
n∧
i=2

Xi

Xi−1
, (see Zarepour and Banjevic

[23]) and the corresponding value of σ̂H by

σ̂
kopt
H = α̂H,kopt

√
1 + λ̂α̂

H,kopt

1− λ̂α̂H,kopt

Then for θ ∈ (0, 1) the (1 − θ) confidence intervals of ATCE, will be
[lb, ub], where lb: "lower bound" and up: "upper bound" with

lb = ÂTCE
H,kopt

1−p × exp (−zθ/2 × σ̂koptH × k−0.5opt × log (kopt/np))

and

up = ÂTCE
H,kopt

1−p × exp (zθ/2 × σ̂koptH × k−0.5opt × log (kopt/np)).

We generate 100 replications of the time series (X1, . . . , Xn) for different sample
sizes (800, 900), where Xt is an maximum autoregressive process of order one
satisfying (4.1), with c = 0.3, using two tail indices α = 3 and α = 4. The
simulation results are presented in the Table 1-2, we compare also in terms of
absolute bias (abias) and root mean squared error (RMSE), the performances of

the semi-parametric estimator ÂTCE
H

1−p and the empirical estimator ÂTCE
emp

1−p .
We conclude that the semi-parametric estimator has smaller bias and RMSE, it
performs better than the empirical one.

Table 1: Point estimates and 95%-confidence intervals
for ATCE0.90.

α 3 4
ρ 0.8 0.9 0.8 0.9

n = 800

ATCE0.90 3.673326 3.400684 2.574858 2.449829

ÂTCE
emp

0.90 3.515685 3.373349 2.555977 2.425367
abias 0.1576415 0.02733578 0.01888046 0.02446198
RMSE 0.3842232 0.30548 0.1697781 0.1800666

ÂTCE
H

0.90 3.634467 3.414872 2.592479 2.42709
abias 0.03885992 0.01418773 0.01762137 0.02273939
RMSE 0.3486875 0.2960125 0.1559095 0.1579191
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lb 3.441217 3.237414 2.417836 2.258819
ub 3.838686 3.602166 2.779876 2.6081

length 0.3974697 0.364751 0.36204 0.3492816
n = 900

ÂTCE
emp

0.90 3.56382 3.380674 2.558335 2.463877
abias 0.1095064 0.02001071 0.01652297 0.01404715
RMSE 0.3253109 0.2747316 0.1357082 0.1266738

ÂTCE
H

0.90 3.71199 3.387614 2.586034 2.462764
abias 0.03866322 0.01307011 0.01117669 0.01293508
RMSE 0.320591 0.2465466 0.1287492 0.1211489
lb 3.614472 3.298168 2.498082 2.378489
ub 3.812163 3.479503 2.67711 2.550056

length 0.1976909 0.1813347 0.1790284 0.1715677

Table 2: Point estimates and 95%-confidence intervals
for ATCE0.95.

α 3 4
ρ 0.8 0.9 0.8 0.9

n = 800

ATCE0.95 4.640824 4.298005 3.069092 2.920814

ÂTCE
emp

0.95 4.505302 4.391646 3.038673 2.969765
abias 0.1355219 0.09364121 0.03041934 0.04895023
RMSE 0.6257293 0.8293191 0.2588149 0.2843255

ÂTCE
H

0.95 4.750579 4.377251 3.082221 2.952297
abias 0.1097549 0.07924582 0.01312849 0.03148261
RMSE 0.6185121 0.4694091 0.2487155 0.2460353

lb 2.917828 2.688598 1.614364 1.557195
ub 7.751327 7.141143 5.911403 5.629174

length 4.8335 4.452546 4.297039 4.071979
n = 900

ÂTCE
emp

0.95 4.521222 4.263283 3.041758 2.932621
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abias 0.1196024 0.03472163 0.02733434 0.01180642
RMSE 0.5134408 0.43833 0.2461871 0.2338621

ÂTCE
H

0.95 4.735155 4.329422 3.082136 2.931111
abias 0.09433061 0.03141699 0.01304396 0.01029647
RMSE 0.4840349 0.3629902 0.223165 0.2083294
lb 3.02836 2.76905 1.704176 1.630524
ub 7.414861 6.777707 5.593159 5.287705

length 4.386502 4.008657 3.888983 3.657181

5. CONCLUSION

The question of assessing insurance risk is a crucial one. Different risk measures
have been proposed in the literature.

Once these risk measures have been defined, the question arises of knowing
how to give an analytical expression or to propose estimators of these quantities.

The actuarial context requires the study of the tail of the distributions. Indeed,
by nature, a risk which has a significant probability of causing large losses is dan-
gerous and insurance companies need to assess this level of dangerousness.

In this work we have proposed an estimator of the adjusted tail conditional
expectation measure for extreme risks under dependence. The behavior of the
resulting estimator has been analyzed using numerical simulations and real data.

Many distortion functions depend on a risk-aversion parameter ρ, which in turn
determines the risk-adjusted premium. Theory is often unable to identify this pa-
rameter. It is important to consider the estimation of the risk-aversion parameter
ρ, and test the equality of the risk measures.
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