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EXISTENCE OF SOLUTIONS OF A BOUNDARY VALUE PROBLEM FOR THE
FOUR VELOCITY BROADWELL MODEL

Akouété E. Nicoué and Amah S. d’Almeida’

ABSTRACT. Existence and boundedness is proved for the solutions of a boundary
value problem for the two-dimensional Broadwell model in a rectangle. The influ-
ence of the orientation of the model in relation to the sides of the rectangle on the
form of the boundary value problem is analysed. Exact solutions are found and
use to determine accommodation coefficients at the boundaries of a fluid flow in
a rectangular box.

1. INTRODUCTION

The rapid development of industrial applications of microfluidics in recent years
leads to the introduction of flows in micro-channels and micro-tubes in various
fields of technology. The flows in these micro devices are in slip or transitional
regimes and rarefied gas flow phenomena such as velocity slip and temperature
jump are observed. Theoretical studies of such kind of flow are thus done in
the scope of the kinetic theory of gases. Due to the complexity of the Boltzmann
equation, simplified approximating models such as the discrete velocity models []3]]
have been proposed. The plane four velocity discrete model of Broadwell seems
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to be the simplest of them and has been used to study initial and boundary value
problems [7] and flow problems in one dimension [[11]. However the modelling
of flows in micro-channels or micro-tubes deserves, in order to take into account
notably longitudinal and transversal directions, the use of at least two-dimensional
models. The first papers on the boundary value problem for the two-dimensional
Broadwell model [7]], [8] consider the following boundary value problem:

( ON| 0N}

¢ ox' —¢ ox’ = o

ON, 0N,

¢ oy’ ¢ oy’ 0
1.1 ’
(1.1) N{(0, ) = d,(¢)
Ni(a, ') = dhy)
Ni(a',0) = ¢4 (a")
| N, b) = ¢ ()

Qo = 2¢s(NzNy — N1 N)

which models in an orthonormal reference (O, €}, é,) of the plane R?, the flow
of a gas in a rectangular box, when the velocities of the discrete velocity model
are u; = cél, Uy = C€y, U3 = —1o, Uy = —u; and the origin O is chosen so that
the edges of the box are located on the lines 2/ = 0, 2’ = a, ¥ = 0 and y = b,
0 < b < a. We denote as usual by N;(t',2',y') the number density of particles
of velocity u; in point M (¢',z',y’) at time ¢'. The velocities of the general four
velocity discrete model of Broadwell in the basis (&, &) of reference are in fact
iy = c(cosf,sinb), iy = c(—sinb, cosb), iy = —1iy, Uy = —i;, where the angle ¢

between the velocity «; and the unit vector é; accounts of the orientation of the
T T

5, Z} the

model is isotropic with respect to the reference in contrast with the cases where

0 ¢ {0, g, %} The boundary value problem has the form if and only if

discrete velocity model with respect to the reference. When 6 € {O,

0 e {0, g} For 6 € }O, g [, cos ) and sin 6 are non zero and the form of the kinetic
equations changes.

The aim of this paper is to investigate the boundary value problem for the two-
dimensional Broadwell model for § = % and compare the results with those found
in [7] and [8]].
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The paper is organized as follows. In section [2] we set the boundary value prob-
lem of the Broadwell model for # = ~ and present the main result of the paper
which is proved in section |3l We seek in section 4| exact solutions and compare
them to those of [8]. In section |5, an application to the determination of accom-
modation coefficients is performed for a gas flow in a box.

2. STATEMENT OF THE PROBLEM

The components of the velocities of the model for § = T are: @, = %(1; 1),
c c c
Uy = —(—1;1), i3 = —(1;—1), iy = —=(—1; —1). The kinetic equations of the
2= 51, U \/5( )> Ua \/5( ) q

Broadwell model in consideration are given by:

( aN’ c 8]\7’ ¢ ON{ ,
o T mow aoy ¢
ON;, ¢ 8N’ c ONy ,
ot /2 ox' \/_ oy ¢
2.1 ON;, ¢ ONy ¢ ON,
ot! +78x V2 0y ¢
ON; ¢ ON} c ONy,
ot 2 0r 2 oy @

with
Q' = 2¢s (NyN; — N{Ny) .

We consider gas flow described by this model in a rectangular box of lenght a
and width b (0 < b < a). Arranging as usual the velocities of the model into three
groups corresponding to emerging, grazing and impinging particles in relation
with each edge of box [[11], we derive the following boundary conditions:

((N1(0,9) = ()

Ny(a,y') = ¢5(y')

5(0,9') P5(y')

Ni(a.y) = ¢4y

2:2) N{(0) = i)
Ny(',0) P(2")

Ni(«',b) ¢y (')

(N2, b) Pg(z")
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The boundary value problem is the system with the boundary conditions
(2.2). The boundary conditions are twice as numerous as the unknowns. The
problem (2.1)-(2.2), is an overdetermined two point boundary value problem. It
is generally necessary to have compatibility conditions between the boundary data
for a solution to exist.

Obviously, we can see that the change in the orientation of the model in relation
with the reference results in a change in the form of the kinetic equations and
the boundary conditions. The boundary value problems for # = 0 and 6 = g are

totally different from the one for 6 = %

2.1. The non dimensional problem. The problem is put in dimensionless form.
The chosen reference values are: ¢ for the velocity, n, for the densities, a and b for
the lenght. We thus introduce the following non dimensional quantities:

N;=N//nyg 1=1,23,4 , xz=42"Ja , y=1vy)/b,
e=b/a , Kn=(snga)™" , ¢;=¢/ngj=1,...,8.

the Knudsen number K'n provides information on the degree of rarefaction of the
flow while ¢ which is the channel aspect ratio provides information on the relative
length. The boundary value problem takes the form:

ON, 19N, 9N, 10N,
P P T )
ON; 10N, 0ON; 10N; o
ox c dy ox e oy
N1(0,y) b1(y)
N2(17y) = ¢2(y>
2.3
(2.3) N3(0,y) = o¢3(y)
Ny(Ly) = ¢u(y)
Nl(xa()) = ¢5((L’)
NQ(xu()) = ¢6(:€)
Ns(z,1) = o¢q(x)
L N4(Ia]—> = ¢8(x)
with

Q = 2V2 (N,N5 — N\ Ny) /Kn.

We prove in the sequel the following result:
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Theorem 2.1. The problem (2.3) has continuous, derivable and bounded solution
if the boundary data ¢;, i = 1,...,8 and their first derivatives are continuous and
bounded.

In order to simplify the form of (2.3), we perform the following change of vari-
ables.

r+e —r+e
Z : (x,y) — (a1, az) such that g = Wy , Qg = Ty
% is an isomorphism of [0, 1] x [0, 1] on {0 —1+5] X [_1 c ] The | =1,2are
) ) s —_—, . ai, ] =1,
p \/5 \/5 \/5 jsJ

the new variables and z, y are the old ones. The vertices A = (0,0), B = (1,0), C' =
(1,1), D = (0, 1) of the rectangle in which the flow takes place are transformed into

1 1 1+e —1+¢ e €
2= 00, = (5o p). 0= (5 =) 0= (g ) and e
rectangle ABCD is transformed into the losenge A’B’C’D’ by the transformation
. The vectors ¢; = (1,0) and é; = (0,1) associated with the initial coordinate
system are transformed into «; = (1,1) and 4y = (—1,1). The linesz =0, z = 1,
y = 0 and y = 1 are respectively transformed into a; — as = 0, a; — ay = V2,
a1 +as = 0, o + @ = V2. In the new coordinate system the velocities of the
model are normal to the vertices of the losenge and the boundary value problem

(2.3) takes the following form:

((ONi 0N, =

T~ om  ©

ON,  ON. ~

B~ Ba ~ ©

2.4) -
]XI (0,a2) ?1(042)
]X2 (a1,0) = ?2(041)
]X3 (041; 1) = ?3(041)
L Ny (17042) ¢4(042)

with

Q=2 (Rl — M) /K.
Although .Z is an isomorphism, the change of variable completely modifies the
structure of the boundary conditions of the problem (2.3]). Hence to ensure that
a solution of the problem (2.4) is a solution of we must choose the data
¢i, i = 1,...,4 conveniently so that it satisfies in the old variables the boundary
conditions of the problem (2.3)).
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3. RESOLUTION OF THE PROBLEM (2.4)
1+4+¢ —1

€
We put J = |0, ———| X |—=, —| and denote respectively by ¢ (J) and &, (J
puts = [0. 125 | 2 2 pectively by (/) and ¢, (7

V2

the set of continuous functions defined on J and its subset of positive functions.
We defined the following norms.

If o = (a1,09) € Jand M = (M, ..., My) € €(J)* then

lal = loal + ool , [ Millo = sup [Mi(e)], [[M]ly = sup [Mif, with A = {1,2,3,4}.
ac 1€
We denote | M| = (| M), ..., |Myl).
3.1. Positivity of the solutions of problem (2.4).

Proposition 3.1. The solution (Nl, e KQ) of the problem (2.4) when it exists, be-
longs to €(J)4.

Proof. Let

Ni(aq, ay) = exp p(N)(aq,s)ds ]\71(@1,042)

No(ag, an) = exp p(N) (s, as)ds Ng(al, as)

Ni(a1, ) = exp p(N)(s,an)ds Ng(al, as)

Ny(ag, as) = exp p(N)(aq, s)ds N4(a1, as)

oo =2/Kn.

Then

ON a -~ _ _
5 1 _ exp [/ p(N) (s, o@ds] 0oNo N3 + Ny [p(N) — 00N4}
(03] 0

ON @ -~ - -
S = —exp [/ P(N>(570é2)d3} 00N2 N3 + Ny [P(N) + UONl}
1

— exp [/;2 p(N)(an, s)ds] ooNi Ny + N, [p(N) - Uoﬁs}

ON 0 . .
3 _ _eap { / p(N)(ozl,s)ds} oo N1 Ny + Ny [,;(N) +00N2} .
1
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Putting F(N) = N,N,00 and G(N) = N, N30, we get

Ni(ar,az) = <$1(042) + /Oal exp [/08 aoNa(a, Oéz)da] G(N)(&O@)dS) X

exp [ /O " [p(N) — o] (s,ag)ds]
Na(a1,an) = <$2(a1)+/0a2exp :/Osaoﬁg(al,a)da] F(Kr)(al,s)ds> %

a2
exp

S—

[P(ﬁ) — Uoﬁzz} (a1, s)ds]

Ny(an,as) = <¢3(a1)+ /1 " exp /1 " aoﬁg(al,a)da] F(ﬁ)(al,s)ds>x

a2

[©]

o]

o
»\

[p(]v) - O'ONQ:| (a1, 8)ds

Nilar,as) — <¢4(a2)+ /1 " exp [ /1 Saoﬁl(a,ag)da] G(N)(sm)ds> <
exp [ /1 " [o(R) ~ o0 1] (s,ag)ds] .

As 51 . i € A\ are positive then N, k € A are positive and so are Ny, k € A. Hence
if a solution of (2.4)) exists then it is positive. O

3.2. Definition of an auxiliary problem. We put p*(N) = N, + N, and p~(N) =
N, + N; and consider for o > 0 the following problem:

%jta]\hp( ) = Q+UN1P (N) = QCIT(N)
a
%Hﬁzp—(m:_maﬁzp—(ﬁ) = Q4(N)
(&%)
%Hﬁgp—(m:maﬁgp—(ﬁ) = Q§(N)
(8%
(3.1) O
. 2 LGNyt (N) = —Q + oNyp™(N) = QI(N)
Oél
(0,042) - %1(&2)
N2(04170) = ?2(041)
N3(04171) = ?3(041)
\ N4(1,a2) da(r)
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The problem (3.1)) is obtained from problem (2.4)) by adding aﬁipi(ﬁ ) to the two
members of the kinetic equation for N;, i € A so the two systems of equations are
equivalent.

3.2.1. Existence of solutions of (3.1).

Proposition 3.2. The problem (3.I)) has a solution which belongs to € (.J)% for suf-
ficiently large o.

Proof. Consider for M € €(J)* the following boundary value problem:

(N -
Gt oMt (M) = QF(M)
AN -
G+ oMo (M) = Q5(1M)
ON
S5 N (M) = Q3(M))
2
(3.2) o
Gt oNw (M) = Q3(M))
]Sfl (0, ) ?Zl(OQ)
]X2(061,0) = ?2(011)
]X3(041,1) = ?3(041)
[ N (1, a2) Pa(az))

Lemma 3.1. The problem (3.2) has for given M € €(J)% an unique solution which
belongs to € (.J)’, for sufficiently large o.

Proof. The problem (3.2) is a linear problem associated with the problem (3.1
and it is solved by splitting it into the two following boundary value problems:

( ON ~
St oMt (M) = Qz(M))
ON ~
(3.3) a7144r<ff\74f)+(lf\4l) = Q7(|M])
]Sfl (07%) = %1(042)
. N4(17042) = ¢4<&2))
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( ON. -
G+ oMo (M) = Q3(IM))
ON. -
(3.4) Gt N (M) = Q5(1M))
]sz(abo) = %2(041)
[ N3 (o, 1) = ¢3(n)

The unique solution of is:
Nl(alaaz) = 951(062)9+(0417042)
[ QM 00 = s
Ng(al,ag) = ¢2 a1)g (ag, az)

/ Q5 ([M])(a, 8) f (a1, a0 — s)ds

(3.5) Ny(ar,aa) = ¢a(an)f~(aq, a0 — 1)
/ QI(IM))(an, 8)f (a1, a5 — s)ds
Ni(ar,a2) = dalo)f*(ar —1,00)
[ Qs e s an)ds
with

a1

g (a1, az) = exp {—a/az p+(|M|)(s,a2)ds]

a2

g (a1, a2) = exp [—0 /{l1 p_(IMD(ozl,s)ds]

g (a1, a9)

o —s,a0) = Wta;)
_ o g_(abaQ)
R

For sufficiently large o, Q° is positive Vi € A. Hence as ¢; is positive Vi € A,
Ni(OéhOég) > 0, = ].,2, V(()él,OQ) € J and Ni(al,ag) > 0, = 3,4, \V/(Oél,OCQ) c Jif
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and only if:

1
/ Q5(M|)(an, )/~ (a1, 0z — 5)ds < sup(e s QM)
(3.6) .
/ QM) (s, 00)f* (a1 — 5, a2)ds < sup(eycmes QM)

and it is sufficient that ¢; > SUP(ay,a0)es Q% (| M) and by > SUP(ay,a0)es QT (| M) tO
have N € €(J)%. O

3.2.2. Compatibility relations. We derive in this paragraph the conditions that
must fulfil the solution (3.5) to satisfy in the old variables the boundary condi-
tions of problem ([2.3)). We have:

(3.7) Ni(on, a0) = Nyo Z(x,y) = Ni(w,y), i = 1,...,4.
and
~ Ni(ar, ) Q7 (|M])(a, 042)
¢1(a2) 9+(0417042) /o 9+ a, az da
e NQ(OKl,OéQ) /QQQ |M| ala )
(3.8) Pelen) = 9 g (a1, a9) ~(a1,a da
5(0( ) N3(a17a2) /O{QQ |M| ala )d(l
¥ ! g (a17a2> al?
N4(CY17042) “ Q7 (IM])(a, 042)
Ga(0) = gt(an,a2) 4 gt (a, az) da-

For two sets A and B we denote by &, i = 1,2, the first and the second pro-
jections; that is the mappings of A x B onto A and B respectively defined by:
P (x,y) — x and P, : (z,y) — y. Then in the old variables the system (3.8
reads as . and &;, i = 1,2 are linear:

(3.9)

Bs0 P o L(x,y) = ;szjjg z; - /Oy Qggf\@({jg’)“)) Py o L(x,a)da
Js0 Pro L (x,y) = ngfzﬁg z; = /1 y Qigf\@(‘f (;;’)“))@ o Z(z,a)da
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where:

(L)) = exp {—a / "M (L0, 1) Py o z(a,wda]
|

(L (a,y)) = cap {—a [ a2 .a) 2o 2.0y

We thus have:

- _ NioZ(0y) _ Ni(0,y)

$p10 Py02L(0,y) gt o 2(0,y) g+og(0 )

3 0 B0 £(5,0) = ;\Eoﬁé 8; " Q5 ( 1M| o gc;o)%og(a,o)da
TN sl , oo
T gt o Z(x,0) /1 9+ (Z(a,0)) Fio L0

$s 0 Py oZ(l,y) = ngzz:;g,z) y QJ(‘MD(('}?S)’)G))@Qof(l,a)da
_ ) @3 ( |M| (1,a) o a)da
=1 / Za) 2oL

~ B Nzog(aj, 0) N2<5C 0)

pg0 Pro0L(x,0) = gAjog(:E’()) g~ o Z(x,0)

Gro Do 2(0y) = ;V 3583 y QGGMD(&? (>’>a))’@ 2o 20
B ) Q3 ( ‘M‘ (Z(0 ’a) a)da
g 03(0,@/ / 2(0,a)) #(0,a)e

- _ Nio ZL(1,y) _ N4(1 y)

¢s0 Pro (L y) gtoZ(l,y) gtoZ(ly)

_ B N4o$(x,1) Q7 ( |M|) Z(a,1)) o Z(a. Nda

pg0 Pyo0 L(x,1) = g+o$(x 0 / o 1) D0 ZL(a,1)d

NG ot @) e
= o2 D) -/ (L) oLl e

The solution ( of the problem (3.2)) satisfies the boundary conditions of (2.3)
in the old Varlables only if:
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~ ey, 1y
¢1(7) gt o Z(0,y)
S n ) FOUMNZ@) e o
"5 = o 20 / (a0 o0
Slbey el PIMYEL)
M = gty ey P
hol ) = )
(3.10) V2 gm0 Z(x,0)
| S el PAMNEO)
MR = g e BT £ 0.0
53(1' + 6) _ ¢7($)
V2 g oZ(x,1)
~ —l+ey da(y)
HeE )T g*O-f(ly
~ —x+¢€ Q4 |M| a, ))
a( NG ) = g+o$ 1) / ) P o0 L (a,1)da.

The compatibility conditions amount to prescribe the values of the functions ¢,
i € A in terms of the values of the functions ¢;, i € A in some points of the flow

domain.

Let .7 be the mapping defined by 7 (M) =

N where N is the unique solution

of problem (3.2)) satisfying the compatibility conditions (3.10].

Lemma 3.2. 7 is continuous and compact on € (J)*.

Proof. We have .7 (M)
which we deduce:

%1(042)

Nl(ah asg)| <
52(041)

NQ(OéhOéz) <

53(041)

N?,(ah%) <

54(042

N4(CY17042) <

~—

‘ng(Oél,ag)} +

’g_(al,ag)} +

[ (anen =]+ | [ @D 1)1 (a0 = sy

[/ (o = 1, a2)| + ’/1“1 QI (IM])(s, 1) f (o1 — 5, ) dls| .

— N if and only if N is given by the relations (3.5) from

/0“1 QT(IM()(s, az) f " (a1 — 5, a)ds

/0 " Q5(M D) (n, )1 (e, 0z — 5)ds
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In one hand using the Generalized Mean Value Theorem, as f* and f~ are strictly
positive functions, we can find

c1 €10,a1q]; ¢ €10, s[5 3 € Jag, 1] 5 ¢4 € |y, 1]
such that
| @M s0a) (o = s.cn)ds = QEMD(ervaa) [ F o = s
| @M en o) (@ an = )ds = Q5D arca) [ F (ar,0a - s
/ QM (e 5) (o, 02 = 5)ds = Q5 (M (enoca) | f(ar 05— 5)ds

1 1
/ Q5(IM) (5. 02) (1 — 5, 00)ds = Q(|M]) (e, 1) / f*n — 5, an)ds.

In the other hand in accordance with the Mean Value Theorem we can find d; €
]O, 041[, d2 € ]0, 062[, d3 € ]042, 1[ and d4 € ]CYl, 1[ such that

/al [y —s,a0)ds = ay fT(a; — dy, ay)
0
/a2 f(a1,a0 — s)ds = aof~ (a1, ag — dg)
0
1
/ f (o, as)ds = (1 —ag) [~ (a1, a0 — d3)

1
/ fHag —s,a0)ds = (1 — o) fH(ay — dy, az).

Hence letting:

aas) = exp (o [0 ()G~ 1 an)is)

atw) = e (o [0t () esss — s
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we get:
O1(02)| +1QT (M) (.1, a2)
Ga(en)| + Q5 (IM]) (o c2)
Ba(e1)| |4~ (o) + |QF(IM]) a1, o)
Oa(02)| [ A7 (00)| +1@F (M) (e )]
since |g* (a1, a2)| > 1. From which we infer:
|7 (D), < max (&) |2
Q7 (M,

Thus .7 is continuous and bounded since qu, i € A A* and Q7 are continuous and
bounded. Hence if M € ¢(J)* is bounded then N = .7 (M) is bounded.
Otherwise if N is the solution of the problem (3.2)) then VM € €(.J)*

N1(041, 062)

N

Nz(Oﬂ, 042)

N

N:s(&l, az)

N

N

N4(alaa2)

01

3 147,

Atl)

9

(3.1 0

;

N, <
aTél—Ql(\Ml) aNip™(|M])
8]% p AT
%—Q2(|M|)—0N2P (|M])
ONs ~ '
%—Q:;UMD—ON?)P (| M)
aﬁ‘l _ No NIt
aTM—QLL(‘MD aNyp (|MD

Thus

( |ON -

a—l <|QT(IM))| + o [ Nip*(|M])
g
ON. ~
| < 1Q3(MD] + o | Nop™(|M])
(0%}

(3.12) aN
3—3 < |Q5(IMI)| + o [ Nsp~ (| M])
(&%)
ON. -
8—4 <|QI(IM|)| + o | Nap™ (| M])
aq
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Thus for bounded M € €(J)* 8N1, 6N2’ ONs and ONy are uniformly bounded
8&1 (90@ 8052 (0%}

in J. From the kinetic equations of (3.2), we derive the conservation equations

(O RN+ (M=) = 0
8042 9 — V3 Dor, 1 4) =
9
(3.13) ! aaz(N2+N3) =0 .
O (W + Ny =0
| B, 1 4 =

From (3.13)) we deduce the system

N, oN
(3.14) a‘? ai“}
Ny 0N,
oy " oo

We differentiate the equations (3.14]) with respect to a, and get as the Ni,i €A
are differentiable functions of o; and a5 the system:

2 AT 2 N7
0 ]\;2 n 0N, —0
Oas Oasday
(3.15) Z ~
0% N3 0*N, —0

a3 + Oas0ay
We integrate the Egs. (3.15]) with respect to «; and get:

N, 1 92N,
87.42 = — ; 8042 (S Oég)dS+@1(Oé2)
N, 192N,
87.42 = — ! aa2 (S Oé2)d8+@4(0[2)

Then we integrate with respect to a; and we have:

- o1 (92]\72 a2

N1 (Ckl, Oég) = / / aa S t dsdt + @1(t)dt + X1 (Oél)
2 0

- e51 82]\7 [eB)

N4(Oél, 042) = / / 8@ 3 S t dsdt + / @4(t)dt + X4(Oél) .
2 0
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Using the boundary conditions we have the system:

N1(07a2)

N4(17 052)

From which we get by differentiation ©; =

o,

80&2
R,
aag

(o, az)
(o, az)

Similarly we obtain:

o,

8061
o,
(90(1

(ab a2)

0417062)

Using the expressions ([3.5)
92N,
da3
92N,
a3
92N
a3
92N,
da?

(1, a2)
(1, az)
(a1, a5)
(a1, a3)

As

- / Ou(t)dt + ya(1) = du(az)
0
%, j = 1,4. We thus have:
%)
aq aQNz d§g1
= —/0 W(S,&z)dprdﬁ%(%)
a1 82N3 d&;
= — . TQ%(S’ OéQ)dS + dT.Q(OéQ) .
g 82N1 d(g2
e —/0 T.é%(al,s)dél}‘{—df.él(al)
Qo 82N4 dgz~53
of Ni, i € A we have
~ >g* Q7 (| M])
¢1(a2)w(a1, as) + é—&l(ab as)
~ g~ Q3 (| M])
¢2(Q1)Toz§(&1’ as) + 3—042(0417 az)
~ 0% f~ 0Q3 (| M
P3(an) 80{3 (a1, 00 — 1) + %QD(O%%)
~ o ft 0Q9 (| M
(b4(041) aafZ ( 1 — 1,052) —+ Qg+l|>(a1,042) .
1
ot _ o _,
8061 8a2

/Oaz O1(t) dt + x1(0) = al(OQ)
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we have
a2g+ 2 42 +
T«%(O‘l’%) = *pT(IM])g* (ar, a2)
0%q~
P9 o)) = ot (Mg (on,00)
2
aZer 2 +2 +
W(O‘I_LO‘?) = o’ p(IM])fT (a1 — 1, )
1
0% f~
—352 (1,0 — 1) = J2p_2(|M|)f_(oz1,oz2—1).
2
Hence
O*N -
W;(al’%) < ’¢1(a2)’02p+2(|M|)(O‘17042)9+(041,042)
1
a o
+ ‘ agi (Oél,O[Q)
92N, -
Slana)| < |dalan)| o (M) (ar, az)g™ (e, )
2
0Q3
(3.16) R " ' B 170
0°Ns ~ y 2 ~
Sl a)| < |dslan)| o (M) (ar, az)g™ (e, )
2
o0Q(|M
+'%(O{17O{2>‘
2
92N, -
W;(al,%) < ‘¢4(042) 02p+2(|]\/[])(041,ag)g+(a1,042)
1
0QI(|M
[P g,
1
and
8]?71 62NQ d$1
- < |22 “v1
Doy (ar,2)) < 0o (a1, 02)| + d(l/g(a2)
G147 o o @
“ev2 < |22 2
Oa (a1, 02)) < da? (o, 02) + dal(al)
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8]% 82N4 dgﬁi
2 < | ==
8061 (0517062) A aa% (061,052) + dOél (al)
8N4 82N3 d;Z§4
< |—= .
% 2(0417042) S | 9az (o1, o) | + da2(042)
The inequalities (3.16) and ([3.17)) show that oM, , ON, s ON; and % are
8@1 80@ 8042 80{1
bounded for bounded M € ¥ (J)?* provided that dov) |40 , dos and o are
dos | |daq |” |doy dovs
bounded. _ _
We thus prove that if M € %(J)* is bounded then p) and 0 ! € A are
aq Q2

doy

uniformly bounded if ;l j=14and — Torn k = 2,3 are bounded. Then it exists
aq
B >0and~vy > OsuchthatVz €A,

Doy V2 V2
and N

ON; < in {0 —1 +E}

90| <7 7

Given o' = (a},a}) € J and o® = (a?,a3) € J. We deduce from the Mean Value
Theorem, that its exists o’ = (al,a9) € [a!, a?] C J such that

]VZ- (al) — ]VZ (a2) = le- (ao) (al — aQ) , 1€AN

with
o', 0] ={aeR/a=t(a' —a®) +a*, t€[0,1]}
and B B
~ ON; ON;
dNZ (Ozo) (h) = aal (Ozo) h1 + 8042 (Oéo) hg Vh = (hl, hg) € RQ.
Hence

N; (a') = N; (?)

‘df\fi ao (al — a2)

HdN H ot = o?||
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with
_ dN; (a°) h
dN; (« = sup —————
G R T
N; ., ON,
h () h
8a1( ) I aaz( )
= sup
Inl<1 || =+ |ha
But
ON; 0 ON; 0 ON, ON; 0
— h h
By (@) I+ g, (@) he aal(o‘)ollH 8&2(a)0’2’
ON; ON;
< : h
max( o (a”) 0 8042( a”) 0) 1Rl
< max(f,7)]|A].
That is HdN H max(f3,v). Then ‘N ~N; (042)‘ < max(8,7) [|a! — a?||.
Let € > 0, it is sufficient that ||a! — o?|| < —° _tohave ‘N,- (a') = N; (a?)| <
max(f3, «)
g, VieA.

We prove that for all solution N of (3.2) s

Ve>0,3n>0, ||

0| <n = |N; (a') = N; (?)

<e Val,a?eJ

The set of the solutions of (3.2)) is thus equicontinuous so .7 is compact on every
bounded subset of €, (J)*. O

Lemma 3.3. Every solution of the equation N=\T (]\7 ), 0 < A < 1, is bounded.
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Proof. N is a solutions of N = \.7 (N

(3.18)

p

A.E. Nicoué and A.S. d’Almeida

) if, and only

I

>
<
o3

if,

B.18) — (1)

B18) — (2)

B18) — (3)

B.18) — (4)

\

Making the sums (3.18)-(1)+(3.18)-(4) and (3.18)-(2)+(3.18)-(3), we obtain
for the determination of the partial macroscopic densities p™ and p~ the following
system of partial differential equations:

(3.19)

\

(o [;ﬁ(ﬁ)]

o [p (W)

G T (=0 [p+(

9o ] +(1=X)o [p_(

N)rzo

N)r:o

The unique solution of system (3.19) is obviously

s B 1
prN)len ) = G )

(3.20)
p— AT 1
p(N)(aq, ) = (1 —=XNoas+ h=(ay)

The problem (3.18)) is a two point boundary value problem and only a part of the
data are given at each boundary Hence we have N, (0, asy) on the line oy = 0,
N4 (1, ap) on the line a; =1, N2 (a1, 0) on the line a, = 0 and N3 (a1, 1) on the line

062—1.
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We thus introduce the positive functions of a,, A} and the positive functions of
de oy, A, , k= 0,1 such that

Ny (0, az) )‘(T(O@)]Yl (0, 0xz)

Ni(Liaz) = A (a2)Ny (1, a)

(3.21) N3 (aq,0) = )\a(al)Jng (@1,0)
(a1, 1) = Ay (1) N3 (o, 1).

The relations (3.21]) which are by no means reflection laws and are obtained just
by comparing functions of the same variables at the boundaries of the domain J
allow to compute the values of p™ and p~ at the boundaries:

p+(@ (0, az) [T+ 25 (a2)] )\<Z51(042)
pr(N) (Laz) = [14A{(a2)] >\¢>4(042)
p~(N)(a1,0) [T+ 25 ()] >\¢2(041)
p~(N)(ar,1) = [14 A (a1)] Ags(ay).
From which we infer:
1 1
ht(ay) = — = — o(A—1
(az) [1 + )\g(ag)] A1 () [1 + )\f(ag)] Apy(a) ol )
o) ——+ 1 Lon-
[1 + X (al)] Apa(ay) [1 + Al (al)] Ap3(ay)
Hence
[ (W) (e, 00) = P —
— ooy + =~
(3.22) ~ L4 A ()] A ()
p~(N)(a1, a2) = i 1
— o0ig + =~
k [1 + )\a (Oél)] )\gbg(oq)

Thus for 0 < A < 1, p* and p~ are continuous and bounded as ¢; , i = 1,2 and \E
and so are the number densities NV, , i € A. O

Remark 3.1. For \ = 1 the solutions (3.22]) are not singular. Moreover they satisfy
patial conservation equations and depend upon one variable.

Finally we conclude to the existence of the solutions of problem (3.1)) by using
the fixed point theorem of Schaefer [[12].
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Theorem 3.1. Let T be a continuous and compact mapping of a Banach X into itself,
such that the set {x € X, x = \T'(x)} is bounded ¥ A\, 0 < A < 1. Then T has a fixed
point.

The N; ,i € A which are positive functions of «; and «, exist, are continuous,
bounded and satisfy the compatibility conditions (3.10). Thus the problem (2.3)
possesses a solution /N continuous and bounded. O

4. EXACT SOLUTIONS

For A = 1, p* and p~ are known and we have:

pH(N)(az) = (N + Vi) (a2) and p (N)(ar) = (Mo + N ) (en).
Then

@1 { Ny(ag,a0) = pt(N)(az) — Ni(ag, as)
p

N?)(Oél, 042) =

and the system (2.4) becomes:

8]\71 B _ ,0+ 2 " ,0_ 2 p_2_p+2

do ”0[<le) (-t )

INo _ S AN A pt = pt?

%0z ‘“0[(N1‘2> -(m-)
4.2) JY4(041, ) = P+(]Y)(Oé2) - J:\:fl(ala )

Nz(an,a2) = p~(N)(a1) = Na(ay, az)

Ni(0,02) = ¢i(az)

Ny (01,0) = ¢a(n)

Nz (e, 1) = ¢3(n)

Ny (1, az) Pa(02)

\

The boundary value problem for the numbers densities N;,i=1,2is thus:
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8j\71 aj\v& B " p+ 2 " p_ 2 p_2 B p+2
dr = e = | (M=) - (%)
N Ql(ﬁ)
(4.3) N1 (0, az) = o1(a2)
Ny (1, a2) = pF(02) — pa(az)
]YQ (alvo) = ¢2(a1) "
Ny (a1,1) p~(a1) — ¢3(n)
Letting
~ + ~ -
Fi(aq,a2) = Ny(aq, an) — ad (2a2) and Fy(a1,az) = Nao(ag, ag) — & (;1)

the system (4.3) take the form:

(oF,  OF —2_ it -
=g = w0 |[R-B+ | — )
Fy (07042) = 51(042) - ,0+(;2)
4.4 ~
( ) F1 (17 0[2) = —¢4(C¥2) + p (2a2)
Fy (0n,0) = Go(on) — ,0_(2(11)
\ Fy (o, 1) = —53(051) + p_(;l)

The system (4.4)) has a simpler form but its exact resolution is complicated. How-
ever it permits to find exact solutions of the problem (4.3) in particular cases.

4.1. The Maxwellian solutions. An obvious solution of system (4.4)) is:
+ - -
Fi(aq,ap) = £ (2042) and Fy(on, ) = 2 (20‘1) which leads to ¢1(as) = P+<042),

do(c1) = p~ (o), Q1(N) = 0 and ¢3 = ¢4 = 0. As the number densities are strictly
positive this solution is not admissible.
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1 1
The solution Fj(aq, ) = 5\/[)*2(&2) — 4y, Foy(ag,an) = ix/pfz(al) — 4c¢; for

c; > 0 is also a maxwellian solution. Hence:

~ T 1
N1 (011,062> = p (2 2) + Vi p+2(a2) —401

2
~ (o 1
N2 (Oél,ag) = p (2 1) +§ p72<041) —461
(4.5) _
~ « 1
N3 (061,042) = p (2 1) — 5 p_2(O[1) - 401
~ a 1
N4 (Oél, 012) = p (2 2) — 5 p+2(0é2) — 401.

Taking into account the boundary conditions, we get:

pt(ag) = 51(00) + 54(042)
(4.6) p (1) = da(0n) + d3(a)
c1 = dr(az).da(as) = da(ar).d3(an).

The validity of the third relation imposes the dependence of the boundary
data in the form:

i) = =
4.7) N ¢1£(1342>
¢3(Oé1) = 52(041)

The Maxwellian solutions are thus:

Ni(ar,a9) = ¢i(az)

Ny(ar,a9) = ¢o(ay)

Ns(ay, ——
4.8) o) =
~ 1
N. - —
4(CV1, 042) ¢1 (042)

$%>cl : $§>cl.
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The solutions (4.8) are associated to the macroscopic variables:

p = 51+$2+$+g
1 2
(49) R
2 1
pvV. = 0{514'52—3—1—2
2 O

So they are merely particular expressions of the unique maxwellian solutions of
the model associated to the macroscopic variables p, U and V' defined by:

Nor = %1+mu+m
Noy = %1_@u+m
(4.10) Ny = %1+wu—u)
N = %1—mu—m
U 1%
u=—, v=—.
C C

4.2. Non maxwellian solutions.

4.2.1. The mean densities are linear functions of oj, j = 1,2. For p~(as) = poaa+py
and pT(ay) = pocy + pg we seek the solutions of in the form:

~ pr ~ P~
4.11) N1:X+?, N2:Y+7
with
ok -k
(4.12) x =0 Moo y =2 4 Mowaa)
2 m(ag, ) 2 m(ag, )
We find after computations the solutions:
pt 1 P 1
13 X="4F —Mm y =2
(4.13) 2 + m(ay, )’ 2 + m(ay, as)
with
2008 — py
m(aq, ag) = Aexp [P(_on (g —a))? — %(al —ag)| -
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4.2.2. The mean densities are constant. For p* = pf, p~ = p, with pi constant
and h = pJ /p, we have the solution

(4.14) x = klaa) y = P Man,as)k(ar, a0)
2 m(a, o) 2 m(ay, as)
with
207 =pt) (o1«
m(ay, ap) = (pp—mf ) (p—i — p—f) k(aq, az)
Hence
( + _K
X = % + p 2N
« (07
e (G 32)
(4.15) - .
Y = % + p_an
92 — pt? (& ~ a_)
\ (p=" = p*) il

When pq is zero in the solution of the first case, we have p™ and p~ which are
constant but the solution of the first case is different from the solution of the
second case. Which proves the non-uniqueness of the solution of problem (2.3)).

5. STEADY FLOW IN BOX

We investigate in this section the flow of a discrete gas in box in order to com-
pute accommodation coefficients. In this statement of a flow problem, in con-
trast to the boundary value problem in which they are assumed known, the
boundary conditions ¢; depend upon the accommodation coefficients which de-
scribe the interactions between the particles of the gas and those of the boundaries
of the flow domain. The accommodation coefficients are unknowns of the prob-
lem and classically one has to prescribe reflection laws to get additional relations
for their determination which is achieved only when the mathematical problem is
solved [8] [9].
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The macroscopic variables of the flow are the mean density p, the tangential ve-
locity v and the transversal velocity v given by:
P = Nl + ]’\72 + ]’\73 + ]\74 = p+(6¥2) + ,07(041)

(5.1) pu = Ny —No+ N3 — Ny = 2(Ny—No) —pH(ag) +p (q)

pv = Ni+No—Ns— Ny, = 2(N,+N,) — p(ag) — p~ ().
The maxwellian densities of the model associated with the macroscopic variables
p, u and v are:

N p

Niy = Z(1+u)(1+v)

Noy = 2(1 —u)(1+v)
o Now = 20w —o

N p

N4]V[ == Z(l—u)(l—v)

The microscopic densities of the discrete gas in maxwellian equilibrium with a
wall are the maxwellian densities associated with 1, the tangential and transver-
sal velocities of the wall. Assume that the macroscopic velocity of the box is
711, = (uy (0, an), vy (a1, az)). The microscopic densities of the gas in Maxwellian
equilibrium with the box are:

~ 1
Niy = Z(1+Uw)(1+vw)

~ 1
NQM = Z—l(l—uw)<1+1)w)

~ 1
Nay = 4_1(1 + Uy ) (1 — vy)

Nyy = 2(1 — ) (1 — vy).

(5.3)

It is usually assumed, when the exchanges of mass or energy of a gas and its
surrounding only result from the collisions of its particles with its boundaries, that
only the microscopic densities of the reflected particles are known near the walls
[[5]. We can compare these densities to those of the fictituous gas in equilibrium
with each wall and introduce the functions /;(as), i = 1,4 et [;(a1), j = 2,3 such
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that:
Fi0.a2) = M0 014 0 0,000) 1+ w0(0,02)
N(a1,0) = ZQ(ZI) (1 — wp(a1,0)) (1 + vu(ar,0))
(5.4) N Iy(0)
N3(ag,1) = T(l—l—uw(al,l))(l—vw(al,l))
Nu(1,c0) = 14(2‘2) (1 = ue (L, a2)) (1 — ve(1, a2)) .

Using the form of the maxwellian solutions we have, taking ¢; = 1/4,

Ni(0,a2) = ¢1(az)

No(a1,0) = ¢o(a)

~ 1
(55) Ng(O{l, 1) = =
4¢1£0é1)
Niy(Ln) = — :
491 ()
We can thus explicitly determine the functions /;, i = 1,4 et [;, j = 2,3 which are
given by:
461 (ar)
I —
M02) = T (0,00)] [+ 000, 00)]
46n (1)
12(061) =
1 —up(aq,0)] |1 + vy(ag,0
(5.6) [ (a1 )Hl (a1,0)]
lg(al) = =
Pa(a1) [1 4 uy(ar, D] [1 — vy(aq, 1)]
1
l4(0(2) =

$1(n) [1 = uy(1, a2)] [1 — vy(1, a2)]

We introduce now reflection laws. We prescribe that particles of opposite velocities
are reflected with the same accommodation coefficients. That is:

o) = o), e [ 2]
57 b(on) = ls(ar), Vo€ {01—\;]
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We infer from these additional relations:

$1(a) = 1\/[1 + U (0, a2)] [1 + vy (0, a2)]

2\ [1 = uw(1, 02)] [1 — vu(1, a2)]

~ - 1 [1 — Uw(alv 0)] [1 + 'Uw(al, )]

5.9 p2(a1) = 2\/ (a1, 1)]

ll(a2) =

lo(a = .
) = en DI —ven DI —wu(ar, 010+ vu(ar 0)

The relations give the boundary data 55']- in terms of the macroscopic vari-
ables of the box’s walls. In fact the walls do not move freely as we assume in our
computations. Thus when we take into account the fact that for a solid box all the
walls have the same constant velocity we have:

~ 1 1w+ v
ho= 2\/[1—uw][1—vw]
5 1\/[1—uw][1+vw]
(5.9) S 2V ][ -
Lo 2
RV I
2

12 —

VL= a@2][t =]
The accommodation coefficients are equal although the boundary conditions are
different in this more realistic case.

6. CONCLUSION

We show that the boundary value problem for the two dimensional Broadwell
. . . m
four velocity discrete model has bounded solution for # = —. Due to the geome-
try of the model the boundary value problem is overdetermined in the sense that
there are more boundary conditions than unknowns. The result is that, unlike
s S .
the cases 6 € {0, 3 }, compatibility relations between the boundary data must be
added to the positivity and boundedness assumptions. The solution is not unique
in general. Some exact analytic maxwellian and non maxwellian solutions are
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built and compared to those of the cases 6 € {O, g} An application to the deter-
mination of the accommodation coefficients on the boundaries of a gas flow in a
box is performed. The fact that we have two completely analytic expressions of the
maxwellian densities permits to compute exactly the accommodation coefficients.
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