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THREE POINTS BLOCK EMBEDDED DIAGONALLY IMPLICIT RUNGE-KUTTA
METHOD FOR SOLVING ODES

Yong Faezah Rahim1 and Mohd Ezad Hafidz Hafidzuddin

ABSTRACT. Block Embedded Diagonally Implicit Runge-Kutta (BEDIRK4(3)) me-
thod derived using Butcher analysis and equi-distribution of error approach is out-
performed standard Runge-Kutta (RK) formulae. BEDIRK4(3) method produces
approximation to the solution of initial value problem (IVP) at a block of three
points simultaneously. The standard one step RK3(2) method is used to approxi-
mate the solution at the first point of the block. At the second points the solution is
approximated using RK4(2) method which is generated by the previous research.
The same approach is used to obtain the solution at the third point. The code
for this method was built and the algorithm developed is suitable for solving stiff
system. The efficiency of the method is supported by some numerical results.

1. INTRODUCTION

Diagonally Implicit Runge-Kutta (DIRK) methods are amongst the most popular
method currently use for solving stiff systems of ordinary differential equations.
DIRK method is attractive because of its low implementation cost, which mean
that the computational effort involved is generally less than what is required by
fully implicit RK method. Many Runge-Kutta codes are based on embedded pairs
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of explicit RK formula. For example, the code based on Dormand and Prince [1]
with explicit embedded formula 6(5) method. Then the idea was extended to
implicit method by Norsett and Thomson [2], Ismail and Suleiman [3], Butcher
and Chen [4]. Ismail et al [5] has improved the embedded diagonally implicit
Runge-Kutta method for solving delay differential equation.

A general s−stage Runge-Kutta method for the problem

(1.1) y′ = f(x, y), y(a) = η, f : R× Rm → Rm

is defined by

(1.2) Yn+1 = yn + h

s∑
i=1

biki,

where

(1.3) ki = f

(
xn + cih, yn + h

s∑
i=1

biki

)
, i = 1, 2, . . . , s.

In order to present the embedded methods, we shall modify the Butcher array to
the following form:

c A

bT

b̂T

ET

The method defined by c, A and bT has order p and that defined by c, A and bT

has order p+ 1. Define embedding method of (1.2) as

(1.4) Ȳn+1 = yn + h
s∑

i=1

b̂iki.

Then the local truncation error (LTE) could be estimated using (1.2) and (1.4)
and is given by vector ET :

LTE = Yn+1 − Ȳn+1 = h

s∑
i=1

(
bi − b̂i

)
ki.(1.5)

Traditionally, RK integration proceeds one step at a time, with several function
evaluation in each step. There are many researchers have improved the existing
methods or produced new methods that efficiently reducing the calculation cost.
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An example of the well-known method that proves successfully to reduce the cal-
culation cost is block method. This method capable of evaluating functions in set
of several steps at once instead of one step at a time. By proceeding a block at a
time, the number of function evaluation is reduced well below than attained by
conventional RK method. The notion of using a block method has appeared explic-
itly in the literature. Cash [6] has derived a block diagonally implicit Runge-Kutta
(BDIRK) method that can solve stiff and non-stiff problems of IVPs in ODEs. The
derivation of BEDIRK4(2) can be obtained in Rahim [7]. A new block Runge-Kutta
(NBRK) method with various weights for solving stiff ordinary differential equa-
tions (ODEs) were discussed by Aksah et al. [8]. Block backward differentiation
formula (BBDF) of variable step were proposed by Ibrahim et al. [9] and Zawawi
et al. [10] for solving stiff ODEs had proved to have better accuracy and smaller
computational time.

2. DERIVATION OF EMBEDDED BLOCK METHOD

The method that will be derived is produced approximation to the solution of
the IVP at a block of three points simultaneously. The values of yn+1 and yn+2 are
obtained using the two-point block method described by Rahim et al. [11]. Then
this method is used to generate the new formulae for approximating solution at
xn+3. The solution at xn+1 and xn+2 is given as follows:

0.2928932 0.2928932

1.0918831 0.7989899 0.2928932

1.2928932 0.7407892 0.2592108 0.2928932

0.384776 1 0.615224

2 0.903156 0 0.8039508 0.2928932

0.716302 0.1624244 0.890524 0.2307496

By taking the same [aij] and [ci] and normalizing the matrix by dividing all
the coefficients by three since moving three steps forward, the following table is
obtained:
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0.0976311 0.0976311

0.363961 0.26633 0.0976311

0.430964 0.24693 0.0864036 0.0976311

0.666667 0.301052 0 0.267984 0.0976311

b̂1 b̂2 b̂3 1− b̂1 − b̂2 − b̂3

c5 a51 a52 a53 c5 − a51 − a52 0.0976311

−a53 − 0.0976311

b1 b2 b3 b4 1− b1 − b2 − b3 − b4

The method that is constructed is of order four with embedded method of or-
der three. For the embedding method to have order three, the conditions to be
followed are:

∑
b̂ici =

1

2
(2.1) ∑

b̂ic
2
i =

1

3
(2.2) ∑

b̂iaijcj =
1

6
.(2.3)

Solving the above equations, then,

0.0976311 0.0976311

0.363961 0.26633 0.0976311

0.430964 0.24693 0.0864036 0.0976311

0.666667 0.301052 0 0.267984 0.0976311

0.463762 −0.795688 0.609366 0.72256

For fourth order accuracy, according to Butcher [12] the coefficients c5, a51, a52,
a53, b1, b2, b3, b5 must satisfy the following eight order equations:
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t Φ(t) =
1

γ(t)
where γ(t) = density of the tree

τ
∑
bi = 1

[τ ]
∑
bici = 1

2

[τ 2]
∑
bici

2 = 1
3

[2τ ]2
∑
biaijcj = 1

6

[τ 3]
∑
bici

3 = 1
4

[τ [τ ]]
∑
biciaijcj = 1

8

[2τ
2]2

∑
biaijc

2
j = 1

12

[3τ ]3
∑
biaijaikck = 1

24

The trees associated with order four method can be divided into three cate-
gories:

a. τ , [τ ], [τ 2], [τ 3]

b. [2τ ]2, [2τ
2]2, [3τ ]3

c. [τ [τ ]].

For t in category a), Φ(t) =
1

γ(t)
takes the form

(2.4)
∑

bic
k−1
i =

1

k
, k = 1, 2, 3, 4.

The three trees in category b): given

(2.5)
∑
i

biaij = bj (1− cj) , j = 2, 3, 4.

Then it follows that,∑
i

biaijcj =
∑

bj (1− cj) cj =
1

2
− 1

3
=

1

6
,(2.6)

∑
i

biaijc
2
j =

∑
bj (1− cj) c2j =

1

3
− 1

4
=

1

12
,(2.7)

∑
i

biaijajkck =
∑

bj (1− cj) ajkck =
1

6
− 1

8
=

1

24
.(2.8)

It can be seen that the trees in category b) can be ignored if the remaining order
conditions are satisfied.
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A single tree in category c) yields the equation

(2.9)
∑
ij

biciaijcj =
1

8
.

Therefore, for order four method with five stages, there are eight parameters with
four constraints to be solved.

(1)
∑
bici = 1

2

(2)
∑
bic

2
i = 1

3

(3)
∑
bic

3
i = 1

4

(4)
∑
biciaijcj = 1

8

The following choice of parameters from Billington [13] could lead to major re-
ductions in computational effort. The choice is:

(1) c5 = c1 + 1

(2) a51 = b1
(3) a52 = b2
(4) a53 = b3
(5) a54 = b4
(6) a55 = a11

Solving all the above equations, thus giving the following matrix.

0.0976311 0.0976311

0.363961 0.26633 0.0976311

0.430964 0.24693 0.0864036 0.0976311

0.666667 0.301052 0 0.267984 0.0976311

1.0976311 0.463762 −0.795688 0.609366 0.72256 0.0976311

0.307553 −0.488833 0.741355 0.35846 0.081465

Finally, multiplying back all the coefficients by three then the formula for ap-
proximating the third point of the block is found.
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0.2928932 0.2928932

1.0918831 0.7989899 0.2928932

1.2928932 0.7407892 0.2592108 0.2928932

2 0.903156 0 0.8039508 0.2928932

1.391286 −2.387064 1.828098 2.16768

3.2928932 1.391286 −2.387064 1.828098 2.16768 0.2928932

0.922659 −1.466499 2.224065 1.07538 0.244395

3. STABILITY OF THE METHOD

The stability region of the method can be examined by applying the test equa-
tion y′ = λy to the block formula. After substituting y′ = λy, such that ŷ = hλ the
stability polynomial is given as

yn+3

yn
=

det(I − ĥA+ ĥubT )

det(I − ĥA)
= R(ĥ)

=
−1.13892(23.6617 + ĥ)(7.41279 + 2.045ĥ+ ĥ2)(2.32237 + 2.82722ĥ+ ĥ2)

(−3.4105 + ĥ)(11.6774− 6.83444ĥ+ ĥ2)(11.649− 6.82613ĥ+ ĥ2)
.

The stability region can be defined by letting |R(ĥ)| < 1, then plotting the stability
polynomial and the result is shown below in figure below with the interval of
absolute stability is approximately (−350, 0). One of the criteria for a good method
to be useful is that it must have a region of absolute stability.
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4. PROBLEM TESTED

In this section, some of the problems obtained from Enright et al. [14] and Bur-
den et al. [15] are tested upon. The problems are given as follows:

Problem 1:

y′ = −9y

y(0) = 1

0 ≤ x ≤ 20

Problem 2:

y′ =
50

y
− 50y

y(0) =
√

2

0 ≤ x ≤ 20

Problem 3:

y1
′ = −y1 + y2

2 + y3
2 + y4

2

y2
′ = −10y2 + 10(y3

2 + y4
2)

y3
′ = −40y3 + 40y4

2

y4
′ = −100y4 + 2

y1(0) = y2(0) = y3(0) = y4(0) = 1

0 ≤ x ≤ 20

Problem 4:

y1
′ = −0.5y1

y2
′ = −y2

y3
′ = −100y3

y4
′ = −90y4

y1(0) = y2(0) = y3(0) = y4(0) = 1

0 ≤ x ≤ 20
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5. NUMERICAL RESULT AND CONCLUSION

The table below show the performance of the BEDIRK 4(3) block method by
solving the problems in the previous section using 10−2, 10−4, 10−6. The results
are compared to the results when the problems are solved using standard DIRK
3(2) non-block method. Since the method is an implicit method, thus iterations
are needed to obtain the numerical solutions. Initially the system is considered as
non-stiff and simple iterations are used, once there is an indication of stiffness, the
whole system is considered as stiff and Newton iterations are used.

The following notation are used in the table:

- TOL: The chosen tolerance
- FCN: The number of function evaluations
- FSTEP: The number of failed step
- STEP: The number of successful steps
- JACO: The number of Jacobian evaluations
- EMAX: The maximum global error

1 Non-block method Block method
TOL 10−2 10−4 10−6 10−2 10−4 10−6

FCN 305 634 2083 154 274 754

STEPS 31 63 207 12 22 61

FSTEP 1 2 3 2 2 3

JACO 1 1 1 1 1 1

EMAX 2.7819(−3) 4.2486(−5) 4.8411(−7) 5.2222(−3) 4.0603(−4) 1.4582(−6)

2 Non-block method Block method
TOL 10−2 10−4 10−6 10−2 10−4 10−6

FCN 259 446 1210 145 269 474

STEPS 27 55 120 12 21 39

FSTEP 1 2 4 1 3 2

JACO 1 1 1 1 1 1

EMAX 5.5878(−4) 7.7664(−5) 4.8828(−7) 2.9329(−3) 9.6266(−5) 1.2375(−6)
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3 Non-block method Block method
TOL 10−2 10−4 10−6 10−2 10−4 10−6

FCN 874 1140 3675 414 585 1339

STEPS 87 112 364 364 47 110

FSTEP 1 3 5 2 5 3

JACO 1 1 1 1 1 1

EMAX 1.2225(−3) 4.2027(−5) 4.8234(−7) 8.0833(−3) 1.8789(−4) 2.1989(−6)

4 Non-block method Block method
TOL 10−2 10−4 10−6 10−2 10−4 10−6

FCN 354 775 2915 217 566 1520

STEPS 38 86 311 18 46 123

FSTEP 1 3 6 1 4 7

JACO 1 1 1 1 1 1

EMAX 2.1371(−3) 4.2509(−5) 7.8218(−7) 6.6224(−2) 1.6548(−4) 1.5090(−6)

From the results, it is shown that block method is about 20%−40% more efficient
than non-block method and perform better in terms of function evaluations and
number of steps taken. It is also be seen that the method is more reliable at
higher tolerance than that at lower tolerance because as the tolerance increases
the differences of number of steps taken and function evaluation become more
obvious between block method and non-block method. By using block method,
the result requested at off-step points can be computed by interpolation. This gives
a large saving in computational effort when many output points are specified. It
is understood that the non-block method produced solution with better accuracy
since it is approximating one point for each step, but block method can still has
the accuracy within the given tolerance. These results are expected since block
method approximate the numerical solution at three points simultaneously. Since
the solution carried forward at the end of the block is order four, it is expected that
the global error associated with block method to be rather small than standard
method. The method is absolute stable with large stability region (−350, 0) hence
it is suitable for solving stiff problems. In general, the block method is performed
better than conventional method because of less computational effort needed to
complete the given task and the result are still within the required accuracy.
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